| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/audio_buffer.h" |
| |
| #include <string.h> |
| |
| #include <cstdint> |
| |
| #include "common_audio/channel_buffer.h" |
| #include "common_audio/include/audio_util.h" |
| #include "common_audio/resampler/push_sinc_resampler.h" |
| #include "modules/audio_processing/splitting_filter.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| const size_t kSamplesPer16kHzChannel = 160; |
| const size_t kSamplesPer32kHzChannel = 320; |
| const size_t kSamplesPer48kHzChannel = 480; |
| |
| size_t NumBandsFromSamplesPerChannel(size_t num_frames) { |
| size_t num_bands = 1; |
| if (num_frames == kSamplesPer32kHzChannel || |
| num_frames == kSamplesPer48kHzChannel) { |
| num_bands = rtc::CheckedDivExact(num_frames, kSamplesPer16kHzChannel); |
| } |
| return num_bands; |
| } |
| |
| } // namespace |
| |
| AudioBuffer::AudioBuffer(size_t input_num_frames, |
| size_t num_input_channels, |
| size_t process_num_frames, |
| size_t num_process_channels, |
| size_t output_num_frames) |
| : input_num_frames_(input_num_frames), |
| num_input_channels_(num_input_channels), |
| proc_num_frames_(process_num_frames), |
| num_proc_channels_(num_process_channels), |
| output_num_frames_(output_num_frames), |
| num_channels_(num_process_channels), |
| num_bands_(NumBandsFromSamplesPerChannel(proc_num_frames_)), |
| num_split_frames_(rtc::CheckedDivExact(proc_num_frames_, num_bands_)), |
| data_(new IFChannelBuffer(proc_num_frames_, num_proc_channels_)), |
| output_buffer_(new IFChannelBuffer(output_num_frames_, num_channels_)) { |
| RTC_DCHECK_GT(input_num_frames_, 0); |
| RTC_DCHECK_GT(proc_num_frames_, 0); |
| RTC_DCHECK_GT(output_num_frames_, 0); |
| RTC_DCHECK_GT(num_input_channels_, 0); |
| RTC_DCHECK_GT(num_proc_channels_, 0); |
| RTC_DCHECK_LE(num_proc_channels_, num_input_channels_); |
| |
| if (input_num_frames_ != proc_num_frames_ || |
| output_num_frames_ != proc_num_frames_) { |
| // Create an intermediate buffer for resampling. |
| process_buffer_.reset( |
| new ChannelBuffer<float>(proc_num_frames_, num_proc_channels_)); |
| |
| if (input_num_frames_ != proc_num_frames_) { |
| for (size_t i = 0; i < num_proc_channels_; ++i) { |
| input_resamplers_.push_back(std::unique_ptr<PushSincResampler>( |
| new PushSincResampler(input_num_frames_, proc_num_frames_))); |
| } |
| } |
| |
| if (output_num_frames_ != proc_num_frames_) { |
| for (size_t i = 0; i < num_proc_channels_; ++i) { |
| output_resamplers_.push_back(std::unique_ptr<PushSincResampler>( |
| new PushSincResampler(proc_num_frames_, output_num_frames_))); |
| } |
| } |
| } |
| |
| if (num_bands_ > 1) { |
| split_data_.reset( |
| new IFChannelBuffer(proc_num_frames_, num_proc_channels_, num_bands_)); |
| splitting_filter_.reset( |
| new SplittingFilter(num_proc_channels_, num_bands_, proc_num_frames_)); |
| } |
| } |
| |
| AudioBuffer::~AudioBuffer() {} |
| |
| void AudioBuffer::CopyFrom(const float* const* data, |
| const StreamConfig& stream_config) { |
| RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_); |
| RTC_DCHECK_EQ(stream_config.num_channels(), num_input_channels_); |
| InitForNewData(); |
| // Initialized lazily because there's a different condition in |
| // DeinterleaveFrom. |
| const bool need_to_downmix = |
| num_input_channels_ > 1 && num_proc_channels_ == 1; |
| if (need_to_downmix && !input_buffer_) { |
| input_buffer_.reset( |
| new IFChannelBuffer(input_num_frames_, num_proc_channels_)); |
| } |
| |
| // Downmix. |
| const float* const* data_ptr = data; |
| if (need_to_downmix) { |
| DownmixToMono<float, float>(data, input_num_frames_, num_input_channels_, |
| input_buffer_->fbuf()->channels()[0]); |
| data_ptr = input_buffer_->fbuf_const()->channels(); |
| } |
| |
| // Resample. |
| if (input_num_frames_ != proc_num_frames_) { |
| for (size_t i = 0; i < num_proc_channels_; ++i) { |
| input_resamplers_[i]->Resample(data_ptr[i], input_num_frames_, |
| process_buffer_->channels()[i], |
| proc_num_frames_); |
| } |
| data_ptr = process_buffer_->channels(); |
| } |
| |
| // Convert to the S16 range. |
| for (size_t i = 0; i < num_proc_channels_; ++i) { |
| FloatToFloatS16(data_ptr[i], proc_num_frames_, |
| data_->fbuf()->channels()[i]); |
| } |
| } |
| |
| void AudioBuffer::CopyTo(const StreamConfig& stream_config, |
| float* const* data) { |
| RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_); |
| RTC_DCHECK(stream_config.num_channels() == num_channels_ || |
| num_channels_ == 1); |
| |
| // Convert to the float range. |
| float* const* data_ptr = data; |
| if (output_num_frames_ != proc_num_frames_) { |
| // Convert to an intermediate buffer for subsequent resampling. |
| data_ptr = process_buffer_->channels(); |
| } |
| for (size_t i = 0; i < num_channels_; ++i) { |
| FloatS16ToFloat(data_->fbuf()->channels()[i], proc_num_frames_, |
| data_ptr[i]); |
| } |
| |
| // Resample. |
| if (output_num_frames_ != proc_num_frames_) { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| output_resamplers_[i]->Resample(data_ptr[i], proc_num_frames_, data[i], |
| output_num_frames_); |
| } |
| } |
| |
| // Upmix. |
| for (size_t i = num_channels_; i < stream_config.num_channels(); ++i) { |
| memcpy(data[i], data[0], output_num_frames_ * sizeof(**data)); |
| } |
| } |
| |
| void AudioBuffer::InitForNewData() { |
| num_channels_ = num_proc_channels_; |
| data_->set_num_channels(num_proc_channels_); |
| if (split_data_.get()) { |
| split_data_->set_num_channels(num_proc_channels_); |
| } |
| } |
| |
| const float* const* AudioBuffer::split_channels_const_f(Band band) const { |
| if (split_data_.get()) { |
| return split_data_->fbuf_const()->channels(band); |
| } else { |
| return band == kBand0To8kHz ? data_->fbuf_const()->channels() : nullptr; |
| } |
| } |
| |
| const float* const* AudioBuffer::channels_const_f() const { |
| return data_->fbuf_const()->channels(); |
| } |
| |
| float* const* AudioBuffer::channels_f() { |
| return data_->fbuf()->channels(); |
| } |
| |
| const float* const* AudioBuffer::split_bands_const_f(size_t channel) const { |
| return split_data_.get() ? split_data_->fbuf_const()->bands(channel) |
| : data_->fbuf_const()->bands(channel); |
| } |
| |
| float* const* AudioBuffer::split_bands_f(size_t channel) { |
| return split_data_.get() ? split_data_->fbuf()->bands(channel) |
| : data_->fbuf()->bands(channel); |
| } |
| |
| size_t AudioBuffer::num_channels() const { |
| return num_channels_; |
| } |
| |
| void AudioBuffer::set_num_channels(size_t num_channels) { |
| num_channels_ = num_channels; |
| data_->set_num_channels(num_channels); |
| if (split_data_.get()) { |
| split_data_->set_num_channels(num_channels); |
| } |
| } |
| |
| size_t AudioBuffer::num_frames() const { |
| return proc_num_frames_; |
| } |
| |
| size_t AudioBuffer::num_frames_per_band() const { |
| return num_split_frames_; |
| } |
| |
| size_t AudioBuffer::num_bands() const { |
| return num_bands_; |
| } |
| |
| // The resampler is only for supporting 48kHz to 16kHz in the reverse stream. |
| void AudioBuffer::DeinterleaveFrom(const AudioFrame* frame) { |
| RTC_DCHECK_EQ(frame->num_channels_, num_input_channels_); |
| RTC_DCHECK_EQ(frame->samples_per_channel_, input_num_frames_); |
| InitForNewData(); |
| // Initialized lazily because there's a different condition in CopyFrom. |
| if ((input_num_frames_ != proc_num_frames_) && !input_buffer_) { |
| input_buffer_.reset( |
| new IFChannelBuffer(input_num_frames_, num_proc_channels_)); |
| } |
| |
| int16_t* const* deinterleaved; |
| if (input_num_frames_ == proc_num_frames_) { |
| deinterleaved = data_->ibuf()->channels(); |
| } else { |
| deinterleaved = input_buffer_->ibuf()->channels(); |
| } |
| // TODO(yujo): handle muted frames more efficiently. |
| if (num_proc_channels_ == 1) { |
| // Downmix and deinterleave simultaneously. |
| DownmixInterleavedToMono(frame->data(), input_num_frames_, |
| num_input_channels_, deinterleaved[0]); |
| } else { |
| RTC_DCHECK_EQ(num_proc_channels_, num_input_channels_); |
| Deinterleave(frame->data(), input_num_frames_, num_proc_channels_, |
| deinterleaved); |
| } |
| |
| // Resample. |
| if (input_num_frames_ != proc_num_frames_) { |
| for (size_t i = 0; i < num_proc_channels_; ++i) { |
| input_resamplers_[i]->Resample( |
| input_buffer_->fbuf_const()->channels()[i], input_num_frames_, |
| data_->fbuf()->channels()[i], proc_num_frames_); |
| } |
| } |
| } |
| |
| void AudioBuffer::InterleaveTo(AudioFrame* frame) const { |
| RTC_DCHECK(frame->num_channels_ == num_channels_ || num_channels_ == 1); |
| RTC_DCHECK_EQ(frame->samples_per_channel_, output_num_frames_); |
| |
| // Resample if necessary. |
| IFChannelBuffer* data_ptr = data_.get(); |
| if (proc_num_frames_ != output_num_frames_) { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| output_resamplers_[i]->Resample( |
| data_->fbuf()->channels()[i], proc_num_frames_, |
| output_buffer_->fbuf()->channels()[i], output_num_frames_); |
| } |
| data_ptr = output_buffer_.get(); |
| } |
| |
| // TODO(yujo): handle muted frames more efficiently. |
| if (frame->num_channels_ == num_channels_) { |
| Interleave(data_ptr->ibuf()->channels(), output_num_frames_, num_channels_, |
| frame->mutable_data()); |
| } else { |
| UpmixMonoToInterleaved(data_ptr->ibuf()->channels()[0], output_num_frames_, |
| frame->num_channels_, frame->mutable_data()); |
| } |
| } |
| |
| void AudioBuffer::SplitIntoFrequencyBands() { |
| splitting_filter_->Analysis(data_.get(), split_data_.get()); |
| } |
| |
| void AudioBuffer::MergeFrequencyBands() { |
| splitting_filter_->Synthesis(split_data_.get(), data_.get()); |
| } |
| |
| void AudioBuffer::CopySplitChannelDataTo(size_t channel, |
| int16_t* const* split_band_data) { |
| for (size_t k = 0; k < num_bands(); ++k) { |
| const float* band_data = split_bands_f(channel)[k]; |
| RTC_DCHECK(split_band_data[k]); |
| RTC_DCHECK(band_data); |
| for (size_t i = 0; i < num_frames_per_band(); ++i) { |
| split_band_data[k][i] = FloatS16ToS16(band_data[i]); |
| } |
| } |
| } |
| |
| void AudioBuffer::CopySplitChannelDataFrom( |
| size_t channel, |
| const int16_t* const* split_band_data) { |
| for (size_t k = 0; k < num_bands(); ++k) { |
| float* band_data = split_bands_f(channel)[k]; |
| RTC_DCHECK(split_band_data[k]); |
| RTC_DCHECK(band_data); |
| for (size_t i = 0; i < num_frames_per_band(); ++i) { |
| band_data[i] = split_band_data[k][i]; |
| } |
| } |
| } |
| |
| } // namespace webrtc |