| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/common_types.h" |
| #include "webrtc/common_video/libyuv/include/webrtc_libyuv.h" |
| #include "webrtc/modules/video_coding/codecs/interface/video_codec_interface.h" |
| #include "webrtc/modules/video_coding/main/source/encoded_frame.h" |
| #include "webrtc/modules/video_coding/main/source/jitter_buffer.h" |
| #include "webrtc/modules/video_coding/main/source/packet.h" |
| #include "webrtc/modules/video_coding/main/source/video_coding_impl.h" |
| #include "webrtc/system_wrappers/interface/clock.h" |
| #include "webrtc/system_wrappers/interface/logging.h" |
| #include "webrtc/system_wrappers/interface/trace_event.h" |
| |
| // #define DEBUG_DECODER_BIT_STREAM |
| |
| namespace webrtc { |
| namespace vcm { |
| |
| VideoReceiver::VideoReceiver(Clock* clock, EventFactory* event_factory) |
| : clock_(clock), |
| process_crit_sect_(CriticalSectionWrapper::CreateCriticalSection()), |
| _receiveCritSect(CriticalSectionWrapper::CreateCriticalSection()), |
| _receiverInited(false), |
| _timing(clock_), |
| _dualTiming(clock_, &_timing), |
| _receiver(&_timing, clock_, event_factory, true), |
| _dualReceiver(&_dualTiming, clock_, event_factory, false), |
| _decodedFrameCallback(_timing, clock_), |
| _dualDecodedFrameCallback(_dualTiming, clock_), |
| _frameTypeCallback(NULL), |
| _receiveStatsCallback(NULL), |
| _decoderTimingCallback(NULL), |
| _packetRequestCallback(NULL), |
| render_buffer_callback_(NULL), |
| _decoder(NULL), |
| _dualDecoder(NULL), |
| #ifdef DEBUG_DECODER_BIT_STREAM |
| _bitStreamBeforeDecoder(NULL), |
| #endif |
| _frameFromFile(), |
| _keyRequestMode(kKeyOnError), |
| _scheduleKeyRequest(false), |
| max_nack_list_size_(0), |
| pre_decode_image_callback_(NULL), |
| _codecDataBase(), |
| _receiveStatsTimer(1000, clock_), |
| _retransmissionTimer(10, clock_), |
| _keyRequestTimer(500, clock_) { |
| assert(clock_); |
| #ifdef DEBUG_DECODER_BIT_STREAM |
| _bitStreamBeforeDecoder = fopen("decoderBitStream.bit", "wb"); |
| #endif |
| } |
| |
| VideoReceiver::~VideoReceiver() { |
| if (_dualDecoder != NULL) { |
| _codecDataBase.ReleaseDecoder(_dualDecoder); |
| } |
| delete _receiveCritSect; |
| #ifdef DEBUG_DECODER_BIT_STREAM |
| fclose(_bitStreamBeforeDecoder); |
| #endif |
| } |
| |
| int32_t VideoReceiver::Process() { |
| int32_t returnValue = VCM_OK; |
| |
| // Receive-side statistics |
| if (_receiveStatsTimer.TimeUntilProcess() == 0) { |
| _receiveStatsTimer.Processed(); |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| if (_receiveStatsCallback != NULL) { |
| uint32_t bitRate; |
| uint32_t frameRate; |
| _receiver.ReceiveStatistics(&bitRate, &frameRate); |
| _receiveStatsCallback->OnReceiveStatisticsUpdate(bitRate, frameRate); |
| } |
| |
| if (_decoderTimingCallback != NULL) { |
| int decode_ms; |
| int max_decode_ms; |
| int current_delay_ms; |
| int target_delay_ms; |
| int jitter_buffer_ms; |
| int min_playout_delay_ms; |
| int render_delay_ms; |
| _timing.GetTimings(&decode_ms, |
| &max_decode_ms, |
| ¤t_delay_ms, |
| &target_delay_ms, |
| &jitter_buffer_ms, |
| &min_playout_delay_ms, |
| &render_delay_ms); |
| _decoderTimingCallback->OnDecoderTiming(decode_ms, |
| max_decode_ms, |
| current_delay_ms, |
| target_delay_ms, |
| jitter_buffer_ms, |
| min_playout_delay_ms, |
| render_delay_ms); |
| } |
| |
| // Size of render buffer. |
| if (render_buffer_callback_) { |
| int buffer_size_ms = _receiver.RenderBufferSizeMs(); |
| render_buffer_callback_->RenderBufferSizeMs(buffer_size_ms); |
| } |
| } |
| |
| // Key frame requests |
| if (_keyRequestTimer.TimeUntilProcess() == 0) { |
| _keyRequestTimer.Processed(); |
| bool request_key_frame = false; |
| { |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| request_key_frame = _scheduleKeyRequest && _frameTypeCallback != NULL; |
| } |
| if (request_key_frame) { |
| const int32_t ret = RequestKeyFrame(); |
| if (ret != VCM_OK && returnValue == VCM_OK) { |
| returnValue = ret; |
| } |
| } |
| } |
| |
| // Packet retransmission requests |
| // TODO(holmer): Add API for changing Process interval and make sure it's |
| // disabled when NACK is off. |
| if (_retransmissionTimer.TimeUntilProcess() == 0) { |
| _retransmissionTimer.Processed(); |
| bool callback_registered = false; |
| uint16_t length; |
| { |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| length = max_nack_list_size_; |
| callback_registered = _packetRequestCallback != NULL; |
| } |
| if (callback_registered && length > 0) { |
| std::vector<uint16_t> nackList(length); |
| const int32_t ret = NackList(&nackList[0], &length); |
| if (ret != VCM_OK && returnValue == VCM_OK) { |
| returnValue = ret; |
| } |
| if (ret == VCM_OK && length > 0) { |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| if (_packetRequestCallback != NULL) { |
| _packetRequestCallback->ResendPackets(&nackList[0], length); |
| } |
| } |
| } |
| } |
| |
| return returnValue; |
| } |
| |
| int32_t VideoReceiver::TimeUntilNextProcess() { |
| uint32_t timeUntilNextProcess = _receiveStatsTimer.TimeUntilProcess(); |
| if ((_receiver.NackMode() != kNoNack) || |
| (_dualReceiver.State() != kPassive)) { |
| // We need a Process call more often if we are relying on |
| // retransmissions |
| timeUntilNextProcess = |
| VCM_MIN(timeUntilNextProcess, _retransmissionTimer.TimeUntilProcess()); |
| } |
| timeUntilNextProcess = |
| VCM_MIN(timeUntilNextProcess, _keyRequestTimer.TimeUntilProcess()); |
| |
| return timeUntilNextProcess; |
| } |
| |
| int32_t VideoReceiver::SetReceiveChannelParameters(uint32_t rtt) { |
| CriticalSectionScoped receiveCs(_receiveCritSect); |
| _receiver.UpdateRtt(rtt); |
| return 0; |
| } |
| |
| // Enable or disable a video protection method. |
| // Note: This API should be deprecated, as it does not offer a distinction |
| // between the protection method and decoding with or without errors. If such a |
| // behavior is desired, use the following API: SetReceiverRobustnessMode. |
| int32_t VideoReceiver::SetVideoProtection(VCMVideoProtection videoProtection, |
| bool enable) { |
| // By default, do not decode with errors. |
| _receiver.SetDecodeErrorMode(kNoErrors); |
| // The dual decoder should always be error free. |
| _dualReceiver.SetDecodeErrorMode(kNoErrors); |
| switch (videoProtection) { |
| case kProtectionNack: |
| case kProtectionNackReceiver: { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (enable) { |
| // Enable NACK and always wait for retransmits. |
| _receiver.SetNackMode(kNack, -1, -1); |
| } else { |
| _receiver.SetNackMode(kNoNack, -1, -1); |
| } |
| break; |
| } |
| |
| case kProtectionDualDecoder: { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (enable) { |
| // Enable NACK but don't wait for retransmissions and don't |
| // add any extra delay. |
| _receiver.SetNackMode(kNack, 0, 0); |
| // Enable NACK and always wait for retransmissions and |
| // compensate with extra delay. |
| _dualReceiver.SetNackMode(kNack, -1, -1); |
| _receiver.SetDecodeErrorMode(kWithErrors); |
| } else { |
| _dualReceiver.SetNackMode(kNoNack, -1, -1); |
| } |
| break; |
| } |
| |
| case kProtectionKeyOnLoss: { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (enable) { |
| _keyRequestMode = kKeyOnLoss; |
| _receiver.SetDecodeErrorMode(kWithErrors); |
| } else if (_keyRequestMode == kKeyOnLoss) { |
| _keyRequestMode = kKeyOnError; // default mode |
| } else { |
| return VCM_PARAMETER_ERROR; |
| } |
| break; |
| } |
| |
| case kProtectionKeyOnKeyLoss: { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (enable) { |
| _keyRequestMode = kKeyOnKeyLoss; |
| } else if (_keyRequestMode == kKeyOnKeyLoss) { |
| _keyRequestMode = kKeyOnError; // default mode |
| } else { |
| return VCM_PARAMETER_ERROR; |
| } |
| break; |
| } |
| |
| case kProtectionNackFEC: { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (enable) { |
| // Enable hybrid NACK/FEC. Always wait for retransmissions |
| // and don't add extra delay when RTT is above |
| // kLowRttNackMs. |
| _receiver.SetNackMode(kNack, media_optimization::kLowRttNackMs, -1); |
| _receiver.SetDecodeErrorMode(kNoErrors); |
| _receiver.SetDecodeErrorMode(kNoErrors); |
| } else { |
| _receiver.SetNackMode(kNoNack, -1, -1); |
| } |
| break; |
| } |
| case kProtectionNackSender: |
| case kProtectionFEC: |
| case kProtectionPeriodicKeyFrames: |
| // Ignore encoder modes. |
| return VCM_OK; |
| } |
| return VCM_OK; |
| } |
| |
| // Initialize receiver, resets codec database etc |
| int32_t VideoReceiver::InitializeReceiver() { |
| int32_t ret = _receiver.Initialize(); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = _dualReceiver.Initialize(); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| { |
| CriticalSectionScoped receive_cs(_receiveCritSect); |
| _codecDataBase.ResetReceiver(); |
| _timing.Reset(); |
| _receiverInited = true; |
| } |
| |
| { |
| CriticalSectionScoped process_cs(process_crit_sect_.get()); |
| _decoder = NULL; |
| _decodedFrameCallback.SetUserReceiveCallback(NULL); |
| _frameTypeCallback = NULL; |
| _receiveStatsCallback = NULL; |
| _decoderTimingCallback = NULL; |
| _packetRequestCallback = NULL; |
| _keyRequestMode = kKeyOnError; |
| _scheduleKeyRequest = false; |
| } |
| |
| return VCM_OK; |
| } |
| |
| // Register a receive callback. Will be called whenever there is a new frame |
| // ready for rendering. |
| int32_t VideoReceiver::RegisterReceiveCallback( |
| VCMReceiveCallback* receiveCallback) { |
| CriticalSectionScoped cs(_receiveCritSect); |
| _decodedFrameCallback.SetUserReceiveCallback(receiveCallback); |
| return VCM_OK; |
| } |
| |
| int32_t VideoReceiver::RegisterReceiveStatisticsCallback( |
| VCMReceiveStatisticsCallback* receiveStats) { |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| _receiveStatsCallback = receiveStats; |
| return VCM_OK; |
| } |
| |
| int32_t VideoReceiver::RegisterDecoderTimingCallback( |
| VCMDecoderTimingCallback* decoderTiming) { |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| _decoderTimingCallback = decoderTiming; |
| return VCM_OK; |
| } |
| |
| // Register an externally defined decoder/render object. |
| // Can be a decoder only or a decoder coupled with a renderer. |
| int32_t VideoReceiver::RegisterExternalDecoder(VideoDecoder* externalDecoder, |
| uint8_t payloadType, |
| bool internalRenderTiming) { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (externalDecoder == NULL) { |
| // Make sure the VCM updates the decoder next time it decodes. |
| _decoder = NULL; |
| return _codecDataBase.DeregisterExternalDecoder(payloadType) ? 0 : -1; |
| } |
| return _codecDataBase.RegisterExternalDecoder( |
| externalDecoder, payloadType, internalRenderTiming) |
| ? 0 |
| : -1; |
| } |
| |
| // Register a frame type request callback. |
| int32_t VideoReceiver::RegisterFrameTypeCallback( |
| VCMFrameTypeCallback* frameTypeCallback) { |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| _frameTypeCallback = frameTypeCallback; |
| return VCM_OK; |
| } |
| |
| int32_t VideoReceiver::RegisterPacketRequestCallback( |
| VCMPacketRequestCallback* callback) { |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| _packetRequestCallback = callback; |
| return VCM_OK; |
| } |
| |
| int VideoReceiver::RegisterRenderBufferSizeCallback( |
| VCMRenderBufferSizeCallback* callback) { |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| render_buffer_callback_ = callback; |
| return VCM_OK; |
| } |
| |
| // Decode next frame, blocking. |
| // Should be called as often as possible to get the most out of the decoder. |
| int32_t VideoReceiver::Decode(uint16_t maxWaitTimeMs) { |
| int64_t nextRenderTimeMs; |
| bool supports_render_scheduling; |
| { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (!_receiverInited) { |
| return VCM_UNINITIALIZED; |
| } |
| if (!_codecDataBase.DecoderRegistered()) { |
| return VCM_NO_CODEC_REGISTERED; |
| } |
| supports_render_scheduling = _codecDataBase.SupportsRenderScheduling(); |
| } |
| |
| const bool dualReceiverEnabledNotReceiving = ( |
| _dualReceiver.State() != kReceiving && _dualReceiver.NackMode() == kNack); |
| |
| VCMEncodedFrame* frame = |
| _receiver.FrameForDecoding(maxWaitTimeMs, |
| nextRenderTimeMs, |
| supports_render_scheduling, |
| &_dualReceiver); |
| |
| if (dualReceiverEnabledNotReceiving && _dualReceiver.State() == kReceiving) { |
| // Dual receiver is enabled (kNACK enabled), but was not receiving |
| // before the call to FrameForDecoding(). After the call the state |
| // changed to receiving, and therefore we must copy the primary decoder |
| // state to the dual decoder to make it possible for the dual decoder to |
| // start decoding retransmitted frames and recover. |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (_dualDecoder != NULL) { |
| _codecDataBase.ReleaseDecoder(_dualDecoder); |
| } |
| _dualDecoder = _codecDataBase.CreateDecoderCopy(); |
| if (_dualDecoder != NULL) { |
| _dualDecoder->RegisterDecodeCompleteCallback(&_dualDecodedFrameCallback); |
| } else { |
| _dualReceiver.Reset(); |
| } |
| } |
| |
| if (frame == NULL) { |
| return VCM_FRAME_NOT_READY; |
| } else { |
| CriticalSectionScoped cs(_receiveCritSect); |
| |
| // If this frame was too late, we should adjust the delay accordingly |
| _timing.UpdateCurrentDelay(frame->RenderTimeMs(), |
| clock_->TimeInMilliseconds()); |
| |
| if (pre_decode_image_callback_) { |
| EncodedImage encoded_image(frame->EncodedImage()); |
| pre_decode_image_callback_->Encoded(encoded_image); |
| } |
| |
| #ifdef DEBUG_DECODER_BIT_STREAM |
| if (_bitStreamBeforeDecoder != NULL) { |
| // Write bit stream to file for debugging purposes |
| if (fwrite( |
| frame->Buffer(), 1, frame->Length(), _bitStreamBeforeDecoder) != |
| frame->Length()) { |
| return -1; |
| } |
| } |
| #endif |
| const int32_t ret = Decode(*frame); |
| _receiver.ReleaseFrame(frame); |
| frame = NULL; |
| if (ret != VCM_OK) { |
| return ret; |
| } |
| } |
| return VCM_OK; |
| } |
| |
| int32_t VideoReceiver::RequestSliceLossIndication( |
| const uint64_t pictureID) const { |
| TRACE_EVENT1("webrtc", "RequestSLI", "picture_id", pictureID); |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| if (_frameTypeCallback != NULL) { |
| const int32_t ret = |
| _frameTypeCallback->SliceLossIndicationRequest(pictureID); |
| if (ret < 0) { |
| return ret; |
| } |
| } else { |
| return VCM_MISSING_CALLBACK; |
| } |
| return VCM_OK; |
| } |
| |
| int32_t VideoReceiver::RequestKeyFrame() { |
| TRACE_EVENT0("webrtc", "RequestKeyFrame"); |
| CriticalSectionScoped process_cs(process_crit_sect_.get()); |
| if (_frameTypeCallback != NULL) { |
| const int32_t ret = _frameTypeCallback->RequestKeyFrame(); |
| if (ret < 0) { |
| return ret; |
| } |
| _scheduleKeyRequest = false; |
| } else { |
| return VCM_MISSING_CALLBACK; |
| } |
| return VCM_OK; |
| } |
| |
| int32_t VideoReceiver::DecodeDualFrame(uint16_t maxWaitTimeMs) { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (_dualReceiver.State() != kReceiving || |
| _dualReceiver.NackMode() != kNack) { |
| // The dual receiver is currently not receiving or |
| // dual decoder mode is disabled. |
| return VCM_OK; |
| } |
| int64_t dummyRenderTime; |
| int32_t decodeCount = 0; |
| // The dual decoder's state is copied from the main decoder, which may |
| // decode with errors. Make sure that the dual decoder does not introduce |
| // error. |
| _dualReceiver.SetDecodeErrorMode(kNoErrors); |
| VCMEncodedFrame* dualFrame = |
| _dualReceiver.FrameForDecoding(maxWaitTimeMs, dummyRenderTime); |
| if (dualFrame != NULL && _dualDecoder != NULL) { |
| // Decode dualFrame and try to catch up |
| int32_t ret = |
| _dualDecoder->Decode(*dualFrame, clock_->TimeInMilliseconds()); |
| if (ret != WEBRTC_VIDEO_CODEC_OK) { |
| LOG(LS_ERROR) << "Failed to decode frame with dual decoder. Error code: " |
| << ret; |
| _dualReceiver.ReleaseFrame(dualFrame); |
| return VCM_CODEC_ERROR; |
| } |
| if (_receiver.DualDecoderCaughtUp(dualFrame, _dualReceiver)) { |
| // Copy the complete decoder state of the dual decoder |
| // to the primary decoder. |
| _codecDataBase.CopyDecoder(*_dualDecoder); |
| _codecDataBase.ReleaseDecoder(_dualDecoder); |
| _dualDecoder = NULL; |
| } |
| decodeCount++; |
| } |
| _dualReceiver.ReleaseFrame(dualFrame); |
| return decodeCount; |
| } |
| |
| // Must be called from inside the receive side critical section. |
| int32_t VideoReceiver::Decode(const VCMEncodedFrame& frame) { |
| TRACE_EVENT_ASYNC_STEP1("webrtc", |
| "Video", |
| frame.TimeStamp(), |
| "Decode", |
| "type", |
| frame.FrameType()); |
| // Change decoder if payload type has changed |
| const bool renderTimingBefore = _codecDataBase.SupportsRenderScheduling(); |
| _decoder = |
| _codecDataBase.GetDecoder(frame.PayloadType(), &_decodedFrameCallback); |
| if (renderTimingBefore != _codecDataBase.SupportsRenderScheduling()) { |
| // Make sure we reset the decode time estimate since it will |
| // be zero for codecs without render timing. |
| _timing.ResetDecodeTime(); |
| } |
| if (_decoder == NULL) { |
| return VCM_NO_CODEC_REGISTERED; |
| } |
| // Decode a frame |
| int32_t ret = _decoder->Decode(frame, clock_->TimeInMilliseconds()); |
| |
| // Check for failed decoding, run frame type request callback if needed. |
| bool request_key_frame = false; |
| if (ret < 0) { |
| if (ret == VCM_ERROR_REQUEST_SLI) { |
| return RequestSliceLossIndication( |
| _decodedFrameCallback.LastReceivedPictureID() + 1); |
| } else { |
| request_key_frame = true; |
| } |
| } else if (ret == VCM_REQUEST_SLI) { |
| ret = RequestSliceLossIndication( |
| _decodedFrameCallback.LastReceivedPictureID() + 1); |
| } |
| if (!frame.Complete() || frame.MissingFrame()) { |
| switch (_keyRequestMode) { |
| case kKeyOnKeyLoss: { |
| if (frame.FrameType() == kVideoFrameKey) { |
| request_key_frame = true; |
| ret = VCM_OK; |
| } |
| break; |
| } |
| case kKeyOnLoss: { |
| request_key_frame = true; |
| ret = VCM_OK; |
| } |
| default: |
| break; |
| } |
| } |
| if (request_key_frame) { |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| _scheduleKeyRequest = true; |
| } |
| TRACE_EVENT_ASYNC_END0("webrtc", "Video", frame.TimeStamp()); |
| return ret; |
| } |
| |
| // Reset the decoder state |
| int32_t VideoReceiver::ResetDecoder() { |
| bool reset_key_request = false; |
| { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (_decoder != NULL) { |
| _receiver.Initialize(); |
| _timing.Reset(); |
| reset_key_request = true; |
| _decoder->Reset(); |
| } |
| if (_dualReceiver.State() != kPassive) { |
| _dualReceiver.Initialize(); |
| } |
| if (_dualDecoder != NULL) { |
| _codecDataBase.ReleaseDecoder(_dualDecoder); |
| _dualDecoder = NULL; |
| } |
| } |
| if (reset_key_request) { |
| CriticalSectionScoped cs(process_crit_sect_.get()); |
| _scheduleKeyRequest = false; |
| } |
| return VCM_OK; |
| } |
| |
| // Register possible receive codecs, can be called multiple times |
| int32_t VideoReceiver::RegisterReceiveCodec(const VideoCodec* receiveCodec, |
| int32_t numberOfCores, |
| bool requireKeyFrame) { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (receiveCodec == NULL) { |
| return VCM_PARAMETER_ERROR; |
| } |
| if (!_codecDataBase.RegisterReceiveCodec( |
| receiveCodec, numberOfCores, requireKeyFrame)) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| // Get current received codec |
| int32_t VideoReceiver::ReceiveCodec(VideoCodec* currentReceiveCodec) const { |
| CriticalSectionScoped cs(_receiveCritSect); |
| if (currentReceiveCodec == NULL) { |
| return VCM_PARAMETER_ERROR; |
| } |
| return _codecDataBase.ReceiveCodec(currentReceiveCodec) ? 0 : -1; |
| } |
| |
| // Get current received codec |
| VideoCodecType VideoReceiver::ReceiveCodec() const { |
| CriticalSectionScoped cs(_receiveCritSect); |
| return _codecDataBase.ReceiveCodec(); |
| } |
| |
| // Incoming packet from network parsed and ready for decode, non blocking. |
| int32_t VideoReceiver::IncomingPacket(const uint8_t* incomingPayload, |
| uint32_t payloadLength, |
| const WebRtcRTPHeader& rtpInfo) { |
| if (rtpInfo.frameType == kVideoFrameKey) { |
| TRACE_EVENT1("webrtc", |
| "VCM::PacketKeyFrame", |
| "seqnum", |
| rtpInfo.header.sequenceNumber); |
| } |
| if (incomingPayload == NULL) { |
| // The jitter buffer doesn't handle non-zero payload lengths for packets |
| // without payload. |
| // TODO(holmer): We should fix this in the jitter buffer. |
| payloadLength = 0; |
| } |
| const VCMPacket packet(incomingPayload, payloadLength, rtpInfo); |
| int32_t ret; |
| if (_dualReceiver.State() != kPassive) { |
| ret = _dualReceiver.InsertPacket( |
| packet, rtpInfo.type.Video.width, rtpInfo.type.Video.height); |
| if (ret == VCM_FLUSH_INDICATOR) { |
| RequestKeyFrame(); |
| ResetDecoder(); |
| } else if (ret < 0) { |
| return ret; |
| } |
| } |
| ret = _receiver.InsertPacket( |
| packet, rtpInfo.type.Video.width, rtpInfo.type.Video.height); |
| // TODO(holmer): Investigate if this somehow should use the key frame |
| // request scheduling to throttle the requests. |
| if (ret == VCM_FLUSH_INDICATOR) { |
| RequestKeyFrame(); |
| ResetDecoder(); |
| } else if (ret < 0) { |
| return ret; |
| } |
| return VCM_OK; |
| } |
| |
| // Minimum playout delay (used for lip-sync). This is the minimum delay required |
| // to sync with audio. Not included in VideoCodingModule::Delay() |
| // Defaults to 0 ms. |
| int32_t VideoReceiver::SetMinimumPlayoutDelay(uint32_t minPlayoutDelayMs) { |
| _timing.set_min_playout_delay(minPlayoutDelayMs); |
| return VCM_OK; |
| } |
| |
| // The estimated delay caused by rendering, defaults to |
| // kDefaultRenderDelayMs = 10 ms |
| int32_t VideoReceiver::SetRenderDelay(uint32_t timeMS) { |
| _timing.set_render_delay(timeMS); |
| return VCM_OK; |
| } |
| |
| // Current video delay |
| int32_t VideoReceiver::Delay() const { return _timing.TargetVideoDelay(); } |
| |
| // Nack list |
| int32_t VideoReceiver::NackList(uint16_t* nackList, uint16_t* size) { |
| VCMNackStatus nackStatus = kNackOk; |
| uint16_t nack_list_length = 0; |
| // Collect sequence numbers from the default receiver |
| // if in normal nack mode. Otherwise collect them from |
| // the dual receiver if the dual receiver is receiving. |
| if (_receiver.NackMode() != kNoNack) { |
| nackStatus = _receiver.NackList(nackList, *size, &nack_list_length); |
| } |
| if (nack_list_length == 0 && _dualReceiver.State() != kPassive) { |
| nackStatus = _dualReceiver.NackList(nackList, *size, &nack_list_length); |
| } |
| *size = nack_list_length; |
| if (nackStatus == kNackKeyFrameRequest) { |
| return RequestKeyFrame(); |
| } |
| return VCM_OK; |
| } |
| |
| int32_t VideoReceiver::ReceivedFrameCount(VCMFrameCount* frameCount) const { |
| _receiver.ReceivedFrameCount(frameCount); |
| return VCM_OK; |
| } |
| |
| uint32_t VideoReceiver::DiscardedPackets() const { |
| return _receiver.DiscardedPackets(); |
| } |
| |
| int VideoReceiver::SetReceiverRobustnessMode( |
| ReceiverRobustness robustnessMode, |
| VCMDecodeErrorMode decode_error_mode) { |
| CriticalSectionScoped cs(_receiveCritSect); |
| switch (robustnessMode) { |
| case VideoCodingModule::kNone: |
| _receiver.SetNackMode(kNoNack, -1, -1); |
| _dualReceiver.SetNackMode(kNoNack, -1, -1); |
| if (decode_error_mode == kNoErrors) { |
| _keyRequestMode = kKeyOnLoss; |
| } else { |
| _keyRequestMode = kKeyOnError; |
| } |
| break; |
| case VideoCodingModule::kHardNack: |
| // Always wait for retransmissions (except when decoding with errors). |
| _receiver.SetNackMode(kNack, -1, -1); |
| _dualReceiver.SetNackMode(kNoNack, -1, -1); |
| _keyRequestMode = kKeyOnError; // TODO(hlundin): On long NACK list? |
| break; |
| case VideoCodingModule::kSoftNack: |
| #if 1 |
| assert(false); // TODO(hlundin): Not completed. |
| return VCM_NOT_IMPLEMENTED; |
| #else |
| // Enable hybrid NACK/FEC. Always wait for retransmissions and don't add |
| // extra delay when RTT is above kLowRttNackMs. |
| _receiver.SetNackMode(kNack, media_optimization::kLowRttNackMs, -1); |
| _dualReceiver.SetNackMode(kNoNack, -1, -1); |
| _keyRequestMode = kKeyOnError; |
| break; |
| #endif |
| case VideoCodingModule::kDualDecoder: |
| if (decode_error_mode == kNoErrors) { |
| return VCM_PARAMETER_ERROR; |
| } |
| // Enable NACK but don't wait for retransmissions and don't add any extra |
| // delay. |
| _receiver.SetNackMode(kNack, 0, 0); |
| // Enable NACK, compensate with extra delay and wait for retransmissions. |
| _dualReceiver.SetNackMode(kNack, -1, -1); |
| _keyRequestMode = kKeyOnError; |
| break; |
| case VideoCodingModule::kReferenceSelection: |
| #if 1 |
| assert(false); // TODO(hlundin): Not completed. |
| return VCM_NOT_IMPLEMENTED; |
| #else |
| if (decode_error_mode == kNoErrors) { |
| return VCM_PARAMETER_ERROR; |
| } |
| _receiver.SetNackMode(kNoNack, -1, -1); |
| _dualReceiver.SetNackMode(kNoNack, -1, -1); |
| break; |
| #endif |
| } |
| _receiver.SetDecodeErrorMode(decode_error_mode); |
| // The dual decoder should never decode with errors. |
| _dualReceiver.SetDecodeErrorMode(kNoErrors); |
| return VCM_OK; |
| } |
| |
| void VideoReceiver::SetDecodeErrorMode(VCMDecodeErrorMode decode_error_mode) { |
| CriticalSectionScoped cs(_receiveCritSect); |
| _receiver.SetDecodeErrorMode(decode_error_mode); |
| } |
| |
| void VideoReceiver::SetNackSettings(size_t max_nack_list_size, |
| int max_packet_age_to_nack, |
| int max_incomplete_time_ms) { |
| if (max_nack_list_size != 0) { |
| CriticalSectionScoped process_cs(process_crit_sect_.get()); |
| max_nack_list_size_ = max_nack_list_size; |
| } |
| _receiver.SetNackSettings( |
| max_nack_list_size, max_packet_age_to_nack, max_incomplete_time_ms); |
| _dualReceiver.SetNackSettings( |
| max_nack_list_size, max_packet_age_to_nack, max_incomplete_time_ms); |
| } |
| |
| int VideoReceiver::SetMinReceiverDelay(int desired_delay_ms) { |
| return _receiver.SetMinReceiverDelay(desired_delay_ms); |
| } |
| |
| void VideoReceiver::RegisterPreDecodeImageCallback( |
| EncodedImageCallback* observer) { |
| CriticalSectionScoped cs(_receiveCritSect); |
| pre_decode_image_callback_ = observer; |
| } |
| |
| } // namespace vcm |
| } // namespace webrtc |