| /* |
| * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/pacing/pacing_controller.h" |
| |
| #include <algorithm> |
| #include <list> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "api/units/data_rate.h" |
| #include "modules/pacing/packet_router.h" |
| #include "system_wrappers/include/clock.h" |
| #include "test/field_trial.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| |
| using ::testing::_; |
| using ::testing::Field; |
| using ::testing::Pointee; |
| using ::testing::Property; |
| using ::testing::Return; |
| |
| namespace webrtc { |
| namespace test { |
| namespace { |
| constexpr DataRate kFirstClusterRate = DataRate::KilobitsPerSec<900>(); |
| constexpr DataRate kSecondClusterRate = DataRate::KilobitsPerSec<1800>(); |
| |
| // The error stems from truncating the time interval of probe packets to integer |
| // values. This results in probing slightly higher than the target bitrate. |
| // For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets. |
| constexpr DataRate kProbingErrorMargin = DataRate::KilobitsPerSec<150>(); |
| |
| const float kPaceMultiplier = 2.5f; |
| |
| constexpr uint32_t kAudioSsrc = 12345; |
| constexpr uint32_t kVideoSsrc = 234565; |
| constexpr uint32_t kVideoRtxSsrc = 34567; |
| constexpr uint32_t kFlexFecSsrc = 45678; |
| |
| constexpr DataRate kTargetRate = DataRate::KilobitsPerSec<800>(); |
| |
| std::unique_ptr<RtpPacketToSend> BuildPacket(RtpPacketMediaType type, |
| uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| size_t size) { |
| auto packet = std::make_unique<RtpPacketToSend>(nullptr); |
| packet->set_packet_type(type); |
| packet->SetSsrc(ssrc); |
| packet->SetSequenceNumber(sequence_number); |
| packet->set_capture_time_ms(capture_time_ms); |
| packet->SetPayloadSize(size); |
| return packet; |
| } |
| } // namespace |
| |
| // Mock callback proxy, where both new and old api redirects to common mock |
| // methods that focus on core aspects. |
| class MockPacingControllerCallback : public PacingController::PacketSender { |
| public: |
| void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& cluster_info) override { |
| SendPacket(packet->Ssrc(), packet->SequenceNumber(), |
| packet->capture_time_ms(), |
| packet->packet_type() == RtpPacketMediaType::kRetransmission, |
| packet->packet_type() == RtpPacketMediaType::kPadding); |
| } |
| |
| std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding( |
| DataSize target_size) override { |
| std::vector<std::unique_ptr<RtpPacketToSend>> ret; |
| size_t padding_size = SendPadding(target_size.bytes()); |
| if (padding_size > 0) { |
| auto packet = std::make_unique<RtpPacketToSend>(nullptr); |
| packet->SetPayloadSize(padding_size); |
| packet->set_packet_type(RtpPacketMediaType::kPadding); |
| ret.emplace_back(std::move(packet)); |
| } |
| return ret; |
| } |
| |
| MOCK_METHOD5(SendPacket, |
| void(uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_timestamp, |
| bool retransmission, |
| bool padding)); |
| MOCK_METHOD1(SendPadding, size_t(size_t target_size)); |
| }; |
| |
| // Mock callback implementing the raw api. |
| class MockPacketSender : public PacingController::PacketSender { |
| public: |
| MOCK_METHOD2(SendRtpPacket, |
| void(std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& cluster_info)); |
| MOCK_METHOD1( |
| GeneratePadding, |
| std::vector<std::unique_ptr<RtpPacketToSend>>(DataSize target_size)); |
| }; |
| |
| class PacingControllerPadding : public PacingController::PacketSender { |
| public: |
| static const size_t kPaddingPacketSize = 224; |
| |
| PacingControllerPadding() : padding_sent_(0), total_bytes_sent_(0) {} |
| |
| void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& pacing_info) override { |
| total_bytes_sent_ += packet->payload_size(); |
| } |
| |
| std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding( |
| DataSize target_size) override { |
| size_t num_packets = |
| (target_size.bytes() + kPaddingPacketSize - 1) / kPaddingPacketSize; |
| std::vector<std::unique_ptr<RtpPacketToSend>> packets; |
| for (size_t i = 0; i < num_packets; ++i) { |
| packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr)); |
| packets.back()->SetPadding(kPaddingPacketSize); |
| packets.back()->set_packet_type(RtpPacketMediaType::kPadding); |
| padding_sent_ += kPaddingPacketSize; |
| } |
| return packets; |
| } |
| |
| size_t padding_sent() { return padding_sent_; } |
| size_t total_bytes_sent() { return total_bytes_sent_; } |
| |
| private: |
| size_t padding_sent_; |
| size_t total_bytes_sent_; |
| }; |
| |
| class PacingControllerProbing : public PacingController::PacketSender { |
| public: |
| PacingControllerProbing() : packets_sent_(0), padding_sent_(0) {} |
| |
| void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& pacing_info) override { |
| if (packet->packet_type() != RtpPacketMediaType::kPadding) { |
| ++packets_sent_; |
| } |
| } |
| |
| std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding( |
| DataSize target_size) override { |
| // From RTPSender: |
| // Max in the RFC 3550 is 255 bytes, we limit it to be modulus 32 for SRTP. |
| const DataSize kMaxPadding = DataSize::bytes(224); |
| |
| std::vector<std::unique_ptr<RtpPacketToSend>> packets; |
| while (target_size > DataSize::Zero()) { |
| DataSize padding_size = std::min(kMaxPadding, target_size); |
| packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr)); |
| packets.back()->SetPadding(padding_size.bytes()); |
| packets.back()->set_packet_type(RtpPacketMediaType::kPadding); |
| padding_sent_ += padding_size.bytes(); |
| target_size -= padding_size; |
| } |
| return packets; |
| } |
| |
| int packets_sent() const { return packets_sent_; } |
| |
| int padding_sent() const { return padding_sent_; } |
| |
| private: |
| int packets_sent_; |
| int padding_sent_; |
| }; |
| |
| class PacingControllerTest |
| : public ::testing::TestWithParam<PacingController::ProcessMode> { |
| protected: |
| PacingControllerTest() : clock_(123456) { |
| srand(0); |
| // Need to initialize PacingController after we initialize clock. |
| pacer_ = std::make_unique<PacingController>(&clock_, &callback_, nullptr, |
| nullptr, GetParam()); |
| Init(); |
| } |
| |
| bool PeriodicProcess() const { |
| return GetParam() == PacingController::ProcessMode::kPeriodic; |
| } |
| |
| void Init() { |
| pacer_->CreateProbeCluster(kFirstClusterRate, /*cluster_id=*/0); |
| pacer_->CreateProbeCluster(kSecondClusterRate, /*cluster_id=*/1); |
| // Default to bitrate probing disabled for testing purposes. Probing tests |
| // have to enable probing, either by creating a new PacingController |
| // instance or by calling SetProbingEnabled(true). |
| pacer_->SetProbingEnabled(false); |
| pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| } |
| |
| void Send(RtpPacketMediaType type, |
| uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| size_t size) { |
| pacer_->EnqueuePacket( |
| BuildPacket(type, ssrc, sequence_number, capture_time_ms, size)); |
| } |
| |
| void SendAndExpectPacket(RtpPacketMediaType type, |
| uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| size_t size) { |
| Send(type, ssrc, sequence_number, capture_time_ms, size); |
| EXPECT_CALL(callback_, |
| SendPacket(ssrc, sequence_number, capture_time_ms, |
| type == RtpPacketMediaType::kRetransmission, false)) |
| .Times(1); |
| } |
| |
| std::unique_ptr<RtpPacketToSend> BuildRtpPacket(RtpPacketMediaType type) { |
| auto packet = std::make_unique<RtpPacketToSend>(nullptr); |
| packet->set_packet_type(type); |
| switch (type) { |
| case RtpPacketMediaType::kAudio: |
| packet->SetSsrc(kAudioSsrc); |
| break; |
| case RtpPacketMediaType::kVideo: |
| packet->SetSsrc(kVideoSsrc); |
| break; |
| case RtpPacketMediaType::kRetransmission: |
| case RtpPacketMediaType::kPadding: |
| packet->SetSsrc(kVideoRtxSsrc); |
| break; |
| case RtpPacketMediaType::kForwardErrorCorrection: |
| packet->SetSsrc(kFlexFecSsrc); |
| break; |
| } |
| |
| packet->SetPayloadSize(234); |
| return packet; |
| } |
| |
| TimeDelta TimeUntilNextProcess() { |
| Timestamp now = clock_.CurrentTime(); |
| return std::max(pacer_->NextSendTime() - now, TimeDelta::Zero()); |
| } |
| |
| void AdvanceTimeAndProcess() { |
| Timestamp now = clock_.CurrentTime(); |
| Timestamp next_send_time = pacer_->NextSendTime(); |
| clock_.AdvanceTime(std::max(TimeDelta::Zero(), next_send_time - now)); |
| pacer_->ProcessPackets(); |
| } |
| |
| void ConsumeInitialBudget() { |
| const uint32_t kSsrc = 54321; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = clock_.TimeInMilliseconds(); |
| const size_t kPacketSize = 250; |
| |
| EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++, |
| capture_time_ms, kPacketSize); |
| } |
| |
| while (pacer_->QueueSizePackets() > 0) { |
| if (PeriodicProcess()) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } else { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| } |
| |
| SimulatedClock clock_; |
| MockPacingControllerCallback callback_; |
| std::unique_ptr<PacingController> pacer_; |
| }; |
| |
| class PacingControllerFieldTrialTest |
| : public ::testing::TestWithParam<PacingController::ProcessMode> { |
| protected: |
| struct MediaStream { |
| const RtpPacketMediaType type; |
| const uint32_t ssrc; |
| const size_t packet_size; |
| uint16_t seq_num; |
| }; |
| |
| const int kProcessIntervalsPerSecond = 1000 / 5; |
| |
| PacingControllerFieldTrialTest() : clock_(123456) {} |
| void InsertPacket(PacingController* pacer, MediaStream* stream) { |
| pacer->EnqueuePacket( |
| BuildPacket(stream->type, stream->ssrc, stream->seq_num++, |
| clock_.TimeInMilliseconds(), stream->packet_size)); |
| } |
| void ProcessNext(PacingController* pacer) { |
| if (GetParam() == PacingController::ProcessMode::kPeriodic) { |
| TimeDelta process_interval = TimeDelta::Millis(5); |
| clock_.AdvanceTime(process_interval); |
| pacer->ProcessPackets(); |
| return; |
| } |
| |
| Timestamp now = clock_.CurrentTime(); |
| Timestamp next_send_time = pacer->NextSendTime(); |
| TimeDelta wait_time = std::max(TimeDelta::Zero(), next_send_time - now); |
| clock_.AdvanceTime(wait_time); |
| pacer->ProcessPackets(); |
| } |
| MediaStream audio{/*type*/ RtpPacketMediaType::kAudio, |
| /*ssrc*/ 3333, /*packet_size*/ 100, /*seq_num*/ 1000}; |
| MediaStream video{/*type*/ RtpPacketMediaType::kVideo, |
| /*ssrc*/ 4444, /*packet_size*/ 1000, /*seq_num*/ 1000}; |
| SimulatedClock clock_; |
| MockPacingControllerCallback callback_; |
| }; |
| |
| TEST_P(PacingControllerFieldTrialTest, DefaultNoPaddingInSilence) { |
| PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam()); |
| pacer.SetPacingRates(kTargetRate, DataRate::Zero()); |
| // Video packet to reset last send time and provide padding data. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer.ProcessPackets(); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| // Waiting 500 ms should not trigger sending of padding. |
| clock_.AdvanceTimeMilliseconds(500); |
| pacer.ProcessPackets(); |
| } |
| |
| TEST_P(PacingControllerFieldTrialTest, PaddingInSilenceWithTrial) { |
| ScopedFieldTrials trial("WebRTC-Pacer-PadInSilence/Enabled/"); |
| PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam()); |
| pacer.SetPacingRates(kTargetRate, DataRate::Zero()); |
| // Video packet to reset last send time and provide padding data. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, SendPacket).Times(2); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer.ProcessPackets(); |
| EXPECT_CALL(callback_, SendPadding).WillOnce(Return(1000)); |
| // Waiting 500 ms should trigger sending of padding. |
| clock_.AdvanceTimeMilliseconds(500); |
| pacer.ProcessPackets(); |
| } |
| |
| TEST_P(PacingControllerFieldTrialTest, CongestionWindowAffectsAudioInTrial) { |
| ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Enabled/"); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam()); |
| pacer.SetPacingRates(DataRate::kbps(10000), DataRate::Zero()); |
| pacer.SetCongestionWindow(DataSize::bytes(video.packet_size - 100)); |
| pacer.UpdateOutstandingData(DataSize::Zero()); |
| // Video packet fills congestion window. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| ProcessNext(&pacer); |
| // Audio packet blocked due to congestion. |
| InsertPacket(&pacer, &audio); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| if (GetParam() == PacingController::ProcessMode::kDynamic) { |
| // Without interval budget we'll forward time to where we send keep-alive. |
| EXPECT_CALL(callback_, SendPadding(1)).Times(2); |
| } |
| ProcessNext(&pacer); |
| ProcessNext(&pacer); |
| // Audio packet unblocked when congestion window clear. |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| pacer.UpdateOutstandingData(DataSize::Zero()); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| ProcessNext(&pacer); |
| } |
| |
| TEST_P(PacingControllerFieldTrialTest, |
| DefaultCongestionWindowDoesNotAffectAudio) { |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam()); |
| pacer.SetPacingRates(DataRate::bps(10000000), DataRate::Zero()); |
| pacer.SetCongestionWindow(DataSize::bytes(800)); |
| pacer.UpdateOutstandingData(DataSize::Zero()); |
| // Video packet fills congestion window. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| ProcessNext(&pacer); |
| // Audio not blocked due to congestion. |
| InsertPacket(&pacer, &audio); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| ProcessNext(&pacer); |
| } |
| |
| TEST_P(PacingControllerFieldTrialTest, BudgetAffectsAudioInTrial) { |
| ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Enabled/"); |
| PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam()); |
| DataRate pacing_rate = |
| DataRate::bps(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond); |
| pacer.SetPacingRates(pacing_rate, DataRate::Zero()); |
| // Video fills budget for following process periods. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| ProcessNext(&pacer); |
| // Audio packet blocked due to budget limit. |
| InsertPacket(&pacer, &audio); |
| Timestamp wait_start_time = clock_.CurrentTime(); |
| Timestamp wait_end_time = Timestamp::MinusInfinity(); |
| EXPECT_CALL(callback_, SendPacket) |
| .WillOnce([&](uint32_t ssrc, uint16_t sequence_number, |
| int64_t capture_timestamp, bool retransmission, |
| bool padding) { wait_end_time = clock_.CurrentTime(); }); |
| while (!wait_end_time.IsFinite()) { |
| ProcessNext(&pacer); |
| } |
| const TimeDelta expected_wait_time = |
| DataSize::bytes(video.packet_size) / pacing_rate; |
| // Verify delay is near expectation, within timing margin. |
| EXPECT_LT(((wait_end_time - wait_start_time) - expected_wait_time).Abs(), |
| GetParam() == PacingController::ProcessMode::kPeriodic |
| ? TimeDelta::Millis(5) |
| : PacingController::kMinSleepTime); |
| } |
| |
| TEST_P(PacingControllerFieldTrialTest, DefaultBudgetDoesNotAffectAudio) { |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam()); |
| pacer.SetPacingRates( |
| DataRate::bps(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond), |
| DataRate::Zero()); |
| // Video fills budget for following process periods. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| ProcessNext(&pacer); |
| // Audio packet not blocked due to budget limit. |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| InsertPacket(&pacer, &audio); |
| ProcessNext(&pacer); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(WithAndWithoutIntervalBudget, |
| PacingControllerFieldTrialTest, |
| ::testing::Values(false, true)); |
| |
| TEST_P(PacingControllerTest, FirstSentPacketTimeIsSet) { |
| uint16_t sequence_number = 1234; |
| const uint32_t kSsrc = 12345; |
| const size_t kSizeBytes = 250; |
| const size_t kPacketToSend = 3; |
| const Timestamp kStartTime = clock_.CurrentTime(); |
| |
| // No packet sent. |
| EXPECT_FALSE(pacer_->FirstSentPacketTime().has_value()); |
| |
| for (size_t i = 0; i < kPacketToSend; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kSizeBytes); |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } |
| EXPECT_EQ(kStartTime, pacer_->FirstSentPacketTime()); |
| } |
| |
| TEST_P(PacingControllerTest, QueuePacket) { |
| if (!PeriodicProcess()) { |
| // This test checks behavior applicable only when using interval budget. |
| return; |
| } |
| |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| // Due to the multiplicative factor we can send 5 packets during a 5ms send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t kPacketsToSend = |
| kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < kPacketsToSend; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250); |
| } |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| |
| // Enqueue one extra packet. |
| int64_t queued_packet_timestamp = clock_.TimeInMilliseconds(); |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number, |
| queued_packet_timestamp, 250); |
| EXPECT_EQ(kPacketsToSend + 1, pacer_->QueueSizePackets()); |
| |
| // The first kPacketsToSend packets will be sent with budget from the |
| // initial 5ms interval. |
| pacer_->ProcessPackets(); |
| EXPECT_EQ(1u, pacer_->QueueSizePackets()); |
| |
| // Advance time to next interval, make sure the last packet is sent. |
| clock_.AdvanceTimeMilliseconds(5); |
| EXPECT_CALL(callback_, SendPacket(ssrc, sequence_number++, |
| queued_packet_timestamp, false, false)) |
| .Times(1); |
| pacer_->ProcessPackets(); |
| sequence_number++; |
| EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| |
| // We can send packets_to_send -1 packets of size 250 during the current |
| // interval since one packet has already been sent. |
| for (size_t i = 0; i < kPacketsToSend - 1; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250); |
| } |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250); |
| EXPECT_EQ(kPacketsToSend, pacer_->QueueSizePackets()); |
| pacer_->ProcessPackets(); |
| EXPECT_EQ(1u, pacer_->QueueSizePackets()); |
| } |
| |
| TEST_P(PacingControllerTest, QueueAndPacePackets) { |
| if (PeriodicProcess()) { |
| // This test checks behavior when not using interval budget. |
| return; |
| } |
| |
| const uint32_t kSsrc = 12345; |
| uint16_t sequence_number = 1234; |
| const DataSize kPackeSize = DataSize::bytes(250); |
| const TimeDelta kSendInterval = TimeDelta::Millis(5); |
| |
| // Due to the multiplicative factor we can send 5 packets during a 5ms send |
| // interval. (send interval * network capacity * multiplier / packet size) |
| const size_t kPacketsToSend = (kSendInterval * kTargetRate).bytes() * |
| kPaceMultiplier / kPackeSize.bytes(); |
| |
| for (size_t i = 0; i < kPacketsToSend; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPackeSize.bytes()); |
| } |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| |
| // Enqueue one extra packet. |
| int64_t queued_packet_timestamp = clock_.TimeInMilliseconds(); |
| Send(RtpPacketMediaType::kVideo, kSsrc, sequence_number, |
| queued_packet_timestamp, kPackeSize.bytes()); |
| EXPECT_EQ(kPacketsToSend + 1, pacer_->QueueSizePackets()); |
| |
| // Send packets until the initial kPacketsToSend packets are done. |
| Timestamp start_time = clock_.CurrentTime(); |
| while (pacer_->QueueSizePackets() > 1) { |
| AdvanceTimeAndProcess(); |
| } |
| EXPECT_LT(clock_.CurrentTime() - start_time, kSendInterval); |
| |
| // Proceed till last packet can be sent. |
| EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number, |
| queued_packet_timestamp, false, false)) |
| .Times(1); |
| AdvanceTimeAndProcess(); |
| EXPECT_GE(clock_.CurrentTime() - start_time, kSendInterval); |
| EXPECT_EQ(pacer_->QueueSizePackets(), 0u); |
| } |
| |
| TEST_P(PacingControllerTest, PaceQueuedPackets) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 250; |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| } |
| |
| for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) { |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| } |
| EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10, |
| pacer_->QueueSizePackets()); |
| if (PeriodicProcess()) { |
| pacer_->ProcessPackets(); |
| } else { |
| while (pacer_->QueueSizePackets() > packets_to_send_per_interval * 10) { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| EXPECT_EQ(pacer_->QueueSizePackets(), packets_to_send_per_interval * 10); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, false)) |
| .Times(pacer_->QueueSizePackets()); |
| const TimeDelta expected_pace_time = |
| DataSize::bytes(pacer_->QueueSizePackets() * kPacketSize) / |
| (kPaceMultiplier * kTargetRate); |
| Timestamp start_time = clock_.CurrentTime(); |
| while (pacer_->QueueSizePackets() > 0) { |
| if (PeriodicProcess()) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } else { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time; |
| EXPECT_LT((actual_pace_time - expected_pace_time).Abs(), |
| PeriodicProcess() ? TimeDelta::Millis(5) |
| : PacingController::kMinSleepTime); |
| |
| EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| pacer_->ProcessPackets(); |
| |
| // Send some more packet, just show that we can..? |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250); |
| } |
| EXPECT_EQ(packets_to_send_per_interval, pacer_->QueueSizePackets()); |
| if (PeriodicProcess()) { |
| pacer_->ProcessPackets(); |
| } else { |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| } |
| |
| TEST_P(PacingControllerTest, RepeatedRetransmissionsAllowed) { |
| // Send one packet, then two retransmissions of that packet. |
| for (size_t i = 0; i < 3; i++) { |
| constexpr uint32_t ssrc = 333; |
| constexpr uint16_t sequence_number = 444; |
| constexpr size_t bytes = 250; |
| bool is_retransmission = (i != 0); // Original followed by retransmissions. |
| SendAndExpectPacket(is_retransmission ? RtpPacketMediaType::kRetransmission |
| : RtpPacketMediaType::kVideo, |
| ssrc, sequence_number, clock_.TimeInMilliseconds(), |
| bytes); |
| clock_.AdvanceTimeMilliseconds(5); |
| } |
| if (PeriodicProcess()) { |
| pacer_->ProcessPackets(); |
| } else { |
| while (pacer_->QueueSizePackets() > 0) { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| } |
| |
| TEST_P(PacingControllerTest, |
| CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number, |
| clock_.TimeInMilliseconds(), 250); |
| |
| // Expect packet on second ssrc to be queued and sent as well. |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc + 1, sequence_number, |
| clock_.TimeInMilliseconds(), 250); |
| |
| clock_.AdvanceTimeMilliseconds(1000); |
| if (PeriodicProcess()) { |
| pacer_->ProcessPackets(); |
| } else { |
| while (pacer_->QueueSizePackets() > 0) { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| } |
| |
| TEST_P(PacingControllerTest, Padding) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 250; |
| |
| pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| |
| if (PeriodicProcess()) { |
| ConsumeInitialBudget(); |
| |
| // 5 milliseconds later should not send padding since we filled the buffers |
| // initially. |
| EXPECT_CALL(callback_, SendPadding(kPacketSize)).Times(0); |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| |
| // 5 milliseconds later we have enough budget to send some padding. |
| EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(kPacketSize)); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } else { |
| const size_t kPacketsToSend = 20; |
| for (size_t i = 0; i < kPacketsToSend; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| } |
| const TimeDelta expected_pace_time = |
| DataSize::bytes(pacer_->QueueSizePackets() * kPacketSize) / |
| (kPaceMultiplier * kTargetRate); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| // Only the media packets should be sent. |
| Timestamp start_time = clock_.CurrentTime(); |
| while (pacer_->QueueSizePackets() > 0) { |
| AdvanceTimeAndProcess(); |
| } |
| const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time; |
| EXPECT_LE((actual_pace_time - expected_pace_time).Abs(), |
| PacingController::kMinSleepTime); |
| |
| // Pacing media happens at 2.5x, but padding was configured with 1.0x |
| // factor. We have to wait until the padding debt is gone before we start |
| // sending padding. |
| const TimeDelta time_to_padding_debt_free = |
| (expected_pace_time * kPaceMultiplier) - actual_pace_time; |
| clock_.AdvanceTime(time_to_padding_debt_free - |
| PacingController::kMinSleepTime); |
| pacer_->ProcessPackets(); |
| |
| // Send 10 padding packets. |
| const size_t kPaddingPacketsToSend = 10; |
| DataSize padding_sent = DataSize::Zero(); |
| size_t packets_sent = 0; |
| Timestamp first_send_time = Timestamp::MinusInfinity(); |
| Timestamp last_send_time = Timestamp::MinusInfinity(); |
| |
| EXPECT_CALL(callback_, SendPadding) |
| .Times(kPaddingPacketsToSend) |
| .WillRepeatedly([&](size_t target_size) { |
| ++packets_sent; |
| if (packets_sent < kPaddingPacketsToSend) { |
| // Don't count bytes of last packet, instead just |
| // use this as the time the last packet finished |
| // sending. |
| padding_sent += DataSize::bytes(target_size); |
| } |
| if (first_send_time.IsInfinite()) { |
| first_send_time = clock_.CurrentTime(); |
| } else { |
| last_send_time = clock_.CurrentTime(); |
| } |
| return target_size; |
| }); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, false, true)) |
| .Times(kPaddingPacketsToSend); |
| |
| while (packets_sent < kPaddingPacketsToSend) { |
| AdvanceTimeAndProcess(); |
| } |
| |
| // Verify rate of sent padding. |
| TimeDelta padding_duration = last_send_time - first_send_time; |
| DataRate padding_rate = padding_sent / padding_duration; |
| EXPECT_EQ(padding_rate, kTargetRate); |
| } |
| } |
| |
| TEST_P(PacingControllerTest, NoPaddingBeforeNormalPacket) { |
| pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| |
| pacer_->ProcessPackets(); |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| |
| pacer_->ProcessPackets(); |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| capture_time_ms, 250); |
| bool padding_sent = false; |
| EXPECT_CALL(callback_, SendPadding).WillOnce([&](size_t padding) { |
| padding_sent = true; |
| return padding; |
| }); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| if (PeriodicProcess()) { |
| pacer_->ProcessPackets(); |
| } else { |
| while (!padding_sent) { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| } |
| |
| TEST_P(PacingControllerTest, VerifyPaddingUpToBitrate) { |
| if (!PeriodicProcess()) { |
| // Already tested in PacingControllerTest.Padding. |
| return; |
| } |
| |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| const int kTimeStep = 5; |
| const int64_t kBitrateWindow = 100; |
| pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| |
| int64_t start_time = clock_.TimeInMilliseconds(); |
| while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| capture_time_ms, 250); |
| EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250)); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| pacer_->ProcessPackets(); |
| clock_.AdvanceTimeMilliseconds(kTimeStep); |
| } |
| } |
| |
| TEST_P(PacingControllerTest, VerifyAverageBitrateVaryingMediaPayload) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| const int kTimeStep = 5; |
| const TimeDelta kAveragingWindowLength = TimeDelta::Seconds(10); |
| PacingControllerPadding callback; |
| pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr, |
| nullptr, GetParam()); |
| pacer_->SetProbingEnabled(false); |
| pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| |
| Timestamp start_time = clock_.CurrentTime(); |
| size_t media_bytes = 0; |
| while (clock_.CurrentTime() - start_time < kAveragingWindowLength) { |
| // Maybe add some new media packets corresponding to expected send rate. |
| int rand_value = rand(); // NOLINT (rand_r instead of rand) |
| while ( |
| media_bytes < |
| (kTargetRate * (clock_.CurrentTime() - start_time)).bytes<size_t>()) { |
| size_t media_payload = rand_value % 400 + 800; // [400, 1200] bytes. |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, capture_time_ms, |
| media_payload); |
| media_bytes += media_payload; |
| } |
| |
| if (PeriodicProcess()) { |
| clock_.AdvanceTimeMilliseconds(kTimeStep); |
| pacer_->ProcessPackets(); |
| } else { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| |
| EXPECT_NEAR( |
| kTargetRate.bps(), |
| (DataSize::bytes(callback.total_bytes_sent()) / kAveragingWindowLength) |
| .bps(), |
| (kTargetRate * 0.01 /* 1% error marging */).bps()); |
| } |
| |
| TEST_P(PacingControllerTest, Priority) { |
| uint32_t ssrc_low_priority = 12345; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| int64_t capture_time_ms_low_priority = 1234567; |
| |
| ConsumeInitialBudget(); |
| |
| // Expect normal and low priority to be queued and high to pass through. |
| Send(RtpPacketMediaType::kVideo, ssrc_low_priority, sequence_number++, |
| capture_time_ms_low_priority, 250); |
| |
| const size_t packets_to_send_per_interval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++, |
| capture_time_ms, 250); |
| } |
| Send(RtpPacketMediaType::kAudio, ssrc, sequence_number++, capture_time_ms, |
| 250); |
| |
| // Expect all high and normal priority to be sent out first. |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _)) |
| .Times(packets_to_send_per_interval + 1); |
| |
| if (PeriodicProcess()) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } else { |
| while (pacer_->QueueSizePackets() > 1) { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| |
| EXPECT_EQ(1u, pacer_->QueueSizePackets()); |
| |
| EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _, |
| capture_time_ms_low_priority, _, _)) |
| .Times(1); |
| if (PeriodicProcess()) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } else { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| |
| TEST_P(PacingControllerTest, RetransmissionPriority) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 45678; |
| int64_t capture_time_ms_retransmission = 56789; |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| pacer_->ProcessPackets(); |
| EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| |
| // Alternate retransmissions and normal packets. |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, capture_time_ms, |
| 250); |
| Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++, |
| capture_time_ms_retransmission, 250); |
| } |
| EXPECT_EQ(2 * packets_to_send_per_interval, pacer_->QueueSizePackets()); |
| |
| // Expect all retransmissions to be sent out first despite having a later |
| // capture time. |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, false, _)).Times(0); |
| EXPECT_CALL(callback_, |
| SendPacket(ssrc, _, capture_time_ms_retransmission, true, _)) |
| .Times(packets_to_send_per_interval); |
| |
| if (PeriodicProcess()) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } else { |
| while (pacer_->QueueSizePackets() > packets_to_send_per_interval) { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| EXPECT_EQ(packets_to_send_per_interval, pacer_->QueueSizePackets()); |
| |
| // Expect the remaining (non-retransmission) packets to be sent. |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, true, _)).Times(0); |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, false, _)) |
| .Times(packets_to_send_per_interval); |
| |
| if (PeriodicProcess()) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } else { |
| while (pacer_->QueueSizePackets() > 0) { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| |
| EXPECT_EQ(0u, pacer_->QueueSizePackets()); |
| } |
| |
| TEST_P(PacingControllerTest, HighPrioDoesntAffectBudget) { |
| const size_t kPacketSize = 250; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| |
| // As high prio packets doesn't affect the budget, we should be able to send |
| // a high number of them at once. |
| const size_t kNumAudioPackets = 25; |
| for (size_t i = 0; i < kNumAudioPackets; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kAudio, ssrc, sequence_number++, |
| capture_time_ms, kPacketSize); |
| } |
| pacer_->ProcessPackets(); |
| // Low prio packets does affect the budget. |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t kPacketsToSendPerInterval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200); |
| for (size_t i = 0; i < kPacketsToSendPerInterval; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| } |
| |
| // Send all packets and measure pace time. |
| Timestamp start_time = clock_.CurrentTime(); |
| while (pacer_->QueueSizePackets() > 0) { |
| if (PeriodicProcess()) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } else { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| |
| // Measure pacing time. Expect only low-prio packets to affect this. |
| TimeDelta pacing_time = clock_.CurrentTime() - start_time; |
| TimeDelta expected_pacing_time = |
| DataSize::bytes(kPacketsToSendPerInterval * kPacketSize) / |
| (kTargetRate * kPaceMultiplier); |
| EXPECT_NEAR(pacing_time.us<double>(), expected_pacing_time.us<double>(), |
| PeriodicProcess() ? 5000.0 |
| : PacingController::kMinSleepTime.us<double>()); |
| } |
| |
| TEST_P(PacingControllerTest, SendsOnlyPaddingWhenCongested) { |
| uint32_t ssrc = 202020; |
| uint16_t sequence_number = 1000; |
| int kPacketSize = 250; |
| int kCongestionWindow = kPacketSize * 10; |
| |
| pacer_->UpdateOutstandingData(DataSize::Zero()); |
| pacer_->SetCongestionWindow(DataSize::bytes(kCongestionWindow)); |
| int sent_data = 0; |
| while (sent_data < kCongestionWindow) { |
| sent_data += kPacketSize; |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| AdvanceTimeAndProcess(); |
| } |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| |
| size_t blocked_packets = 0; |
| int64_t expected_time_until_padding = 500; |
| while (expected_time_until_padding > 5) { |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| blocked_packets++; |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| expected_time_until_padding -= 5; |
| } |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1)); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| EXPECT_EQ(blocked_packets, pacer_->QueueSizePackets()); |
| } |
| |
| TEST_P(PacingControllerTest, DoesNotAllowOveruseAfterCongestion) { |
| uint32_t ssrc = 202020; |
| uint16_t seq_num = 1000; |
| int size = 1000; |
| auto now_ms = [this] { return clock_.TimeInMilliseconds(); }; |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| // The pacing rate is low enough that the budget should not allow two packets |
| // to be sent in a row. |
| pacer_->SetPacingRates(DataRate::bps(400 * 8 * 1000 / 5), DataRate::Zero()); |
| // The congestion window is small enough to only let one packet through. |
| pacer_->SetCongestionWindow(DataSize::bytes(800)); |
| pacer_->UpdateOutstandingData(DataSize::Zero()); |
| // Not yet budget limited or congested, packet is sent. |
| Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| // Packet blocked due to congestion. |
| Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| // Packet blocked due to congestion. |
| Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| // Congestion removed and budget has recovered, packet is sent. |
| Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->UpdateOutstandingData(DataSize::Zero()); |
| pacer_->ProcessPackets(); |
| // Should be blocked due to budget limitation as congestion has be removed. |
| Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| } |
| |
| TEST_P(PacingControllerTest, ResumesSendingWhenCongestionEnds) { |
| uint32_t ssrc = 202020; |
| uint16_t sequence_number = 1000; |
| int64_t kPacketSize = 250; |
| int64_t kCongestionCount = 10; |
| int64_t kCongestionWindow = kPacketSize * kCongestionCount; |
| int64_t kCongestionTimeMs = 1000; |
| |
| pacer_->UpdateOutstandingData(DataSize::Zero()); |
| pacer_->SetCongestionWindow(DataSize::bytes(kCongestionWindow)); |
| int sent_data = 0; |
| while (sent_data < kCongestionWindow) { |
| sent_data += kPacketSize; |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| } |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| int unacked_packets = 0; |
| for (int duration = 0; duration < kCongestionTimeMs; duration += 5) { |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| unacked_packets++; |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| } |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // First mark half of the congested packets as cleared and make sure that just |
| // as many are sent |
| int ack_count = kCongestionCount / 2; |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _)).Times(ack_count); |
| pacer_->UpdateOutstandingData( |
| DataSize::bytes(kCongestionWindow - kPacketSize * ack_count)); |
| |
| for (int duration = 0; duration < kCongestionTimeMs; duration += 5) { |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| } |
| unacked_packets -= ack_count; |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // Second make sure all packets are sent if sent packets are continuously |
| // marked as acked. |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _)) |
| .Times(unacked_packets); |
| for (int duration = 0; duration < kCongestionTimeMs; duration += 5) { |
| pacer_->UpdateOutstandingData(DataSize::Zero()); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| } |
| } |
| |
| TEST_P(PacingControllerTest, Pause) { |
| uint32_t ssrc_low_priority = 12345; |
| uint32_t ssrc = 12346; |
| uint32_t ssrc_high_priority = 12347; |
| uint16_t sequence_number = 1234; |
| |
| EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| |
| ConsumeInitialBudget(); |
| |
| pacer_->Pause(); |
| |
| int64_t capture_time_ms = clock_.TimeInMilliseconds(); |
| const size_t packets_to_send_per_interval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| Send(RtpPacketMediaType::kVideo, ssrc_low_priority, sequence_number++, |
| capture_time_ms, 250); |
| Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++, |
| capture_time_ms, 250); |
| Send(RtpPacketMediaType::kAudio, ssrc_high_priority, sequence_number++, |
| capture_time_ms, 250); |
| } |
| clock_.AdvanceTimeMilliseconds(10000); |
| int64_t second_capture_time_ms = clock_.TimeInMilliseconds(); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| Send(RtpPacketMediaType::kVideo, ssrc_low_priority, sequence_number++, |
| second_capture_time_ms, 250); |
| Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++, |
| second_capture_time_ms, 250); |
| Send(RtpPacketMediaType::kAudio, ssrc_high_priority, sequence_number++, |
| second_capture_time_ms, 250); |
| } |
| |
| // Expect everything to be queued. |
| EXPECT_EQ(TimeDelta::Millis(second_capture_time_ms - capture_time_ms), |
| pacer_->OldestPacketWaitTime()); |
| |
| // Process triggers keep-alive packet. |
| EXPECT_CALL(callback_, SendPadding).WillOnce([](size_t padding) { |
| return padding; |
| }); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| pacer_->ProcessPackets(); |
| |
| // Verify no packets sent for the rest of the paused process interval. |
| const TimeDelta kProcessInterval = TimeDelta::Millis(5); |
| TimeDelta expected_time_until_send = PacingController::kPausedProcessInterval; |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| while (expected_time_until_send >= kProcessInterval) { |
| pacer_->ProcessPackets(); |
| clock_.AdvanceTime(kProcessInterval); |
| expected_time_until_send -= kProcessInterval; |
| } |
| |
| // New keep-alive packet. |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| EXPECT_CALL(callback_, SendPadding).WillOnce([](size_t padding) { |
| return padding; |
| }); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| clock_.AdvanceTime(kProcessInterval); |
| pacer_->ProcessPackets(); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // Expect high prio packets to come out first followed by normal |
| // prio packets and low prio packets (all in capture order). |
| { |
| ::testing::InSequence sequence; |
| EXPECT_CALL(callback_, |
| SendPacket(ssrc_high_priority, _, capture_time_ms, _, _)) |
| .Times(packets_to_send_per_interval); |
| EXPECT_CALL(callback_, |
| SendPacket(ssrc_high_priority, _, second_capture_time_ms, _, _)) |
| .Times(packets_to_send_per_interval); |
| |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _)) |
| .Times(1); |
| } |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, second_capture_time_ms, _, _)) |
| .Times(1); |
| } |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, |
| SendPacket(ssrc_low_priority, _, capture_time_ms, _, _)) |
| .Times(1); |
| } |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _, |
| second_capture_time_ms, _, _)) |
| .Times(1); |
| } |
| } |
| pacer_->Resume(); |
| |
| if (PeriodicProcess()) { |
| // The pacer was resumed directly after the previous process call finished. |
| // It will therefore wait 5 ms until next process. |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| |
| for (size_t i = 0; i < 4; i++) { |
| pacer_->ProcessPackets(); |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| } |
| } else { |
| while (pacer_->QueueSizePackets() > 0) { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| |
| EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| } |
| |
| TEST_P(PacingControllerTest, InactiveFromStart) { |
| // Recreate the pacer without the inital time forwarding. |
| pacer_ = std::make_unique<PacingController>(&clock_, &callback_, nullptr, |
| nullptr, GetParam()); |
| pacer_->SetProbingEnabled(false); |
| pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| |
| if (PeriodicProcess()) { |
| // In period mode, pause the pacer to check the same idle behavior as |
| // dynamic. |
| pacer_->Pause(); |
| } |
| |
| // No packets sent, there should be no keep-alives sent either. |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| pacer_->ProcessPackets(); |
| |
| const Timestamp start_time = clock_.CurrentTime(); |
| |
| // Determine the margin need so we can advance to the last possible moment |
| // that will not cause a process event. |
| const TimeDelta time_margin = |
| (GetParam() == PacingController::ProcessMode::kDynamic |
| ? PacingController::kMinSleepTime |
| : TimeDelta::Zero()) + |
| TimeDelta::Micros(1); |
| |
| EXPECT_EQ(pacer_->NextSendTime() - start_time, |
| PacingController::kPausedProcessInterval); |
| clock_.AdvanceTime(PacingController::kPausedProcessInterval - time_margin); |
| pacer_->ProcessPackets(); |
| EXPECT_EQ(pacer_->NextSendTime() - start_time, |
| PacingController::kPausedProcessInterval); |
| |
| clock_.AdvanceTime(time_margin); |
| pacer_->ProcessPackets(); |
| EXPECT_EQ(pacer_->NextSendTime() - start_time, |
| 2 * PacingController::kPausedProcessInterval); |
| } |
| |
| TEST_P(PacingControllerTest, ExpectedQueueTimeMs) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| const size_t kNumPackets = 60; |
| const size_t kPacketSize = 1200; |
| const int32_t kMaxBitrate = kPaceMultiplier * 30000; |
| EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| |
| pacer_->SetPacingRates(DataRate::bps(30000 * kPaceMultiplier), |
| DataRate::Zero()); |
| for (size_t i = 0; i < kNumPackets; ++i) { |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| } |
| |
| // Queue in ms = 1000 * (bytes in queue) *8 / (bits per second) |
| TimeDelta queue_time = |
| TimeDelta::Millis(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate); |
| EXPECT_EQ(queue_time, pacer_->ExpectedQueueTime()); |
| |
| const Timestamp time_start = clock_.CurrentTime(); |
| while (pacer_->QueueSizePackets() > 0) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } |
| TimeDelta duration = clock_.CurrentTime() - time_start; |
| |
| EXPECT_EQ(TimeDelta::Zero(), pacer_->ExpectedQueueTime()); |
| |
| // Allow for aliasing, duration should be within one pack of max time limit. |
| const TimeDelta deviation = |
| duration - PacingController::kMaxExpectedQueueLength; |
| EXPECT_LT(deviation.Abs(), |
| TimeDelta::Millis(1000 * kPacketSize * 8 / kMaxBitrate)); |
| } |
| |
| TEST_P(PacingControllerTest, QueueTimeGrowsOverTime) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| |
| pacer_->SetPacingRates(DataRate::bps(30000 * kPaceMultiplier), |
| DataRate::Zero()); |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number, |
| clock_.TimeInMilliseconds(), 1200); |
| |
| clock_.AdvanceTimeMilliseconds(500); |
| EXPECT_EQ(TimeDelta::Millis(500), pacer_->OldestPacketWaitTime()); |
| pacer_->ProcessPackets(); |
| EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime()); |
| } |
| |
| TEST_P(PacingControllerTest, ProbingWithInsertedPackets) { |
| const size_t kPacketSize = 1200; |
| const int kInitialBitrateBps = 300000; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| |
| PacingControllerProbing packet_sender; |
| pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr, |
| nullptr, GetParam()); |
| pacer_->CreateProbeCluster(kFirstClusterRate, |
| /*cluster_id=*/0); |
| pacer_->CreateProbeCluster(kSecondClusterRate, |
| /*cluster_id=*/1); |
| pacer_->SetPacingRates(DataRate::bps(kInitialBitrateBps * kPaceMultiplier), |
| DataRate::Zero()); |
| |
| for (int i = 0; i < 10; ++i) { |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| } |
| |
| int64_t start = clock_.TimeInMilliseconds(); |
| while (packet_sender.packets_sent() < 5) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } |
| int packets_sent = packet_sender.packets_sent(); |
| // Validate first cluster bitrate. Note that we have to account for number |
| // of intervals and hence (packets_sent - 1) on the first cluster. |
| EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 / |
| (clock_.TimeInMilliseconds() - start), |
| kFirstClusterRate.bps(), kProbingErrorMargin.bps()); |
| EXPECT_EQ(0, packet_sender.padding_sent()); |
| |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| start = clock_.TimeInMilliseconds(); |
| while (packet_sender.packets_sent() < 10) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } |
| packets_sent = packet_sender.packets_sent() - packets_sent; |
| // Validate second cluster bitrate. |
| EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 / |
| (clock_.TimeInMilliseconds() - start), |
| kSecondClusterRate.bps(), kProbingErrorMargin.bps()); |
| } |
| |
| TEST_P(PacingControllerTest, SkipsProbesWhenProcessIntervalTooLarge) { |
| const size_t kPacketSize = 1200; |
| const int kInitialBitrateBps = 300000; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| |
| PacingControllerProbing packet_sender; |
| pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr, |
| nullptr, GetParam()); |
| pacer_->SetPacingRates(DataRate::bps(kInitialBitrateBps * kPaceMultiplier), |
| DataRate::Zero()); |
| |
| for (int i = 0; i < 10; ++i) { |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| } |
| while (pacer_->QueueSizePackets() > 0) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| } |
| |
| // Probe at a very high rate. |
| pacer_->CreateProbeCluster(DataRate::kbps(10000), // 10 Mbps. |
| /*cluster_id=*/3); |
| // We need one packet to start the probe. |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| const int packets_sent_before_probe = packet_sender.packets_sent(); |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| EXPECT_EQ(packet_sender.packets_sent(), packets_sent_before_probe + 1); |
| |
| // Figure out how long between probe packets. |
| Timestamp start_time = clock_.CurrentTime(); |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| TimeDelta time_between_probes = clock_.CurrentTime() - start_time; |
| // Advance that distance again + 1ms. |
| clock_.AdvanceTime(time_between_probes); |
| |
| // Send second probe packet. |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| pacer_->ProcessPackets(); |
| EXPECT_EQ(packet_sender.packets_sent(), packets_sent_before_probe + 2); |
| |
| // We're exactly where we should be for the next probe. |
| const Timestamp probe_time = clock_.CurrentTime(); |
| EXPECT_EQ(pacer_->NextSendTime(), clock_.CurrentTime()); |
| |
| FieldTrialBasedConfig field_trial_config; |
| BitrateProberConfig probing_config(&field_trial_config); |
| EXPECT_GT(probing_config.max_probe_delay.Get(), TimeDelta::Zero()); |
| // Advance to within max probe delay, should still return same target. |
| clock_.AdvanceTime(probing_config.max_probe_delay.Get()); |
| EXPECT_EQ(pacer_->NextSendTime(), probe_time); |
| |
| // Too high probe delay, drop it! |
| clock_.AdvanceTime(TimeDelta::Micros(1)); |
| EXPECT_GT(pacer_->NextSendTime(), probe_time); |
| } |
| |
| TEST_P(PacingControllerTest, ProbingWithPaddingSupport) { |
| const size_t kPacketSize = 1200; |
| const int kInitialBitrateBps = 300000; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| |
| PacingControllerProbing packet_sender; |
| pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr, |
| nullptr, GetParam()); |
| pacer_->CreateProbeCluster(kFirstClusterRate, |
| /*cluster_id=*/0); |
| pacer_->SetPacingRates(DataRate::bps(kInitialBitrateBps * kPaceMultiplier), |
| DataRate::Zero()); |
| |
| for (int i = 0; i < 3; ++i) { |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| } |
| |
| int64_t start = clock_.TimeInMilliseconds(); |
| int process_count = 0; |
| while (process_count < 5) { |
| clock_.AdvanceTime(TimeUntilNextProcess()); |
| pacer_->ProcessPackets(); |
| ++process_count; |
| } |
| int packets_sent = packet_sender.packets_sent(); |
| int padding_sent = packet_sender.padding_sent(); |
| EXPECT_GT(packets_sent, 0); |
| EXPECT_GT(padding_sent, 0); |
| // Note that the number of intervals here for kPacketSize is |
| // packets_sent due to padding in the same cluster. |
| EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) / |
| (clock_.TimeInMilliseconds() - start), |
| kFirstClusterRate.bps(), kProbingErrorMargin.bps()); |
| } |
| |
| TEST_P(PacingControllerTest, PaddingOveruse) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 1200; |
| |
| // Initially no padding rate. |
| pacer_->ProcessPackets(); |
| pacer_->SetPacingRates(DataRate::bps(60000 * kPaceMultiplier), |
| DataRate::Zero()); |
| |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| pacer_->ProcessPackets(); |
| |
| // Add 30kbit padding. When increasing budget, media budget will increase from |
| // negative (overuse) while padding budget will increase from 0. |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->SetPacingRates(DataRate::bps(60000 * kPaceMultiplier), |
| DataRate::bps(30000)); |
| |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| EXPECT_LT(TimeDelta::Millis(5), pacer_->ExpectedQueueTime()); |
| // Don't send padding if queue is non-empty, even if padding budget > 0. |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| if (PeriodicProcess()) { |
| pacer_->ProcessPackets(); |
| } else { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| |
| TEST_P(PacingControllerTest, ProbeClusterId) { |
| MockPacketSender callback; |
| |
| pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr, |
| nullptr, GetParam()); |
| Init(); |
| |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 1200; |
| |
| pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| pacer_->SetProbingEnabled(true); |
| for (int i = 0; i < 10; ++i) { |
| Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize); |
| } |
| |
| // First probing cluster. |
| EXPECT_CALL(callback, |
| SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 0))) |
| .Times(5); |
| |
| for (int i = 0; i < 5; ++i) { |
| AdvanceTimeAndProcess(); |
| } |
| |
| // Second probing cluster. |
| EXPECT_CALL(callback, |
| SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 1))) |
| .Times(5); |
| |
| for (int i = 0; i < 5; ++i) { |
| AdvanceTimeAndProcess(); |
| } |
| |
| // Needed for the Field comparer below. |
| const int kNotAProbe = PacedPacketInfo::kNotAProbe; |
| // No more probing packets. |
| EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) { |
| std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets; |
| padding_packets.emplace_back( |
| BuildPacket(RtpPacketMediaType::kPadding, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), padding_size.bytes())); |
| return padding_packets; |
| }); |
| bool non_probe_packet_seen = false; |
| EXPECT_CALL(callback, SendRtpPacket) |
| .WillOnce([&](std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& cluster_info) { |
| EXPECT_EQ(cluster_info.probe_cluster_id, kNotAProbe); |
| non_probe_packet_seen = true; |
| }); |
| while (!non_probe_packet_seen) { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| |
| TEST_P(PacingControllerTest, OwnedPacketPrioritizedOnType) { |
| MockPacketSender callback; |
| pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr, |
| nullptr, GetParam()); |
| Init(); |
| |
| // Insert a packet of each type, from low to high priority. Since priority |
| // is weighted higher than insert order, these should come out of the pacer |
| // in backwards order with the exception of FEC and Video. |
| for (RtpPacketMediaType type : |
| {RtpPacketMediaType::kPadding, |
| RtpPacketMediaType::kForwardErrorCorrection, RtpPacketMediaType::kVideo, |
| RtpPacketMediaType::kRetransmission, RtpPacketMediaType::kAudio}) { |
| pacer_->EnqueuePacket(BuildRtpPacket(type)); |
| } |
| |
| ::testing::InSequence seq; |
| EXPECT_CALL( |
| callback, |
| SendRtpPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kAudioSsrc)), _)); |
| EXPECT_CALL(callback, |
| SendRtpPacket( |
| Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _)); |
| |
| // FEC and video actually have the same priority, so will come out in |
| // insertion order. |
| EXPECT_CALL(callback, |
| SendRtpPacket( |
| Pointee(Property(&RtpPacketToSend::Ssrc, kFlexFecSsrc)), _)); |
| EXPECT_CALL( |
| callback, |
| SendRtpPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kVideoSsrc)), _)); |
| |
| EXPECT_CALL(callback, |
| SendRtpPacket( |
| Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _)); |
| |
| while (pacer_->QueueSizePackets() > 0) { |
| if (PeriodicProcess()) { |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer_->ProcessPackets(); |
| } else { |
| AdvanceTimeAndProcess(); |
| } |
| } |
| } |
| |
| TEST_P(PacingControllerTest, SmallFirstProbePacket) { |
| ScopedFieldTrials trial("WebRTC-Pacer-SmallFirstProbePacket/Enabled/"); |
| MockPacketSender callback; |
| pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr, |
| nullptr, GetParam()); |
| pacer_->CreateProbeCluster(kFirstClusterRate, /*cluster_id=*/0); |
| pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| // Add high prio media. |
| pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kAudio)); |
| |
| // Expect small padding packet to be requested. |
| EXPECT_CALL(callback, GeneratePadding(DataSize::bytes(1))) |
| .WillOnce([&](DataSize padding_size) { |
| std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets; |
| padding_packets.emplace_back( |
| BuildPacket(RtpPacketMediaType::kPadding, kAudioSsrc, 1, |
| clock_.TimeInMilliseconds(), 1)); |
| return padding_packets; |
| }); |
| |
| size_t packets_sent = 0; |
| bool media_seen = false; |
| EXPECT_CALL(callback, SendRtpPacket) |
| .Times(::testing::AnyNumber()) |
| .WillRepeatedly([&](std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& cluster_info) { |
| if (packets_sent == 0) { |
| EXPECT_EQ(packet->packet_type(), RtpPacketMediaType::kPadding); |
| } else { |
| if (packet->packet_type() == RtpPacketMediaType::kAudio) { |
| media_seen = true; |
| } |
| } |
| packets_sent++; |
| }); |
| while (!media_seen) { |
| pacer_->ProcessPackets(); |
| clock_.AdvanceTimeMilliseconds(5); |
| } |
| } |
| |
| TEST_P(PacingControllerTest, TaskLate) { |
| if (PeriodicProcess()) { |
| // This test applies only when NOT using interval budget. |
| return; |
| } |
| |
| // Set a low send rate to more easily test timing issues. |
| DataRate kSendRate = DataRate::kbps(30); |
| pacer_->SetPacingRates(kSendRate, DataRate::Zero()); |
| |
| // Add four packets of equal size and priority. |
| pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo)); |
| pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo)); |
| pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo)); |
| pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo)); |
| |
| // Process packets, only first should be sent. |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| pacer_->ProcessPackets(); |
| |
| Timestamp next_send_time = pacer_->NextSendTime(); |
| const TimeDelta time_between_packets = next_send_time - clock_.CurrentTime(); |
| |
| // Simulate a late process call, executed just before we allow sending the |
| // fourth packet. |
| clock_.AdvanceTime((time_between_packets * 3) - |
| (PacingController::kMinSleepTime + TimeDelta::Millis(1))); |
| |
| EXPECT_CALL(callback_, SendPacket).Times(2); |
| pacer_->ProcessPackets(); |
| |
| // Check that next scheduled send time is within sleep-time + 1ms. |
| next_send_time = pacer_->NextSendTime(); |
| EXPECT_LE(next_send_time - clock_.CurrentTime(), |
| PacingController::kMinSleepTime + TimeDelta::Millis(1)); |
| |
| // Advance to within error margin for execution. |
| clock_.AdvanceTime(TimeDelta::Millis(1)); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| pacer_->ProcessPackets(); |
| } |
| |
| TEST_P(PacingControllerTest, NoProbingWhilePaused) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| |
| pacer_->SetProbingEnabled(true); |
| |
| // Send at least one packet so probing can initate. |
| SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number, |
| clock_.TimeInMilliseconds(), 250); |
| while (pacer_->QueueSizePackets() > 0) { |
| AdvanceTimeAndProcess(); |
| } |
| |
| // Trigger probing. |
| pacer_->CreateProbeCluster(DataRate::kbps(10000), // 10 Mbps. |
| /*cluster_id=*/3); |
| |
| // Time to next send time should be small. |
| EXPECT_LT(pacer_->NextSendTime() - clock_.CurrentTime(), |
| PacingController::kPausedProcessInterval); |
| |
| // Pause pacer, time to next send time should now be the pause process |
| // interval. |
| pacer_->Pause(); |
| |
| EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(), |
| PacingController::kPausedProcessInterval); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| WithAndWithoutIntervalBudget, |
| PacingControllerTest, |
| ::testing::Values(PacingController::ProcessMode::kPeriodic, |
| PacingController::ProcessMode::kDynamic)); |
| |
| } // namespace test |
| } // namespace webrtc |