| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_coding/neteq/delay_manager.h" |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <algorithm> |
| #include <numeric> |
| #include <string> |
| |
| #include "absl/memory/memory.h" |
| #include "modules/audio_coding/neteq/delay_peak_detector.h" |
| #include "modules/audio_coding/neteq/histogram.h" |
| #include "modules/audio_coding/neteq/statistics_calculator.h" |
| #include "modules/include/module_common_types_public.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "rtc_base/numerics/safe_minmax.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| namespace { |
| |
| constexpr int kLimitProbability = 1020054733; // 19/20 in Q30. |
| constexpr int kMinBaseMinimumDelayMs = 0; |
| constexpr int kMaxBaseMinimumDelayMs = 10000; |
| constexpr int kIatFactor = 32745; // 0.9993 in Q15. |
| constexpr int kMaxIat = 64; // Max inter-arrival time to register. |
| constexpr int kMaxReorderedPackets = |
| 10; // Max number of consecutive reordered packets. |
| constexpr int kMaxHistoryPackets = |
| 100; // Max number of packets used to calculate relative packet arrival |
| // delay. |
| constexpr int kDelayBuckets = 100; |
| constexpr int kBucketSizeMs = 20; |
| |
| int PercentileToQuantile(double percentile) { |
| return static_cast<int>((1 << 30) * percentile / 100.0 + 0.5); |
| } |
| |
| absl::optional<int> GetForcedLimitProbability() { |
| constexpr char kForceTargetDelayPercentileFieldTrial[] = |
| "WebRTC-Audio-NetEqForceTargetDelayPercentile"; |
| const bool use_forced_target_delay_percentile = |
| webrtc::field_trial::IsEnabled(kForceTargetDelayPercentileFieldTrial); |
| if (use_forced_target_delay_percentile) { |
| const std::string field_trial_string = webrtc::field_trial::FindFullName( |
| kForceTargetDelayPercentileFieldTrial); |
| double percentile = -1.0; |
| if (sscanf(field_trial_string.c_str(), "Enabled-%lf", &percentile) == 1 && |
| percentile >= 0.0 && percentile <= 100.0) { |
| return absl::make_optional<int>( |
| PercentileToQuantile(percentile)); // in Q30. |
| } else { |
| RTC_LOG(LS_WARNING) << "Invalid parameter for " |
| << kForceTargetDelayPercentileFieldTrial |
| << ", ignored."; |
| } |
| } |
| return absl::nullopt; |
| } |
| |
| struct DelayHistogramConfig { |
| int quantile = 1020054733; // 0.95 in Q30. |
| int forget_factor = 32745; // 0.9993 in Q15. |
| }; |
| |
| absl::optional<DelayHistogramConfig> GetDelayHistogramConfig() { |
| constexpr char kDelayHistogramFieldTrial[] = |
| "WebRTC-Audio-NetEqDelayHistogram"; |
| const bool use_new_delay_manager = |
| webrtc::field_trial::IsEnabled(kDelayHistogramFieldTrial); |
| if (use_new_delay_manager) { |
| const auto field_trial_string = |
| webrtc::field_trial::FindFullName(kDelayHistogramFieldTrial); |
| DelayHistogramConfig config; |
| double percentile = -1.0; |
| double forget_factor = -1.0; |
| if (sscanf(field_trial_string.c_str(), "Enabled-%lf-%lf", &percentile, |
| &forget_factor) == 2 && |
| percentile >= 0.0 && percentile <= 100.0 && forget_factor >= 0.0 && |
| forget_factor <= 1.0) { |
| config.quantile = PercentileToQuantile(percentile); |
| config.forget_factor = (1 << 15) * forget_factor; |
| } |
| RTC_LOG(LS_INFO) << "Delay histogram config:" |
| << " quantile=" << config.quantile |
| << " forget_factor=" << config.forget_factor; |
| return absl::make_optional(config); |
| } |
| return absl::nullopt; |
| } |
| |
| absl::optional<int> GetDecelerationTargetLevelOffsetMs() { |
| constexpr char kDecelerationTargetLevelOffsetFieldTrial[] = |
| "WebRTC-Audio-NetEqDecelerationTargetLevelOffset"; |
| if (!webrtc::field_trial::IsEnabled( |
| kDecelerationTargetLevelOffsetFieldTrial)) { |
| return absl::nullopt; |
| } |
| |
| const auto field_trial_string = webrtc::field_trial::FindFullName( |
| kDecelerationTargetLevelOffsetFieldTrial); |
| int deceleration_target_level_offset_ms = -1; |
| sscanf(field_trial_string.c_str(), "Enabled-%d", |
| &deceleration_target_level_offset_ms); |
| if (deceleration_target_level_offset_ms >= 0) { |
| RTC_LOG(LS_INFO) << "NetEq deceleration_target_level_offset " |
| << "in milliseconds " |
| << deceleration_target_level_offset_ms; |
| // Convert into Q8. |
| return deceleration_target_level_offset_ms << 8; |
| } |
| return absl::nullopt; |
| } |
| |
| } // namespace |
| |
| namespace webrtc { |
| |
| DelayManager::DelayManager(size_t max_packets_in_buffer, |
| int base_minimum_delay_ms, |
| int histogram_quantile, |
| HistogramMode histogram_mode, |
| bool enable_rtx_handling, |
| DelayPeakDetector* peak_detector, |
| const TickTimer* tick_timer, |
| StatisticsCalculator* statistics, |
| std::unique_ptr<Histogram> histogram) |
| : first_packet_received_(false), |
| max_packets_in_buffer_(max_packets_in_buffer), |
| histogram_(std::move(histogram)), |
| histogram_quantile_(histogram_quantile), |
| histogram_mode_(histogram_mode), |
| tick_timer_(tick_timer), |
| statistics_(statistics), |
| base_minimum_delay_ms_(base_minimum_delay_ms), |
| effective_minimum_delay_ms_(base_minimum_delay_ms), |
| base_target_level_(4), // In Q0 domain. |
| target_level_(base_target_level_ << 8), // In Q8 domain. |
| packet_len_ms_(0), |
| last_seq_no_(0), |
| last_timestamp_(0), |
| minimum_delay_ms_(0), |
| maximum_delay_ms_(0), |
| peak_detector_(*peak_detector), |
| last_pack_cng_or_dtmf_(1), |
| frame_length_change_experiment_( |
| field_trial::IsEnabled("WebRTC-Audio-NetEqFramelengthExperiment")), |
| enable_rtx_handling_(enable_rtx_handling), |
| deceleration_target_level_offset_ms_( |
| GetDecelerationTargetLevelOffsetMs()) { |
| assert(peak_detector); // Should never be NULL. |
| RTC_CHECK(histogram_); |
| RTC_DCHECK_GE(base_minimum_delay_ms_, 0); |
| RTC_DCHECK(!deceleration_target_level_offset_ms_ || |
| *deceleration_target_level_offset_ms_ >= 0); |
| |
| Reset(); |
| } |
| |
| std::unique_ptr<DelayManager> DelayManager::Create( |
| size_t max_packets_in_buffer, |
| int base_minimum_delay_ms, |
| bool enable_rtx_handling, |
| DelayPeakDetector* peak_detector, |
| const TickTimer* tick_timer, |
| StatisticsCalculator* statistics) { |
| int quantile; |
| std::unique_ptr<Histogram> histogram; |
| HistogramMode mode; |
| auto delay_histogram_config = GetDelayHistogramConfig(); |
| if (delay_histogram_config) { |
| DelayHistogramConfig config = delay_histogram_config.value(); |
| quantile = config.quantile; |
| histogram = |
| absl::make_unique<Histogram>(kDelayBuckets, config.forget_factor); |
| mode = RELATIVE_ARRIVAL_DELAY; |
| } else { |
| quantile = GetForcedLimitProbability().value_or(kLimitProbability); |
| histogram = absl::make_unique<Histogram>(kMaxIat + 1, kIatFactor); |
| mode = INTER_ARRIVAL_TIME; |
| } |
| return absl::make_unique<DelayManager>( |
| max_packets_in_buffer, base_minimum_delay_ms, quantile, mode, |
| enable_rtx_handling, peak_detector, tick_timer, statistics, |
| std::move(histogram)); |
| } |
| |
| DelayManager::~DelayManager() {} |
| |
| int DelayManager::Update(uint16_t sequence_number, |
| uint32_t timestamp, |
| int sample_rate_hz) { |
| if (sample_rate_hz <= 0) { |
| return -1; |
| } |
| |
| if (!first_packet_received_) { |
| // Prepare for next packet arrival. |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| last_seq_no_ = sequence_number; |
| last_timestamp_ = timestamp; |
| first_packet_received_ = true; |
| return 0; |
| } |
| |
| // Try calculating packet length from current and previous timestamps. |
| int packet_len_ms; |
| if (!IsNewerTimestamp(timestamp, last_timestamp_) || |
| !IsNewerSequenceNumber(sequence_number, last_seq_no_)) { |
| // Wrong timestamp or sequence order; use stored value. |
| packet_len_ms = packet_len_ms_; |
| } else { |
| // Calculate timestamps per packet and derive packet length in ms. |
| int64_t packet_len_samp = |
| static_cast<uint32_t>(timestamp - last_timestamp_) / |
| static_cast<uint16_t>(sequence_number - last_seq_no_); |
| packet_len_ms = |
| rtc::saturated_cast<int>(1000 * packet_len_samp / sample_rate_hz); |
| } |
| |
| bool reordered = false; |
| if (packet_len_ms > 0) { |
| // Cannot update statistics unless |packet_len_ms| is valid. |
| |
| // Inter-arrival time (IAT) in integer "packet times" (rounding down). This |
| // is the value added to the inter-arrival time histogram. |
| int iat_ms = packet_iat_stopwatch_->ElapsedMs(); |
| int iat_packets = iat_ms / packet_len_ms; |
| // Check for discontinuous packet sequence and re-ordering. |
| if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) { |
| // Compensate for gap in the sequence numbers. Reduce IAT with the |
| // expected extra time due to lost packets. |
| int packet_offset = |
| static_cast<uint16_t>(sequence_number - last_seq_no_ - 1); |
| iat_packets -= packet_offset; |
| iat_ms -= packet_offset * packet_len_ms; |
| } else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) { |
| int packet_offset = |
| static_cast<uint16_t>(last_seq_no_ + 1 - sequence_number); |
| iat_packets += packet_offset; |
| iat_ms += packet_offset * packet_len_ms; |
| reordered = true; |
| } |
| |
| int iat_delay = iat_ms - packet_len_ms; |
| int relative_delay; |
| if (reordered) { |
| relative_delay = std::max(iat_delay, 0); |
| } else { |
| UpdateDelayHistory(iat_delay); |
| relative_delay = CalculateRelativePacketArrivalDelay(); |
| } |
| statistics_->RelativePacketArrivalDelay(relative_delay); |
| |
| switch (histogram_mode_) { |
| case RELATIVE_ARRIVAL_DELAY: { |
| const int index = relative_delay / kBucketSizeMs; |
| if (index < histogram_->NumBuckets()) { |
| // Maximum delay to register is 2000 ms. |
| histogram_->Add(index); |
| } |
| break; |
| } |
| case INTER_ARRIVAL_TIME: { |
| // Saturate IAT between 0 and maximum value. |
| iat_packets = |
| std::max(std::min(iat_packets, histogram_->NumBuckets() - 1), 0); |
| histogram_->Add(iat_packets); |
| break; |
| } |
| } |
| // Calculate new |target_level_| based on updated statistics. |
| target_level_ = CalculateTargetLevel(iat_packets, reordered); |
| |
| LimitTargetLevel(); |
| } // End if (packet_len_ms > 0). |
| |
| if (enable_rtx_handling_ && reordered && |
| num_reordered_packets_ < kMaxReorderedPackets) { |
| ++num_reordered_packets_; |
| return 0; |
| } |
| num_reordered_packets_ = 0; |
| // Prepare for next packet arrival. |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| last_seq_no_ = sequence_number; |
| last_timestamp_ = timestamp; |
| return 0; |
| } |
| |
| void DelayManager::UpdateDelayHistory(int iat_delay) { |
| delay_history_.push_back(iat_delay); |
| if (delay_history_.size() > kMaxHistoryPackets) { |
| delay_history_.pop_front(); |
| } |
| } |
| |
| int DelayManager::CalculateRelativePacketArrivalDelay() const { |
| // This effectively calculates arrival delay of a packet relative to the |
| // packet preceding the history window. If the arrival delay ever becomes |
| // smaller than zero, it means the reference packet is invalid, and we |
| // move the reference. |
| int relative_delay = 0; |
| for (int delay : delay_history_) { |
| relative_delay += delay; |
| relative_delay = std::max(relative_delay, 0); |
| } |
| return relative_delay; |
| } |
| |
| // Enforces upper and lower limits for |target_level_|. The upper limit is |
| // chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some |
| // headroom for natural fluctuations around the target, and ii) equivalent of |
| // |maximum_delay_ms_| in packets. Note that in practice, if no |
| // |maximum_delay_ms_| is specified, this does not have any impact, since the |
| // target level is far below the buffer capacity in all reasonable cases. |
| // The lower limit is equivalent of |effective_minimum_delay_ms_| in packets. |
| // We update |least_required_level_| while the above limits are applied. |
| // TODO(hlundin): Move this check to the buffer logistics class. |
| void DelayManager::LimitTargetLevel() { |
| if (packet_len_ms_ > 0 && effective_minimum_delay_ms_ > 0) { |
| int minimum_delay_packet_q8 = |
| (effective_minimum_delay_ms_ << 8) / packet_len_ms_; |
| target_level_ = std::max(target_level_, minimum_delay_packet_q8); |
| } |
| |
| if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) { |
| int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_; |
| target_level_ = std::min(target_level_, maximum_delay_packet_q8); |
| } |
| |
| // Shift to Q8, then 75%.; |
| int max_buffer_packets_q8 = |
| static_cast<int>((3 * (max_packets_in_buffer_ << 8)) / 4); |
| target_level_ = std::min(target_level_, max_buffer_packets_q8); |
| |
| // Sanity check, at least 1 packet (in Q8). |
| target_level_ = std::max(target_level_, 1 << 8); |
| } |
| |
| int DelayManager::CalculateTargetLevel(int iat_packets, bool reordered) { |
| int limit_probability = histogram_quantile_; |
| |
| int bucket_index = histogram_->Quantile(limit_probability); |
| int target_level; |
| switch (histogram_mode_) { |
| case RELATIVE_ARRIVAL_DELAY: { |
| target_level = 1 + bucket_index * kBucketSizeMs / packet_len_ms_; |
| base_target_level_ = target_level; |
| break; |
| } |
| case INTER_ARRIVAL_TIME: { |
| target_level = bucket_index; |
| base_target_level_ = target_level; |
| // Update detector for delay peaks. |
| bool delay_peak_found = |
| peak_detector_.Update(iat_packets, reordered, target_level); |
| if (delay_peak_found) { |
| target_level = std::max(target_level, peak_detector_.MaxPeakHeight()); |
| } |
| break; |
| } |
| } |
| |
| // Sanity check. |target_level| must be strictly positive. |
| target_level = std::max(target_level, 1); |
| // Scale to Q8 and assign to member variable. |
| target_level_ = target_level << 8; |
| return target_level_; |
| } |
| |
| int DelayManager::SetPacketAudioLength(int length_ms) { |
| if (length_ms <= 0) { |
| RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms; |
| return -1; |
| } |
| if (histogram_mode_ == INTER_ARRIVAL_TIME && |
| frame_length_change_experiment_ && packet_len_ms_ != length_ms && |
| packet_len_ms_ > 0) { |
| histogram_->Scale(packet_len_ms_, length_ms); |
| } |
| |
| packet_len_ms_ = length_ms; |
| peak_detector_.SetPacketAudioLength(packet_len_ms_); |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| last_pack_cng_or_dtmf_ = 1; // TODO(hlundin): Legacy. Remove? |
| return 0; |
| } |
| |
| void DelayManager::Reset() { |
| packet_len_ms_ = 0; // Packet size unknown. |
| peak_detector_.Reset(); |
| histogram_->Reset(); |
| base_target_level_ = 4; |
| target_level_ = base_target_level_ << 8; |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| last_pack_cng_or_dtmf_ = 1; |
| } |
| |
| double DelayManager::EstimatedClockDriftPpm() const { |
| double sum = 0.0; |
| // Calculate the expected value based on the probabilities in |
| // |histogram_|. |
| auto buckets = histogram_->buckets(); |
| for (size_t i = 0; i < buckets.size(); ++i) { |
| sum += static_cast<double>(buckets[i]) * i; |
| } |
| // The probabilities in |histogram_| are in Q30. Divide by 1 << 30 to |
| // convert to Q0; subtract the nominal inter-arrival time (1) to make a zero |
| // clockdrift represent as 0; mulitply by 1000000 to produce parts-per-million |
| // (ppm). |
| return (sum / (1 << 30) - 1) * 1e6; |
| } |
| |
| bool DelayManager::PeakFound() const { |
| return peak_detector_.peak_found(); |
| } |
| |
| void DelayManager::ResetPacketIatCount() { |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| } |
| |
| void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const { |
| BufferLimits(target_level_, lower_limit, higher_limit); |
| } |
| |
| // Note that |low_limit| and |higher_limit| are not assigned to |
| // |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this |
| // class. They are computed from |target_level| in Q8 and used for decision |
| // making. |
| void DelayManager::BufferLimits(int target_level, |
| int* lower_limit, |
| int* higher_limit) const { |
| if (!lower_limit || !higher_limit) { |
| RTC_LOG_F(LS_ERROR) << "NULL pointers supplied as input"; |
| assert(false); |
| return; |
| } |
| |
| // |target_level| is in Q8 already. |
| *lower_limit = (target_level * 3) / 4; |
| |
| if (deceleration_target_level_offset_ms_ && packet_len_ms_ > 0) { |
| *lower_limit = std::max( |
| *lower_limit, |
| target_level - *deceleration_target_level_offset_ms_ / packet_len_ms_); |
| } |
| |
| int window_20ms = 0x7FFF; // Default large value for legacy bit-exactness. |
| if (packet_len_ms_ > 0) { |
| window_20ms = (20 << 8) / packet_len_ms_; |
| } |
| // |higher_limit| is equal to |target_level|, but should at |
| // least be 20 ms higher than |lower_limit|. |
| *higher_limit = std::max(target_level, *lower_limit + window_20ms); |
| } |
| |
| int DelayManager::TargetLevel() const { |
| return target_level_; |
| } |
| |
| void DelayManager::LastDecodedWasCngOrDtmf(bool it_was) { |
| if (it_was) { |
| last_pack_cng_or_dtmf_ = 1; |
| } else if (last_pack_cng_or_dtmf_ != 0) { |
| last_pack_cng_or_dtmf_ = -1; |
| } |
| } |
| |
| void DelayManager::RegisterEmptyPacket() { |
| ++last_seq_no_; |
| } |
| |
| bool DelayManager::IsValidMinimumDelay(int delay_ms) const { |
| return 0 <= delay_ms && delay_ms <= MinimumDelayUpperBound(); |
| } |
| |
| bool DelayManager::IsValidBaseMinimumDelay(int delay_ms) const { |
| return kMinBaseMinimumDelayMs <= delay_ms && |
| delay_ms <= kMaxBaseMinimumDelayMs; |
| } |
| |
| bool DelayManager::SetMinimumDelay(int delay_ms) { |
| if (!IsValidMinimumDelay(delay_ms)) { |
| return false; |
| } |
| |
| minimum_delay_ms_ = delay_ms; |
| UpdateEffectiveMinimumDelay(); |
| return true; |
| } |
| |
| bool DelayManager::SetMaximumDelay(int delay_ms) { |
| // If |delay_ms| is zero then it unsets the maximum delay and target level is |
| // unconstrained by maximum delay. |
| if (delay_ms != 0 && |
| (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_)) { |
| // Maximum delay shouldn't be less than minimum delay or less than a packet. |
| return false; |
| } |
| |
| maximum_delay_ms_ = delay_ms; |
| UpdateEffectiveMinimumDelay(); |
| return true; |
| } |
| |
| bool DelayManager::SetBaseMinimumDelay(int delay_ms) { |
| if (!IsValidBaseMinimumDelay(delay_ms)) { |
| return false; |
| } |
| |
| base_minimum_delay_ms_ = delay_ms; |
| UpdateEffectiveMinimumDelay(); |
| return true; |
| } |
| |
| int DelayManager::GetBaseMinimumDelay() const { |
| return base_minimum_delay_ms_; |
| } |
| |
| int DelayManager::base_target_level() const { |
| return base_target_level_; |
| } |
| int DelayManager::last_pack_cng_or_dtmf() const { |
| return last_pack_cng_or_dtmf_; |
| } |
| |
| void DelayManager::set_last_pack_cng_or_dtmf(int value) { |
| last_pack_cng_or_dtmf_ = value; |
| } |
| |
| void DelayManager::UpdateEffectiveMinimumDelay() { |
| // Clamp |base_minimum_delay_ms_| into the range which can be effectively |
| // used. |
| const int base_minimum_delay_ms = |
| rtc::SafeClamp(base_minimum_delay_ms_, 0, MinimumDelayUpperBound()); |
| effective_minimum_delay_ms_ = |
| std::max(minimum_delay_ms_, base_minimum_delay_ms); |
| } |
| |
| int DelayManager::MinimumDelayUpperBound() const { |
| // Choose the lowest possible bound discarding 0 cases which mean the value |
| // is not set and unconstrained. |
| int q75 = MaxBufferTimeQ75(); |
| q75 = q75 > 0 ? q75 : kMaxBaseMinimumDelayMs; |
| const int maximum_delay_ms = |
| maximum_delay_ms_ > 0 ? maximum_delay_ms_ : kMaxBaseMinimumDelayMs; |
| return std::min(maximum_delay_ms, q75); |
| } |
| |
| int DelayManager::MaxBufferTimeQ75() const { |
| const int max_buffer_time = max_packets_in_buffer_ * packet_len_ms_; |
| return rtc::dchecked_cast<int>(3 * max_buffer_time / 4); |
| } |
| } // namespace webrtc |