blob: fd9bf644dde1e283bec21005028aebf6ef7b80d4 [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_device/include/test_audio_device.h"
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "api/array_view.h"
#include "common_audio/wav_file.h"
#include "modules/audio_device/include/audio_device_default.h"
#include "rtc_base/buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/critical_section.h"
#include "rtc_base/event.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/random.h"
#include "rtc_base/ref_counted_object.h"
#include "rtc_base/task_queue.h"
#include "rtc_base/task_utils/repeating_task.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/time_utils.h"
namespace webrtc {
namespace {
constexpr int kFrameLengthUs = 10000;
constexpr int kFramesPerSecond = rtc::kNumMicrosecsPerSec / kFrameLengthUs;
// TestAudioDeviceModule implements an AudioDevice module that can act both as a
// capturer and a renderer. It will use 10ms audio frames.
class TestAudioDeviceModuleImpl
: public webrtc_impl::AudioDeviceModuleDefault<TestAudioDeviceModule> {
public:
// Creates a new TestAudioDeviceModule. When capturing or playing, 10 ms audio
// frames will be processed every 10ms / |speed|.
// |capturer| is an object that produces audio data. Can be nullptr if this
// device is never used for recording.
// |renderer| is an object that receives audio data that would have been
// played out. Can be nullptr if this device is never used for playing.
// Use one of the Create... functions to get these instances.
TestAudioDeviceModuleImpl(TaskQueueFactory* task_queue_factory,
std::unique_ptr<Capturer> capturer,
std::unique_ptr<Renderer> renderer,
float speed = 1)
: task_queue_factory_(task_queue_factory),
capturer_(std::move(capturer)),
renderer_(std::move(renderer)),
process_interval_us_(kFrameLengthUs / speed),
audio_callback_(nullptr),
rendering_(false),
capturing_(false) {
auto good_sample_rate = [](int sr) {
return sr == 8000 || sr == 16000 || sr == 32000 || sr == 44100 ||
sr == 48000;
};
if (renderer_) {
const int sample_rate = renderer_->SamplingFrequency();
playout_buffer_.resize(
SamplesPerFrame(sample_rate) * renderer_->NumChannels(), 0);
RTC_CHECK(good_sample_rate(sample_rate));
}
if (capturer_) {
RTC_CHECK(good_sample_rate(capturer_->SamplingFrequency()));
}
}
~TestAudioDeviceModuleImpl() override {
StopPlayout();
StopRecording();
}
int32_t Init() override {
task_queue_ =
absl::make_unique<rtc::TaskQueue>(task_queue_factory_->CreateTaskQueue(
"TestAudioDeviceModuleImpl", TaskQueueFactory::Priority::NORMAL));
RepeatingTaskHandle::Start(task_queue_->Get(), [this]() {
ProcessAudio();
return TimeDelta::us(process_interval_us_);
});
return 0;
}
int32_t RegisterAudioCallback(AudioTransport* callback) override {
rtc::CritScope cs(&lock_);
RTC_DCHECK(callback || audio_callback_);
audio_callback_ = callback;
return 0;
}
int32_t StartPlayout() override {
rtc::CritScope cs(&lock_);
RTC_CHECK(renderer_);
rendering_ = true;
return 0;
}
int32_t StopPlayout() override {
rtc::CritScope cs(&lock_);
rendering_ = false;
return 0;
}
int32_t StartRecording() override {
rtc::CritScope cs(&lock_);
RTC_CHECK(capturer_);
capturing_ = true;
return 0;
}
int32_t StopRecording() override {
rtc::CritScope cs(&lock_);
capturing_ = false;
return 0;
}
bool Playing() const override {
rtc::CritScope cs(&lock_);
return rendering_;
}
bool Recording() const override {
rtc::CritScope cs(&lock_);
return capturing_;
}
// Blocks until the Renderer refuses to receive data.
// Returns false if |timeout_ms| passes before that happens.
bool WaitForPlayoutEnd(int timeout_ms = rtc::Event::kForever) override {
return done_rendering_.Wait(timeout_ms);
}
// Blocks until the Recorder stops producing data.
// Returns false if |timeout_ms| passes before that happens.
bool WaitForRecordingEnd(int timeout_ms = rtc::Event::kForever) override {
return done_capturing_.Wait(timeout_ms);
}
private:
void ProcessAudio() {
rtc::CritScope cs(&lock_);
if (capturing_) {
// Capture 10ms of audio. 2 bytes per sample.
const bool keep_capturing = capturer_->Capture(&recording_buffer_);
uint32_t new_mic_level = 0;
if (recording_buffer_.size() > 0) {
audio_callback_->RecordedDataIsAvailable(
recording_buffer_.data(),
recording_buffer_.size() / capturer_->NumChannels(),
2 * capturer_->NumChannels(), capturer_->NumChannels(),
capturer_->SamplingFrequency(), 0, 0, 0, false, new_mic_level);
}
if (!keep_capturing) {
capturing_ = false;
done_capturing_.Set();
}
}
if (rendering_) {
size_t samples_out = 0;
int64_t elapsed_time_ms = -1;
int64_t ntp_time_ms = -1;
const int sampling_frequency = renderer_->SamplingFrequency();
audio_callback_->NeedMorePlayData(
SamplesPerFrame(sampling_frequency), 2 * renderer_->NumChannels(),
renderer_->NumChannels(), sampling_frequency, playout_buffer_.data(),
samples_out, &elapsed_time_ms, &ntp_time_ms);
const bool keep_rendering = renderer_->Render(
rtc::ArrayView<const int16_t>(playout_buffer_.data(), samples_out));
if (!keep_rendering) {
rendering_ = false;
done_rendering_.Set();
}
}
}
TaskQueueFactory* const task_queue_factory_;
const std::unique_ptr<Capturer> capturer_ RTC_GUARDED_BY(lock_);
const std::unique_ptr<Renderer> renderer_ RTC_GUARDED_BY(lock_);
const int64_t process_interval_us_;
rtc::CriticalSection lock_;
AudioTransport* audio_callback_ RTC_GUARDED_BY(lock_);
bool rendering_ RTC_GUARDED_BY(lock_);
bool capturing_ RTC_GUARDED_BY(lock_);
rtc::Event done_rendering_;
rtc::Event done_capturing_;
std::vector<int16_t> playout_buffer_ RTC_GUARDED_BY(lock_);
rtc::BufferT<int16_t> recording_buffer_ RTC_GUARDED_BY(lock_);
std::unique_ptr<rtc::TaskQueue> task_queue_;
};
// A fake capturer that generates pulses with random samples between
// -max_amplitude and +max_amplitude.
class PulsedNoiseCapturerImpl final
: public TestAudioDeviceModule::PulsedNoiseCapturer {
public:
// Assuming 10ms audio packets.
PulsedNoiseCapturerImpl(int16_t max_amplitude,
int sampling_frequency_in_hz,
int num_channels)
: sampling_frequency_in_hz_(sampling_frequency_in_hz),
fill_with_zero_(false),
random_generator_(1),
max_amplitude_(max_amplitude),
num_channels_(num_channels) {
RTC_DCHECK_GT(max_amplitude, 0);
}
int SamplingFrequency() const override { return sampling_frequency_in_hz_; }
int NumChannels() const override { return num_channels_; }
bool Capture(rtc::BufferT<int16_t>* buffer) override {
fill_with_zero_ = !fill_with_zero_;
int16_t max_amplitude;
{
rtc::CritScope cs(&lock_);
max_amplitude = max_amplitude_;
}
buffer->SetData(
TestAudioDeviceModule::SamplesPerFrame(sampling_frequency_in_hz_) *
num_channels_,
[&](rtc::ArrayView<int16_t> data) {
if (fill_with_zero_) {
std::fill(data.begin(), data.end(), 0);
} else {
std::generate(data.begin(), data.end(), [&]() {
return random_generator_.Rand(-max_amplitude, max_amplitude);
});
}
return data.size();
});
return true;
}
void SetMaxAmplitude(int16_t amplitude) override {
rtc::CritScope cs(&lock_);
max_amplitude_ = amplitude;
}
private:
int sampling_frequency_in_hz_;
bool fill_with_zero_;
Random random_generator_;
rtc::CriticalSection lock_;
int16_t max_amplitude_ RTC_GUARDED_BY(lock_);
const int num_channels_;
};
class WavFileReader final : public TestAudioDeviceModule::Capturer {
public:
WavFileReader(std::string filename,
int sampling_frequency_in_hz,
int num_channels,
bool repeat)
: WavFileReader(absl::make_unique<WavReader>(filename),
sampling_frequency_in_hz,
num_channels,
repeat) {}
int SamplingFrequency() const override { return sampling_frequency_in_hz_; }
int NumChannels() const override { return num_channels_; }
bool Capture(rtc::BufferT<int16_t>* buffer) override {
buffer->SetData(
TestAudioDeviceModule::SamplesPerFrame(sampling_frequency_in_hz_) *
num_channels_,
[&](rtc::ArrayView<int16_t> data) {
size_t read = wav_reader_->ReadSamples(data.size(), data.data());
if (read < data.size() && repeat_) {
do {
wav_reader_->Reset();
size_t delta = wav_reader_->ReadSamples(
data.size() - read, data.subview(read).data());
RTC_CHECK_GT(delta, 0) << "No new data read from file";
read += delta;
} while (read < data.size());
}
return read;
});
return buffer->size() > 0;
}
private:
WavFileReader(std::unique_ptr<WavReader> wav_reader,
int sampling_frequency_in_hz,
int num_channels,
bool repeat)
: sampling_frequency_in_hz_(sampling_frequency_in_hz),
num_channels_(num_channels),
wav_reader_(std::move(wav_reader)),
repeat_(repeat) {
RTC_CHECK_EQ(wav_reader_->sample_rate(), sampling_frequency_in_hz);
RTC_CHECK_EQ(wav_reader_->num_channels(), num_channels);
}
const int sampling_frequency_in_hz_;
const int num_channels_;
std::unique_ptr<WavReader> wav_reader_;
const bool repeat_;
};
class WavFileWriter final : public TestAudioDeviceModule::Renderer {
public:
WavFileWriter(std::string filename,
int sampling_frequency_in_hz,
int num_channels)
: WavFileWriter(absl::make_unique<WavWriter>(filename,
sampling_frequency_in_hz,
num_channels),
sampling_frequency_in_hz,
num_channels) {}
int SamplingFrequency() const override { return sampling_frequency_in_hz_; }
int NumChannels() const override { return num_channels_; }
bool Render(rtc::ArrayView<const int16_t> data) override {
wav_writer_->WriteSamples(data.data(), data.size());
return true;
}
private:
WavFileWriter(std::unique_ptr<WavWriter> wav_writer,
int sampling_frequency_in_hz,
int num_channels)
: sampling_frequency_in_hz_(sampling_frequency_in_hz),
wav_writer_(std::move(wav_writer)),
num_channels_(num_channels) {}
int sampling_frequency_in_hz_;
std::unique_ptr<WavWriter> wav_writer_;
const int num_channels_;
};
class BoundedWavFileWriter : public TestAudioDeviceModule::Renderer {
public:
BoundedWavFileWriter(std::string filename,
int sampling_frequency_in_hz,
int num_channels)
: sampling_frequency_in_hz_(sampling_frequency_in_hz),
wav_writer_(filename, sampling_frequency_in_hz, num_channels),
num_channels_(num_channels),
silent_audio_(
TestAudioDeviceModule::SamplesPerFrame(sampling_frequency_in_hz) *
num_channels,
0),
started_writing_(false),
trailing_zeros_(0) {}
int SamplingFrequency() const override { return sampling_frequency_in_hz_; }
int NumChannels() const override { return num_channels_; }
bool Render(rtc::ArrayView<const int16_t> data) override {
const int16_t kAmplitudeThreshold = 5;
const int16_t* begin = data.begin();
const int16_t* end = data.end();
if (!started_writing_) {
// Cut off silence at the beginning.
while (begin < end) {
if (std::abs(*begin) > kAmplitudeThreshold) {
started_writing_ = true;
break;
}
++begin;
}
}
if (started_writing_) {
// Cut off silence at the end.
while (begin < end) {
if (*(end - 1) != 0) {
break;
}
--end;
}
if (begin < end) {
// If it turns out that the silence was not final, need to write all the
// skipped zeros and continue writing audio.
while (trailing_zeros_ > 0) {
const size_t zeros_to_write =
std::min(trailing_zeros_, silent_audio_.size());
wav_writer_.WriteSamples(silent_audio_.data(), zeros_to_write);
trailing_zeros_ -= zeros_to_write;
}
wav_writer_.WriteSamples(begin, end - begin);
}
// Save the number of zeros we skipped in case this needs to be restored.
trailing_zeros_ += data.end() - end;
}
return true;
}
private:
int sampling_frequency_in_hz_;
WavWriter wav_writer_;
const int num_channels_;
std::vector<int16_t> silent_audio_;
bool started_writing_;
size_t trailing_zeros_;
};
class DiscardRenderer final : public TestAudioDeviceModule::Renderer {
public:
explicit DiscardRenderer(int sampling_frequency_in_hz, int num_channels)
: sampling_frequency_in_hz_(sampling_frequency_in_hz),
num_channels_(num_channels) {}
int SamplingFrequency() const override { return sampling_frequency_in_hz_; }
int NumChannels() const override { return num_channels_; }
bool Render(rtc::ArrayView<const int16_t> data) override { return true; }
private:
int sampling_frequency_in_hz_;
const int num_channels_;
};
} // namespace
size_t TestAudioDeviceModule::SamplesPerFrame(int sampling_frequency_in_hz) {
return rtc::CheckedDivExact(sampling_frequency_in_hz, kFramesPerSecond);
}
rtc::scoped_refptr<TestAudioDeviceModule> TestAudioDeviceModule::Create(
TaskQueueFactory* task_queue_factory,
std::unique_ptr<TestAudioDeviceModule::Capturer> capturer,
std::unique_ptr<TestAudioDeviceModule::Renderer> renderer,
float speed) {
return new rtc::RefCountedObject<TestAudioDeviceModuleImpl>(
task_queue_factory, std::move(capturer), std::move(renderer), speed);
}
std::unique_ptr<TestAudioDeviceModule::PulsedNoiseCapturer>
TestAudioDeviceModule::CreatePulsedNoiseCapturer(int16_t max_amplitude,
int sampling_frequency_in_hz,
int num_channels) {
return absl::make_unique<PulsedNoiseCapturerImpl>(
max_amplitude, sampling_frequency_in_hz, num_channels);
}
std::unique_ptr<TestAudioDeviceModule::Renderer>
TestAudioDeviceModule::CreateDiscardRenderer(int sampling_frequency_in_hz,
int num_channels) {
return absl::make_unique<DiscardRenderer>(sampling_frequency_in_hz,
num_channels);
}
std::unique_ptr<TestAudioDeviceModule::Capturer>
TestAudioDeviceModule::CreateWavFileReader(std::string filename,
int sampling_frequency_in_hz,
int num_channels) {
return absl::make_unique<WavFileReader>(filename, sampling_frequency_in_hz,
num_channels, false);
}
std::unique_ptr<TestAudioDeviceModule::Capturer>
TestAudioDeviceModule::CreateWavFileReader(std::string filename, bool repeat) {
WavReader reader(filename);
int sampling_frequency_in_hz = reader.sample_rate();
int num_channels = rtc::checked_cast<int>(reader.num_channels());
return absl::make_unique<WavFileReader>(filename, sampling_frequency_in_hz,
num_channels, repeat);
}
std::unique_ptr<TestAudioDeviceModule::Renderer>
TestAudioDeviceModule::CreateWavFileWriter(std::string filename,
int sampling_frequency_in_hz,
int num_channels) {
return absl::make_unique<WavFileWriter>(filename, sampling_frequency_in_hz,
num_channels);
}
std::unique_ptr<TestAudioDeviceModule::Renderer>
TestAudioDeviceModule::CreateBoundedWavFileWriter(std::string filename,
int sampling_frequency_in_hz,
int num_channels) {
return absl::make_unique<BoundedWavFileWriter>(
filename, sampling_frequency_in_hz, num_channels);
}
} // namespace webrtc