| /* |
| * Copyright 2019 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "rtc_base/numerics/event_based_exponential_moving_average.h" |
| |
| #include <cmath> |
| |
| #include "rtc_base/checks.h" |
| |
| namespace { |
| |
| // For a normal distributed value, the 95% double sided confidence interval is |
| // is 1.96 * stddev. |
| constexpr double ninetyfive_percent_confidence = 1.96; |
| |
| } // namespace |
| |
| namespace rtc { |
| |
| // |half_time| specifies how much weight will be given to old samples, |
| // a sample gets exponentially less weight so that it's 50% |
| // after |half_time| time units has passed. |
| EventBasedExponentialMovingAverage::EventBasedExponentialMovingAverage( |
| int half_time) { |
| SetHalfTime(half_time); |
| } |
| |
| void EventBasedExponentialMovingAverage::SetHalfTime(int half_time) { |
| tau_ = static_cast<double>(half_time) / log(2); |
| Reset(); |
| } |
| |
| void EventBasedExponentialMovingAverage::Reset() { |
| value_ = std::nan("uninit"); |
| sample_variance_ = std::numeric_limits<double>::infinity(); |
| estimator_variance_ = 1; |
| last_observation_timestamp_.reset(); |
| } |
| |
| void EventBasedExponentialMovingAverage::AddSample(int64_t now, int sample) { |
| if (!last_observation_timestamp_.has_value()) { |
| value_ = sample; |
| } else { |
| // TODO(webrtc:11140): This should really be > (e.g not >=) |
| // but some pesky tests run with simulated clock and let |
| // samples arrive simultaneously! |
| RTC_DCHECK(now >= *last_observation_timestamp_); |
| // Variance gets computed after second sample. |
| int64_t age = now - *last_observation_timestamp_; |
| double e = exp(-age / tau_); |
| double alpha = e / (1 + e); |
| double one_minus_alpha = 1 - alpha; |
| double sample_diff = sample - value_; |
| value_ = one_minus_alpha * value_ + alpha * sample; |
| estimator_variance_ = |
| (one_minus_alpha * one_minus_alpha) * estimator_variance_ + |
| (alpha * alpha); |
| if (sample_variance_ == std::numeric_limits<double>::infinity()) { |
| // First variance. |
| sample_variance_ = sample_diff * sample_diff; |
| } else { |
| double new_variance = one_minus_alpha * sample_variance_ + |
| alpha * sample_diff * sample_diff; |
| sample_variance_ = new_variance; |
| } |
| } |
| last_observation_timestamp_ = now; |
| } |
| |
| double EventBasedExponentialMovingAverage::GetConfidenceInterval() const { |
| return ninetyfive_percent_confidence * |
| sqrt(sample_variance_ * estimator_variance_); |
| } |
| |
| } // namespace rtc |