| /* |
| * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef RTC_BASE_SWAP_QUEUE_H_ |
| #define RTC_BASE_SWAP_QUEUE_H_ |
| |
| #include <stddef.h> |
| |
| #include <atomic> |
| #include <utility> |
| #include <vector> |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/system/unused.h" |
| |
| namespace webrtc { |
| |
| namespace internal { |
| |
| // (Internal; please don't use outside this file.) |
| template <typename T> |
| bool NoopSwapQueueItemVerifierFunction(const T&) { |
| return true; |
| } |
| |
| } // namespace internal |
| |
| // Functor to use when supplying a verifier function for the queue. |
| template <typename T, |
| bool (*QueueItemVerifierFunction)(const T&) = |
| internal::NoopSwapQueueItemVerifierFunction> |
| class SwapQueueItemVerifier { |
| public: |
| bool operator()(const T& t) const { return QueueItemVerifierFunction(t); } |
| }; |
| |
| // This class is a fixed-size queue. A single producer calls Insert() to insert |
| // an element of type T at the back of the queue, and a single consumer calls |
| // Remove() to remove an element from the front of the queue. It's safe for the |
| // producer and the consumer to access the queue concurrently, from different |
| // threads. |
| // |
| // To avoid the construction, copying, and destruction of Ts that a naive |
| // queue implementation would require, for each "full" T passed from |
| // producer to consumer, SwapQueue<T> passes an "empty" T in the other |
| // direction (an "empty" T is one that contains nothing of value for the |
| // consumer). This bidirectional movement is implemented with swap(). |
| // |
| // // Create queue: |
| // Bottle proto(568); // Prepare an empty Bottle. Heap allocates space for |
| // // 568 ml. |
| // SwapQueue<Bottle> q(N, proto); // Init queue with N copies of proto. |
| // // Each copy allocates on the heap. |
| // // Producer pseudo-code: |
| // Bottle b(568); // Prepare an empty Bottle. Heap allocates space for 568 ml. |
| // loop { |
| // b.Fill(amount); // Where amount <= 568 ml. |
| // q.Insert(&b); // Swap our full Bottle for an empty one from q. |
| // } |
| // |
| // // Consumer pseudo-code: |
| // Bottle b(568); // Prepare an empty Bottle. Heap allocates space for 568 ml. |
| // loop { |
| // q.Remove(&b); // Swap our empty Bottle for the next-in-line full Bottle. |
| // Drink(&b); |
| // } |
| // |
| // For a well-behaved Bottle class, there are no allocations in the |
| // producer, since it just fills an empty Bottle that's already large |
| // enough; no deallocations in the consumer, since it returns each empty |
| // Bottle to the queue after having drunk it; and no copies along the |
| // way, since the queue uses swap() everywhere to move full Bottles in |
| // one direction and empty ones in the other. |
| template <typename T, typename QueueItemVerifier = SwapQueueItemVerifier<T>> |
| class SwapQueue { |
| public: |
| // Creates a queue of size size and fills it with default constructed Ts. |
| explicit SwapQueue(size_t size) : queue_(size) { |
| RTC_DCHECK(VerifyQueueSlots()); |
| } |
| |
| // Same as above and accepts an item verification functor. |
| SwapQueue(size_t size, const QueueItemVerifier& queue_item_verifier) |
| : queue_item_verifier_(queue_item_verifier), queue_(size) { |
| RTC_DCHECK(VerifyQueueSlots()); |
| } |
| |
| // Creates a queue of size size and fills it with copies of prototype. |
| SwapQueue(size_t size, const T& prototype) : queue_(size, prototype) { |
| RTC_DCHECK(VerifyQueueSlots()); |
| } |
| |
| // Same as above and accepts an item verification functor. |
| SwapQueue(size_t size, |
| const T& prototype, |
| const QueueItemVerifier& queue_item_verifier) |
| : queue_item_verifier_(queue_item_verifier), queue_(size, prototype) { |
| RTC_DCHECK(VerifyQueueSlots()); |
| } |
| |
| // Resets the queue to have zero content while maintaining the queue size. |
| // Just like Remove(), this can only be called (safely) from the |
| // consumer. |
| void Clear() { |
| // Drop all non-empty elements by resetting num_elements_ and incrementing |
| // next_read_index_ by the previous value of num_elements_. Relaxed memory |
| // ordering is sufficient since the dropped elements are not accessed. |
| next_read_index_ += std::atomic_exchange_explicit( |
| &num_elements_, size_t{0}, std::memory_order_relaxed); |
| if (next_read_index_ >= queue_.size()) { |
| next_read_index_ -= queue_.size(); |
| } |
| |
| RTC_DCHECK_LT(next_read_index_, queue_.size()); |
| } |
| |
| // Inserts a "full" T at the back of the queue by swapping *input with an |
| // "empty" T from the queue. |
| // Returns true if the item was inserted or false if not (the queue was full). |
| // When specified, the T given in *input must pass the ItemVerifier() test. |
| // The contents of *input after the call are then also guaranteed to pass the |
| // ItemVerifier() test. |
| bool Insert(T* input) RTC_WARN_UNUSED_RESULT { |
| RTC_DCHECK(input); |
| |
| RTC_DCHECK(queue_item_verifier_(*input)); |
| |
| // Load the value of num_elements_. Acquire memory ordering prevents reads |
| // and writes to queue_[next_write_index_] to be reordered to before the |
| // load. (That element might be accessed by a concurrent call to Remove() |
| // until the load finishes.) |
| if (std::atomic_load_explicit(&num_elements_, std::memory_order_acquire) == |
| queue_.size()) { |
| return false; |
| } |
| |
| std::swap(*input, queue_[next_write_index_]); |
| |
| // Increment the value of num_elements_ to account for the inserted element. |
| // Release memory ordering prevents the reads and writes to |
| // queue_[next_write_index_] to be reordered to after the increment. (Once |
| // the increment has finished, Remove() might start accessing that element.) |
| const size_t old_num_elements = std::atomic_fetch_add_explicit( |
| &num_elements_, size_t{1}, std::memory_order_release); |
| |
| ++next_write_index_; |
| if (next_write_index_ == queue_.size()) { |
| next_write_index_ = 0; |
| } |
| |
| RTC_DCHECK_LT(next_write_index_, queue_.size()); |
| RTC_DCHECK_LT(old_num_elements, queue_.size()); |
| |
| return true; |
| } |
| |
| // Removes the frontmost "full" T from the queue by swapping it with |
| // the "empty" T in *output. |
| // Returns true if an item could be removed or false if not (the queue was |
| // empty). When specified, The T given in *output must pass the ItemVerifier() |
| // test and the contents of *output after the call are then also guaranteed to |
| // pass the ItemVerifier() test. |
| bool Remove(T* output) RTC_WARN_UNUSED_RESULT { |
| RTC_DCHECK(output); |
| |
| RTC_DCHECK(queue_item_verifier_(*output)); |
| |
| // Load the value of num_elements_. Acquire memory ordering prevents reads |
| // and writes to queue_[next_read_index_] to be reordered to before the |
| // load. (That element might be accessed by a concurrent call to Insert() |
| // until the load finishes.) |
| if (std::atomic_load_explicit(&num_elements_, std::memory_order_acquire) == |
| 0) { |
| return false; |
| } |
| |
| std::swap(*output, queue_[next_read_index_]); |
| |
| // Decrement the value of num_elements_ to account for the removed element. |
| // Release memory ordering prevents the reads and writes to |
| // queue_[next_write_index_] to be reordered to after the decrement. (Once |
| // the decrement has finished, Insert() might start accessing that element.) |
| std::atomic_fetch_sub_explicit(&num_elements_, size_t{1}, |
| std::memory_order_release); |
| |
| ++next_read_index_; |
| if (next_read_index_ == queue_.size()) { |
| next_read_index_ = 0; |
| } |
| |
| RTC_DCHECK_LT(next_read_index_, queue_.size()); |
| |
| return true; |
| } |
| |
| // Returns the current number of elements in the queue. Since elements may be |
| // concurrently added to the queue, the caller must treat this as a lower |
| // bound, not an exact count. |
| // May only be called by the consumer. |
| size_t SizeAtLeast() const { |
| // Acquire memory ordering ensures that we wait for the producer to finish |
| // inserting any element in progress. |
| return std::atomic_load_explicit(&num_elements_, std::memory_order_acquire); |
| } |
| |
| private: |
| // Verify that the queue slots complies with the ItemVerifier test. This |
| // function is not thread-safe and can only be used in the constructors. |
| bool VerifyQueueSlots() { |
| for (const auto& v : queue_) { |
| RTC_DCHECK(queue_item_verifier_(v)); |
| } |
| return true; |
| } |
| |
| // TODO(peah): Change this to use std::function() once we can use C++11 std |
| // lib. |
| QueueItemVerifier queue_item_verifier_; |
| |
| // Only accessed by the single producer. |
| size_t next_write_index_ = 0; |
| |
| // Only accessed by the single consumer. |
| size_t next_read_index_ = 0; |
| |
| // Accessed by both the producer and the consumer and used for synchronization |
| // between them. |
| std::atomic<size_t> num_elements_{0}; |
| |
| // The elements of the queue are acced by both the producer and the consumer, |
| // mediated by num_elements_. queue_.size() is constant. |
| std::vector<T> queue_; |
| |
| SwapQueue(const SwapQueue&) = delete; |
| SwapQueue& operator=(const SwapQueue&) = delete; |
| }; |
| |
| } // namespace webrtc |
| |
| #endif // RTC_BASE_SWAP_QUEUE_H_ |