blob: 0c3a0924003a6e92319c620f2e491c83332b766a [file] [log] [blame]
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/task_queue_paced_sender.h"
#include <list>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "modules/pacing/packet_router.h"
#include "modules/utility/include/mock/mock_process_thread.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/time_controller/simulated_time_controller.h"
using ::testing::_;
using ::testing::Return;
using ::testing::SaveArg;
namespace webrtc {
namespace {
constexpr uint32_t kAudioSsrc = 12345;
constexpr uint32_t kVideoSsrc = 234565;
constexpr uint32_t kVideoRtxSsrc = 34567;
constexpr uint32_t kFlexFecSsrc = 45678;
constexpr size_t kDefaultPacketSize = 1234;
class MockPacketRouter : public PacketRouter {
public:
MOCK_METHOD2(SendPacket,
void(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info));
MOCK_METHOD1(
GeneratePadding,
std::vector<std::unique_ptr<RtpPacketToSend>>(size_t target_size_bytes));
};
} // namespace
namespace test {
class TaskQueuePacedSenderTest : public ::testing::Test {
public:
TaskQueuePacedSenderTest()
: time_controller_(Timestamp::ms(1234)),
pacer_(time_controller_.GetClock(),
&packet_router_,
/*event_log=*/nullptr,
/*field_trials=*/nullptr,
time_controller_.GetTaskQueueFactory()) {}
protected:
std::unique_ptr<RtpPacketToSend> BuildRtpPacket(RtpPacketToSend::Type type) {
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
packet->set_packet_type(type);
switch (type) {
case RtpPacketToSend::Type::kAudio:
packet->SetSsrc(kAudioSsrc);
break;
case RtpPacketToSend::Type::kVideo:
packet->SetSsrc(kVideoSsrc);
break;
case RtpPacketToSend::Type::kRetransmission:
case RtpPacketToSend::Type::kPadding:
packet->SetSsrc(kVideoRtxSsrc);
break;
case RtpPacketToSend::Type::kForwardErrorCorrection:
packet->SetSsrc(kFlexFecSsrc);
break;
}
packet->SetPayloadSize(kDefaultPacketSize);
return packet;
}
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePackets(
RtpPacketToSend::Type type,
size_t num_packets) {
std::vector<std::unique_ptr<RtpPacketToSend>> packets;
for (size_t i = 0; i < num_packets; ++i) {
packets.push_back(BuildRtpPacket(type));
}
return packets;
}
Timestamp CurrentTime() { return time_controller_.GetClock()->CurrentTime(); }
GlobalSimulatedTimeController time_controller_;
MockPacketRouter packet_router_;
TaskQueuePacedSender pacer_;
};
TEST_F(TaskQueuePacedSenderTest, PacesPackets) {
// Insert a number of packets, covering one second.
static constexpr size_t kPacketsToSend = 42;
pacer_.SetPacingRates(DataRate::bps(kDefaultPacketSize * 8 * kPacketsToSend),
DataRate::Zero());
pacer_.EnqueuePackets(
GeneratePackets(RtpPacketToSend::Type::kVideo, kPacketsToSend));
// Expect all of them to be sent.
size_t packets_sent = 0;
Timestamp end_time = Timestamp::PlusInfinity();
EXPECT_CALL(packet_router_, SendPacket)
.WillRepeatedly([&](std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info) {
++packets_sent;
if (packets_sent == kPacketsToSend) {
end_time = time_controller_.GetClock()->CurrentTime();
}
});
const Timestamp start_time = time_controller_.GetClock()->CurrentTime();
// Packets should be sent over a period of close to 1s. Expect a little lower
// than this since initial probing is a bit quicker.
time_controller_.AdvanceTime(TimeDelta::seconds(1));
EXPECT_EQ(packets_sent, kPacketsToSend);
ASSERT_TRUE(end_time.IsFinite());
EXPECT_NEAR((end_time - start_time).ms<double>(), 1000.0, 50.0);
}
TEST_F(TaskQueuePacedSenderTest, ReschedulesProcessOnRateChange) {
// Insert a number of packets to be sent 200ms apart.
const size_t kPacketsPerSecond = 5;
const DataRate kPacingRate =
DataRate::bps(kDefaultPacketSize * 8 * kPacketsPerSecond);
pacer_.SetPacingRates(kPacingRate, DataRate::Zero());
// Send some initial packets to be rid of any probes.
EXPECT_CALL(packet_router_, SendPacket).Times(kPacketsPerSecond);
pacer_.EnqueuePackets(
GeneratePackets(RtpPacketToSend::Type::kVideo, kPacketsPerSecond));
time_controller_.AdvanceTime(TimeDelta::seconds(1));
// Insert three packets, and record send time of each of them.
// After the second packet is sent, double the send rate so we can
// check the third packets is sent after half the wait time.
Timestamp first_packet_time = Timestamp::MinusInfinity();
Timestamp second_packet_time = Timestamp::MinusInfinity();
Timestamp third_packet_time = Timestamp::MinusInfinity();
EXPECT_CALL(packet_router_, SendPacket)
.Times(3)
.WillRepeatedly([&](std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info) {
if (first_packet_time.IsInfinite()) {
first_packet_time = CurrentTime();
} else if (second_packet_time.IsInfinite()) {
second_packet_time = CurrentTime();
pacer_.SetPacingRates(2 * kPacingRate, DataRate::Zero());
} else {
third_packet_time = CurrentTime();
}
});
pacer_.EnqueuePackets(GeneratePackets(RtpPacketToSend::Type::kVideo, 3));
time_controller_.AdvanceTime(TimeDelta::ms(500));
ASSERT_TRUE(third_packet_time.IsFinite());
EXPECT_NEAR((second_packet_time - first_packet_time).ms<double>(), 200.0,
1.0);
EXPECT_NEAR((third_packet_time - second_packet_time).ms<double>(), 100.0,
1.0);
}
} // namespace test
} // namespace webrtc