blob: eedcf46df7c2a5cd9f9c0e8e55e843304bb7daae [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include <vector>
#include "modules/rtp_rtcp/include/receive_statistics.h"
#include "system_wrappers/include/clock.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
using ::testing::_;
using ::testing::SaveArg;
using ::testing::SizeIs;
using ::testing::UnorderedElementsAre;
const size_t kPacketSize1 = 100;
const size_t kPacketSize2 = 300;
const uint32_t kSsrc1 = 101;
const uint32_t kSsrc2 = 202;
const uint32_t kSsrc3 = 203;
const uint32_t kSsrc4 = 304;
RTPHeader CreateRtpHeader(uint32_t ssrc) {
RTPHeader header;
memset(&header, 0, sizeof(header));
header.ssrc = ssrc;
header.sequenceNumber = 100;
return header;
}
class ReceiveStatisticsTest : public ::testing::Test {
public:
ReceiveStatisticsTest()
: clock_(0), receive_statistics_(ReceiveStatistics::Create(&clock_)) {
header1_ = CreateRtpHeader(kSsrc1);
header2_ = CreateRtpHeader(kSsrc2);
}
protected:
SimulatedClock clock_;
std::unique_ptr<ReceiveStatistics> receive_statistics_;
RTPHeader header1_;
RTPHeader header2_;
};
TEST_F(ReceiveStatisticsTest, TwoIncomingSsrcs) {
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
++header1_.sequenceNumber;
receive_statistics_->IncomingPacket(header2_, kPacketSize2, false);
++header2_.sequenceNumber;
clock_.AdvanceTimeMilliseconds(100);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
++header1_.sequenceNumber;
receive_statistics_->IncomingPacket(header2_, kPacketSize2, false);
++header2_.sequenceNumber;
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
ASSERT_TRUE(statistician != NULL);
EXPECT_GT(statistician->BitrateReceived(), 0u);
size_t bytes_received = 0;
uint32_t packets_received = 0;
statistician->GetDataCounters(&bytes_received, &packets_received);
EXPECT_EQ(200u, bytes_received);
EXPECT_EQ(2u, packets_received);
statistician = receive_statistics_->GetStatistician(kSsrc2);
ASSERT_TRUE(statistician != NULL);
EXPECT_GT(statistician->BitrateReceived(), 0u);
statistician->GetDataCounters(&bytes_received, &packets_received);
EXPECT_EQ(600u, bytes_received);
EXPECT_EQ(2u, packets_received);
EXPECT_EQ(2u, receive_statistics_->RtcpReportBlocks(3).size());
// Add more incoming packets and verify that they are registered in both
// access methods.
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
++header1_.sequenceNumber;
receive_statistics_->IncomingPacket(header2_, kPacketSize2, false);
++header2_.sequenceNumber;
receive_statistics_->GetStatistician(kSsrc1)->GetDataCounters(
&bytes_received, &packets_received);
EXPECT_EQ(300u, bytes_received);
EXPECT_EQ(3u, packets_received);
receive_statistics_->GetStatistician(kSsrc2)->GetDataCounters(
&bytes_received, &packets_received);
EXPECT_EQ(900u, bytes_received);
EXPECT_EQ(3u, packets_received);
}
TEST_F(ReceiveStatisticsTest,
RtcpReportBlocksReturnsMaxBlocksWhenThereAreMoreStatisticians) {
RTPHeader header1 = CreateRtpHeader(kSsrc1);
RTPHeader header2 = CreateRtpHeader(kSsrc2);
RTPHeader header3 = CreateRtpHeader(kSsrc3);
receive_statistics_->IncomingPacket(header1, kPacketSize1, false);
receive_statistics_->IncomingPacket(header2, kPacketSize1, false);
receive_statistics_->IncomingPacket(header3, kPacketSize1, false);
EXPECT_THAT(receive_statistics_->RtcpReportBlocks(2), SizeIs(2));
EXPECT_THAT(receive_statistics_->RtcpReportBlocks(2), SizeIs(2));
EXPECT_THAT(receive_statistics_->RtcpReportBlocks(2), SizeIs(2));
}
TEST_F(ReceiveStatisticsTest,
RtcpReportBlocksReturnsAllObservedSsrcsWithMultipleCalls) {
RTPHeader header1 = CreateRtpHeader(kSsrc1);
RTPHeader header2 = CreateRtpHeader(kSsrc2);
RTPHeader header3 = CreateRtpHeader(kSsrc3);
RTPHeader header4 = CreateRtpHeader(kSsrc4);
receive_statistics_->IncomingPacket(header1, kPacketSize1, false);
receive_statistics_->IncomingPacket(header2, kPacketSize1, false);
receive_statistics_->IncomingPacket(header3, kPacketSize1, false);
receive_statistics_->IncomingPacket(header4, kPacketSize1, false);
std::vector<uint32_t> observed_ssrcs;
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(2);
ASSERT_THAT(report_blocks, SizeIs(2));
observed_ssrcs.push_back(report_blocks[0].source_ssrc());
observed_ssrcs.push_back(report_blocks[1].source_ssrc());
report_blocks = receive_statistics_->RtcpReportBlocks(2);
ASSERT_THAT(report_blocks, SizeIs(2));
observed_ssrcs.push_back(report_blocks[0].source_ssrc());
observed_ssrcs.push_back(report_blocks[1].source_ssrc());
EXPECT_THAT(observed_ssrcs,
UnorderedElementsAre(kSsrc1, kSsrc2, kSsrc3, kSsrc4));
}
TEST_F(ReceiveStatisticsTest, ActiveStatisticians) {
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
++header1_.sequenceNumber;
clock_.AdvanceTimeMilliseconds(1000);
receive_statistics_->IncomingPacket(header2_, kPacketSize2, false);
++header2_.sequenceNumber;
// Nothing should time out since only 1000 ms has passed since the first
// packet came in.
EXPECT_EQ(2u, receive_statistics_->RtcpReportBlocks(3).size());
clock_.AdvanceTimeMilliseconds(7000);
// kSsrc1 should have timed out.
EXPECT_EQ(1u, receive_statistics_->RtcpReportBlocks(3).size());
clock_.AdvanceTimeMilliseconds(1000);
// kSsrc2 should have timed out.
EXPECT_EQ(0u, receive_statistics_->RtcpReportBlocks(3).size());
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
++header1_.sequenceNumber;
// kSsrc1 should be active again and the data counters should have survived.
EXPECT_EQ(1u, receive_statistics_->RtcpReportBlocks(3).size());
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
ASSERT_TRUE(statistician != NULL);
size_t bytes_received = 0;
uint32_t packets_received = 0;
statistician->GetDataCounters(&bytes_received, &packets_received);
EXPECT_EQ(200u, bytes_received);
EXPECT_EQ(2u, packets_received);
}
TEST_F(ReceiveStatisticsTest, GetReceiveStreamDataCounters) {
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
ASSERT_TRUE(statistician != NULL);
StreamDataCounters counters;
statistician->GetReceiveStreamDataCounters(&counters);
EXPECT_GT(counters.first_packet_time_ms, -1);
EXPECT_EQ(1u, counters.transmitted.packets);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
statistician->GetReceiveStreamDataCounters(&counters);
EXPECT_GT(counters.first_packet_time_ms, -1);
EXPECT_EQ(2u, counters.transmitted.packets);
}
class MockRtcpCallback : public RtcpStatisticsCallback {
public:
MOCK_METHOD2(StatisticsUpdated,
void(const RtcpStatistics& statistics, uint32_t ssrc));
MOCK_METHOD2(CNameChanged, void(const char* cname, uint32_t ssrc));
};
// Test that the RTCP statistics callback is invoked every time a packet is
// received (so that at the application level, GetStats will return up-to-date
// stats, not just stats from the last generated RTCP SR or RR).
TEST_F(ReceiveStatisticsTest,
RtcpStatisticsCallbackInvokedForEveryPacketReceived) {
MockRtcpCallback callback;
receive_statistics_->RegisterRtcpStatisticsCallback(&callback);
// Just receive the same packet multiple times; doesn't really matter for the
// purposes of this test.
EXPECT_CALL(callback, StatisticsUpdated(_, _)).Times(3);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
}
// The callback should also be invoked when |fraction_lost| is updated due to
// GetStatistics being called.
TEST_F(ReceiveStatisticsTest,
RtcpStatisticsCallbackInvokedWhenFractionLostUpdated) {
MockRtcpCallback callback;
receive_statistics_->RegisterRtcpStatisticsCallback(&callback);
EXPECT_CALL(callback, StatisticsUpdated(_, _)).Times(2);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
// This just returns the current statistics without updating anything, so no
// need to invoke the callback.
RtcpStatistics statistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/false);
// Update fraction lost, expecting a new callback.
EXPECT_CALL(callback, StatisticsUpdated(_, _)).Times(1);
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
}
TEST_F(ReceiveStatisticsTest,
RtcpStatisticsCallbackNotInvokedAfterDeregistered) {
// Register the callback and receive a couple packets.
MockRtcpCallback callback;
receive_statistics_->RegisterRtcpStatisticsCallback(&callback);
EXPECT_CALL(callback, StatisticsUpdated(_, _)).Times(2);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
// Dereigster the callback. Neither receiving a packet nor generating a
// report (calling GetStatistics) should result in another callback.
receive_statistics_->RegisterRtcpStatisticsCallback(nullptr);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
RtcpStatistics statistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
}
// Test that the RtcpStatisticsCallback sees the exact same values as returned
// from GetStatistics.
TEST_F(ReceiveStatisticsTest,
RtcpStatisticsFromCallbackMatchThoseFromGetStatistics) {
MockRtcpCallback callback;
RtcpStatistics stats_from_callback;
EXPECT_CALL(callback, StatisticsUpdated(_, _))
.WillRepeatedly(SaveArg<0>(&stats_from_callback));
receive_statistics_->RegisterRtcpStatisticsCallback(&callback);
// Using units of milliseconds.
header1_.payload_type_frequency = 1000;
// Add some arbitrary data, with loss and jitter.
header1_.sequenceNumber = 1;
clock_.AdvanceTimeMilliseconds(7);
header1_.timestamp += 3;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber += 2;
clock_.AdvanceTimeMilliseconds(9);
header1_.timestamp += 9;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
--header1_.sequenceNumber;
clock_.AdvanceTimeMilliseconds(13);
header1_.timestamp += 47;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, true);
header1_.sequenceNumber += 3;
clock_.AdvanceTimeMilliseconds(11);
header1_.timestamp += 17;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
// The stats from the last callback due to IncomingPacket should match
// those returned by GetStatistics afterwards.
RtcpStatistics stats_from_getstatistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&stats_from_getstatistics, /*update_fraction_lost=*/false);
EXPECT_EQ(stats_from_getstatistics.packets_lost,
stats_from_callback.packets_lost);
EXPECT_EQ(stats_from_getstatistics.extended_highest_sequence_number,
stats_from_callback.extended_highest_sequence_number);
EXPECT_EQ(stats_from_getstatistics.fraction_lost,
stats_from_callback.fraction_lost);
EXPECT_EQ(stats_from_getstatistics.jitter, stats_from_callback.jitter);
// Now update fraction lost, and check that we got matching values from the
// new callback.
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&stats_from_getstatistics, /*update_fraction_lost=*/true);
EXPECT_EQ(stats_from_getstatistics.packets_lost,
stats_from_callback.packets_lost);
EXPECT_EQ(stats_from_getstatistics.extended_highest_sequence_number,
stats_from_callback.extended_highest_sequence_number);
EXPECT_EQ(stats_from_getstatistics.fraction_lost,
stats_from_callback.fraction_lost);
EXPECT_EQ(stats_from_getstatistics.jitter, stats_from_callback.jitter);
}
// Test that |fraction_lost| is only updated when a report is generated (when
// GetStatistics is called with |update_fraction_lost| set to true). Meaning
// that it will always represent a value computed between two RTCP SR or RRs.
TEST_F(ReceiveStatisticsTest, FractionLostOnlyUpdatedWhenReportGenerated) {
MockRtcpCallback callback;
RtcpStatistics stats_from_callback;
EXPECT_CALL(callback, StatisticsUpdated(_, _))
.WillRepeatedly(SaveArg<0>(&stats_from_callback));
receive_statistics_->RegisterRtcpStatisticsCallback(&callback);
// Simulate losing one packet.
header1_.sequenceNumber = 1;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 2;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 4;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
// Haven't generated a report yet, so |fraction_lost| should still be 0.
EXPECT_EQ(0u, stats_from_callback.fraction_lost);
// Call GetStatistics with |update_fraction_lost| set to false; should be a
// no-op.
RtcpStatistics statistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/false);
EXPECT_EQ(0u, stats_from_callback.fraction_lost);
// Call GetStatistics with |update_fraction_lost| set to true, simulating a
// report being generated.
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
// 25% = 63/255.
EXPECT_EQ(63u, stats_from_callback.fraction_lost);
// Lose another packet.
header1_.sequenceNumber = 6;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
// Should return same value as before since we haven't generated a new report
// yet.
EXPECT_EQ(63u, stats_from_callback.fraction_lost);
// Simulate another report being generated.
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
// 50% = 127/255.
EXPECT_EQ(127, stats_from_callback.fraction_lost);
}
// Simple test for fraction/cumulative loss computation, with only loss, no
// duplicates or reordering.
TEST_F(ReceiveStatisticsTest, SimpleLossComputation) {
header1_.sequenceNumber = 1;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 3;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 4;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 5;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
RtcpStatistics statistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
// 20% = 51/255.
EXPECT_EQ(51u, statistics.fraction_lost);
EXPECT_EQ(1, statistics.packets_lost);
}
// Test that fraction/cumulative loss is computed correctly when there's some
// reordering.
TEST_F(ReceiveStatisticsTest, LossComputationWithReordering) {
header1_.sequenceNumber = 1;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 3;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 2;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 5;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
RtcpStatistics statistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
// 20% = 51/255.
EXPECT_EQ(51u, statistics.fraction_lost);
}
// Somewhat unintuitively, duplicate packets count against lost packets
// according to RFC3550.
TEST_F(ReceiveStatisticsTest, LossComputationWithDuplicates) {
// Lose 2 packets, but also receive 1 duplicate. Should actually count as
// only 1 packet being lost.
header1_.sequenceNumber = 1;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 4;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 4;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 5;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
RtcpStatistics statistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
// 20% = 51/255.
EXPECT_EQ(51u, statistics.fraction_lost);
EXPECT_EQ(1, statistics.packets_lost);
}
// Test that sequence numbers wrapping around doesn't screw up loss
// computations.
TEST_F(ReceiveStatisticsTest, LossComputationWithSequenceNumberWrapping) {
// First, test loss computation over a period that included a sequence number
// rollover.
header1_.sequenceNumber = 65533;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 0;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 65534;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 1;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
// Only one packet was actually lost, 65535.
RtcpStatistics statistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
// 20% = 51/255.
EXPECT_EQ(51u, statistics.fraction_lost);
EXPECT_EQ(1, statistics.packets_lost);
// Now test losing one packet *after* the rollover.
header1_.sequenceNumber = 3;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
// 50% = 127/255.
EXPECT_EQ(127u, statistics.fraction_lost);
EXPECT_EQ(2, statistics.packets_lost);
}
// Somewhat unintuitively, since duplicate packets count against loss, you can
// actually end up with negative loss. |fraction_lost| should be clamped to
// zero in this case, since it's signed, while |packets_lost| is signed so it
// should be negative.
TEST_F(ReceiveStatisticsTest, NegativeLoss) {
// Receive one packet and simulate a report being generated by calling
// GetStatistics, to establish a baseline for |fraction_lost|.
header1_.sequenceNumber = 1;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
RtcpStatistics statistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
// Receive some duplicate packets. Results in "negative" loss, since
// "expected packets since last report" is 3 and "received" is 4, and 3 minus
// 4 is -1. See RFC3550 Appendix A.3.
header1_.sequenceNumber = 4;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 2;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 2;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
header1_.sequenceNumber = 2;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
EXPECT_EQ(0u, statistics.fraction_lost);
// TODO(bugs.webrtc.org/9598): Since old WebRTC implementations reads this
// value as unsigned we currently limit it to 0.
EXPECT_EQ(0, statistics.packets_lost);
// Lose 2 packets; now cumulative loss should become positive again.
header1_.sequenceNumber = 7;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/true);
// 66% = 170/255.
EXPECT_EQ(170u, statistics.fraction_lost);
EXPECT_EQ(1, statistics.packets_lost);
}
// Since cumulative loss is carried in a signed 24-bit field, it should be
// clamped to 0x7fffff in the positive direction, 0x800000 in the negative
// direction.
TEST_F(ReceiveStatisticsTest, PositiveCumulativeLossClamped) {
header1_.sequenceNumber = 1;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
// Lose 2^23 packets, expecting loss to be clamped to 2^23-1.
for (int i = 0; i < 0x800000; ++i) {
header1_.sequenceNumber = (header1_.sequenceNumber + 2 % 65536);
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
}
RtcpStatistics statistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/false);
EXPECT_EQ(0x7fffff, statistics.packets_lost);
}
TEST_F(ReceiveStatisticsTest, NegativeCumulativeLossClamped) {
header1_.sequenceNumber = 1;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
// Receive 2^23+1 duplicate packets (counted as negative loss), expecting
// loss to be clamped to -2^23.
for (int i = 0; i < 0x800001; ++i) {
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
}
RtcpStatistics statistics;
receive_statistics_->GetStatistician(kSsrc1)->GetStatistics(
&statistics, /*update_fraction_lost=*/false);
// TODO(bugs.webrtc.org/9598): Since old WebRTC implementations reads this
// value as unsigned we currently limit it to 0.
EXPECT_EQ(0, statistics.packets_lost);
}
// Test that the extended highest sequence number is computed correctly when
// sequence numbers wrap around or packets are received out of order.
TEST_F(ReceiveStatisticsTest, ExtendedHighestSequenceNumberComputation) {
MockRtcpCallback callback;
RtcpStatistics stats_from_callback;
EXPECT_CALL(callback, StatisticsUpdated(_, _))
.WillRepeatedly(SaveArg<0>(&stats_from_callback));
receive_statistics_->RegisterRtcpStatisticsCallback(&callback);
header1_.sequenceNumber = 65535;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(65535u, stats_from_callback.extended_highest_sequence_number);
// Wrap around.
header1_.sequenceNumber = 1;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(65536u + 1u, stats_from_callback.extended_highest_sequence_number);
// Should be treated as out of order; shouldn't increment highest extended
// sequence number.
header1_.sequenceNumber = 65530;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(65536u + 1u, stats_from_callback.extended_highest_sequence_number);
// Receive a couple packets then wrap around again.
// TODO(bugs.webrtc.org/9445): With large jumps like this, RFC3550 suggests
// for the receiver to assume the other side restarted, and reset all its
// sequence number counters. Why aren't we doing this?
header1_.sequenceNumber = 30000;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(65536u + 30000u,
stats_from_callback.extended_highest_sequence_number);
header1_.sequenceNumber = 50000;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(65536u + 50000u,
stats_from_callback.extended_highest_sequence_number);
header1_.sequenceNumber = 10000;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(2 * 65536u + 10000u,
stats_from_callback.extended_highest_sequence_number);
// If a packet is received more than "MaxReorderingThreshold" packets out of
// order (defaults to 50), it's assumed to be in order.
// TODO(bugs.webrtc.org/9445): RFC3550 would recommend treating this as a
// restart as mentioned above.
header1_.sequenceNumber = 9900;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(3 * 65536u + 9900u,
stats_from_callback.extended_highest_sequence_number);
}
// Test jitter computation with no loss/reordering/etc.
TEST_F(ReceiveStatisticsTest, SimpleJitterComputation) {
MockRtcpCallback callback;
RtcpStatistics stats_from_callback;
EXPECT_CALL(callback, StatisticsUpdated(_, _))
.WillRepeatedly(SaveArg<0>(&stats_from_callback));
receive_statistics_->RegisterRtcpStatisticsCallback(&callback);
// Using units of milliseconds.
header1_.payload_type_frequency = 1000;
// Regardless of initial timestamps, jitter should start at 0.
header1_.sequenceNumber = 1;
clock_.AdvanceTimeMilliseconds(7);
header1_.timestamp += 3;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(0u, stats_from_callback.jitter);
// Incrementing timestamps by the same amount shouldn't increase jitter.
++header1_.sequenceNumber;
clock_.AdvanceTimeMilliseconds(50);
header1_.timestamp += 50;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(0u, stats_from_callback.jitter);
// Difference of 16ms, divided by 16 yields exactly 1.
++header1_.sequenceNumber;
clock_.AdvanceTimeMilliseconds(32);
header1_.timestamp += 16;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, true);
EXPECT_EQ(1u, stats_from_callback.jitter);
// (90 + 1 * 15) / 16 = 6.5625; should round down to 6.
// TODO(deadbeef): Why don't we round to the nearest integer?
++header1_.sequenceNumber;
clock_.AdvanceTimeMilliseconds(10);
header1_.timestamp += 100;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, true);
EXPECT_EQ(6u, stats_from_callback.jitter);
// (30 + 6.5625 * 15) / 16 = 8.0273; should round down to 8.
++header1_.sequenceNumber;
clock_.AdvanceTimeMilliseconds(50);
header1_.timestamp += 20;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, true);
EXPECT_EQ(8u, stats_from_callback.jitter);
}
// TODO(deadbeef): Why do we do this? It goes against RFC3550, which explicitly
// says the calculation should be based on order of arrival and packets may not
// necessarily arrive in sequence.
TEST_F(ReceiveStatisticsTest, JitterComputationIgnoresReorderedPackets) {
MockRtcpCallback callback;
RtcpStatistics stats_from_callback;
EXPECT_CALL(callback, StatisticsUpdated(_, _))
.WillRepeatedly(SaveArg<0>(&stats_from_callback));
receive_statistics_->RegisterRtcpStatisticsCallback(&callback);
// Using units of milliseconds.
header1_.payload_type_frequency = 1000;
// Regardless of initial timestamps, jitter should start at 0.
header1_.sequenceNumber = 1;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(0u, stats_from_callback.jitter);
// This should be ignored, even though there's a difference of 70 here.
header1_.sequenceNumber = 0;
clock_.AdvanceTimeMilliseconds(50);
header1_.timestamp -= 20;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(0u, stats_from_callback.jitter);
// Relative to the first packet there's a difference of 181ms in arrival
// time, 20ms in timestamp, so jitter should be 161/16 = 10.
header1_.sequenceNumber = 2;
clock_.AdvanceTimeMilliseconds(131);
header1_.timestamp += 40;
receive_statistics_->IncomingPacket(header1_, kPacketSize1, false);
EXPECT_EQ(10u, stats_from_callback.jitter);
}
class RtpTestCallback : public StreamDataCountersCallback {
public:
RtpTestCallback()
: StreamDataCountersCallback(), num_calls_(0), ssrc_(0), stats_() {}
~RtpTestCallback() override = default;
void DataCountersUpdated(const StreamDataCounters& counters,
uint32_t ssrc) override {
ssrc_ = ssrc;
stats_ = counters;
++num_calls_;
}
void MatchPacketCounter(const RtpPacketCounter& expected,
const RtpPacketCounter& actual) {
EXPECT_EQ(expected.payload_bytes, actual.payload_bytes);
EXPECT_EQ(expected.header_bytes, actual.header_bytes);
EXPECT_EQ(expected.padding_bytes, actual.padding_bytes);
EXPECT_EQ(expected.packets, actual.packets);
}
void Matches(uint32_t num_calls,
uint32_t ssrc,
const StreamDataCounters& expected) {
EXPECT_EQ(num_calls, num_calls_);
EXPECT_EQ(ssrc, ssrc_);
MatchPacketCounter(expected.transmitted, stats_.transmitted);
MatchPacketCounter(expected.retransmitted, stats_.retransmitted);
MatchPacketCounter(expected.fec, stats_.fec);
}
uint32_t num_calls_;
uint32_t ssrc_;
StreamDataCounters stats_;
};
TEST_F(ReceiveStatisticsTest, RtpCallbacks) {
RtpTestCallback callback;
receive_statistics_->RegisterRtpStatisticsCallback(&callback);
const size_t kHeaderLength = 20;
const size_t kPaddingLength = 9;
// One packet of size kPacketSize1.
header1_.headerLength = kHeaderLength;
receive_statistics_->IncomingPacket(header1_, kPacketSize1 + kHeaderLength,
false);
StreamDataCounters expected;
expected.transmitted.payload_bytes = kPacketSize1;
expected.transmitted.header_bytes = kHeaderLength;
expected.transmitted.padding_bytes = 0;
expected.transmitted.packets = 1;
expected.retransmitted.payload_bytes = 0;
expected.retransmitted.header_bytes = 0;
expected.retransmitted.padding_bytes = 0;
expected.retransmitted.packets = 0;
expected.fec.packets = 0;
callback.Matches(1, kSsrc1, expected);
++header1_.sequenceNumber;
clock_.AdvanceTimeMilliseconds(5);
header1_.paddingLength = 9;
// Another packet of size kPacketSize1 with 9 bytes padding.
receive_statistics_->IncomingPacket(
header1_, kPacketSize1 + kHeaderLength + kPaddingLength, false);
expected.transmitted.payload_bytes = kPacketSize1 * 2;
expected.transmitted.header_bytes = kHeaderLength * 2;
expected.transmitted.padding_bytes = kPaddingLength;
expected.transmitted.packets = 2;
callback.Matches(2, kSsrc1, expected);
clock_.AdvanceTimeMilliseconds(5);
// Retransmit last packet.
receive_statistics_->IncomingPacket(
header1_, kPacketSize1 + kHeaderLength + kPaddingLength, true);
expected.transmitted.payload_bytes = kPacketSize1 * 3;
expected.transmitted.header_bytes = kHeaderLength * 3;
expected.transmitted.padding_bytes = kPaddingLength * 2;
expected.transmitted.packets = 3;
expected.retransmitted.payload_bytes = kPacketSize1;
expected.retransmitted.header_bytes = kHeaderLength;
expected.retransmitted.padding_bytes = kPaddingLength;
expected.retransmitted.packets = 1;
callback.Matches(3, kSsrc1, expected);
header1_.paddingLength = 0;
++header1_.sequenceNumber;
clock_.AdvanceTimeMilliseconds(5);
// One FEC packet.
receive_statistics_->IncomingPacket(header1_, kPacketSize1 + kHeaderLength,
false);
receive_statistics_->FecPacketReceived(header1_,
kPacketSize1 + kHeaderLength);
expected.transmitted.payload_bytes = kPacketSize1 * 4;
expected.transmitted.header_bytes = kHeaderLength * 4;
expected.transmitted.packets = 4;
expected.fec.payload_bytes = kPacketSize1;
expected.fec.header_bytes = kHeaderLength;
expected.fec.packets = 1;
callback.Matches(5, kSsrc1, expected);
receive_statistics_->RegisterRtpStatisticsCallback(NULL);
// New stats, but callback should not be called.
++header1_.sequenceNumber;
clock_.AdvanceTimeMilliseconds(5);
receive_statistics_->IncomingPacket(header1_, kPacketSize1 + kHeaderLength,
true);
callback.Matches(5, kSsrc1, expected);
}
TEST_F(ReceiveStatisticsTest, RtpCallbacksFecFirst) {
RtpTestCallback callback;
receive_statistics_->RegisterRtpStatisticsCallback(&callback);
const uint32_t kHeaderLength = 20;
header1_.headerLength = kHeaderLength;
// If first packet is FEC, ignore it.
receive_statistics_->FecPacketReceived(header1_,
kPacketSize1 + kHeaderLength);
EXPECT_EQ(0u, callback.num_calls_);
receive_statistics_->IncomingPacket(header1_, kPacketSize1 + kHeaderLength,
false);
StreamDataCounters expected;
expected.transmitted.payload_bytes = kPacketSize1;
expected.transmitted.header_bytes = kHeaderLength;
expected.transmitted.padding_bytes = 0;
expected.transmitted.packets = 1;
expected.fec.packets = 0;
callback.Matches(1, kSsrc1, expected);
receive_statistics_->FecPacketReceived(header1_,
kPacketSize1 + kHeaderLength);
expected.fec.payload_bytes = kPacketSize1;
expected.fec.header_bytes = kHeaderLength;
expected.fec.packets = 1;
callback.Matches(2, kSsrc1, expected);
}
} // namespace
} // namespace webrtc