blob: e0cab8f5be491ae84fd0b89754c9705f21587763 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_BASE_MESSAGEQUEUE_H_
#define WEBRTC_BASE_MESSAGEQUEUE_H_
#include <string.h>
#include <algorithm>
#include <list>
#include <queue>
#include <vector>
#include "webrtc/base/basictypes.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/base/criticalsection.h"
#include "webrtc/base/messagehandler.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/base/scoped_ref_ptr.h"
#include "webrtc/base/sigslot.h"
#include "webrtc/base/socketserver.h"
#include "webrtc/base/timeutils.h"
namespace rtc {
struct Message;
class MessageQueue;
// MessageQueueManager does cleanup of of message queues
class MessageQueueManager {
public:
static void Add(MessageQueue *message_queue);
static void Remove(MessageQueue *message_queue);
static void Clear(MessageHandler *handler);
// For testing purposes, we expose whether or not the MessageQueueManager
// instance has been initialized. It has no other use relative to the rest of
// the functions of this class, which auto-initialize the underlying
// MessageQueueManager instance when necessary.
static bool IsInitialized();
private:
static MessageQueueManager* Instance();
MessageQueueManager();
~MessageQueueManager();
void AddInternal(MessageQueue *message_queue);
void RemoveInternal(MessageQueue *message_queue);
void ClearInternal(MessageHandler *handler);
static MessageQueueManager* instance_;
// This list contains all live MessageQueues.
std::vector<MessageQueue *> message_queues_;
CriticalSection crit_;
};
// Derive from this for specialized data
// App manages lifetime, except when messages are purged
class MessageData {
public:
MessageData() {}
virtual ~MessageData() {}
};
template <class T>
class TypedMessageData : public MessageData {
public:
explicit TypedMessageData(const T& data) : data_(data) { }
const T& data() const { return data_; }
T& data() { return data_; }
private:
T data_;
};
// Like TypedMessageData, but for pointers that require a delete.
template <class T>
class ScopedMessageData : public MessageData {
public:
explicit ScopedMessageData(T* data) : data_(data) { }
const scoped_ptr<T>& data() const { return data_; }
scoped_ptr<T>& data() { return data_; }
private:
scoped_ptr<T> data_;
};
// Like ScopedMessageData, but for reference counted pointers.
template <class T>
class ScopedRefMessageData : public MessageData {
public:
explicit ScopedRefMessageData(T* data) : data_(data) { }
const scoped_refptr<T>& data() const { return data_; }
scoped_refptr<T>& data() { return data_; }
private:
scoped_refptr<T> data_;
};
template<class T>
inline MessageData* WrapMessageData(const T& data) {
return new TypedMessageData<T>(data);
}
template<class T>
inline const T& UseMessageData(MessageData* data) {
return static_cast< TypedMessageData<T>* >(data)->data();
}
template<class T>
class DisposeData : public MessageData {
public:
explicit DisposeData(T* data) : data_(data) { }
virtual ~DisposeData() { delete data_; }
private:
T* data_;
};
const uint32 MQID_ANY = static_cast<uint32>(-1);
const uint32 MQID_DISPOSE = static_cast<uint32>(-2);
// No destructor
struct Message {
Message() {
memset(this, 0, sizeof(*this));
}
inline bool Match(MessageHandler* handler, uint32 id) const {
return (handler == NULL || handler == phandler)
&& (id == MQID_ANY || id == message_id);
}
MessageHandler *phandler;
uint32 message_id;
MessageData *pdata;
uint32 ts_sensitive;
};
typedef std::list<Message> MessageList;
// DelayedMessage goes into a priority queue, sorted by trigger time. Messages
// with the same trigger time are processed in num_ (FIFO) order.
class DelayedMessage {
public:
DelayedMessage(int delay, uint32 trigger, uint32 num, const Message& msg)
: cmsDelay_(delay), msTrigger_(trigger), num_(num), msg_(msg) { }
bool operator< (const DelayedMessage& dmsg) const {
return (dmsg.msTrigger_ < msTrigger_)
|| ((dmsg.msTrigger_ == msTrigger_) && (dmsg.num_ < num_));
}
int cmsDelay_; // for debugging
uint32 msTrigger_;
uint32 num_;
Message msg_;
};
class MessageQueue {
public:
static const int kForever = -1;
explicit MessageQueue(SocketServer* ss = NULL);
virtual ~MessageQueue();
SocketServer* socketserver() { return ss_; }
void set_socketserver(SocketServer* ss);
// Note: The behavior of MessageQueue has changed. When a MQ is stopped,
// futher Posts and Sends will fail. However, any pending Sends and *ready*
// Posts (as opposed to unexpired delayed Posts) will be delivered before
// Get (or Peek) returns false. By guaranteeing delivery of those messages,
// we eliminate the race condition when an MessageHandler and MessageQueue
// may be destroyed independently of each other.
virtual void Quit();
virtual bool IsQuitting();
virtual void Restart();
// Get() will process I/O until:
// 1) A message is available (returns true)
// 2) cmsWait seconds have elapsed (returns false)
// 3) Stop() is called (returns false)
virtual bool Get(Message *pmsg, int cmsWait = kForever,
bool process_io = true);
virtual bool Peek(Message *pmsg, int cmsWait = 0);
virtual void Post(MessageHandler *phandler, uint32 id = 0,
MessageData *pdata = NULL, bool time_sensitive = false);
virtual void PostDelayed(int cmsDelay,
MessageHandler* phandler,
uint32 id = 0,
MessageData* pdata = NULL);
virtual void PostAt(uint32 tstamp,
MessageHandler* phandler,
uint32 id = 0,
MessageData* pdata = NULL);
virtual void Clear(MessageHandler *phandler, uint32 id = MQID_ANY,
MessageList* removed = NULL);
virtual void Dispatch(Message *pmsg);
virtual void ReceiveSends();
// Amount of time until the next message can be retrieved
virtual int GetDelay();
bool empty() const { return size() == 0u; }
size_t size() const {
CritScope cs(&crit_); // msgq_.size() is not thread safe.
return msgq_.size() + dmsgq_.size() + (fPeekKeep_ ? 1u : 0u);
}
// Internally posts a message which causes the doomed object to be deleted
template<class T> void Dispose(T* doomed) {
if (doomed) {
Post(NULL, MQID_DISPOSE, new DisposeData<T>(doomed));
}
}
// When this signal is sent out, any references to this queue should
// no longer be used.
sigslot::signal0<> SignalQueueDestroyed;
protected:
class PriorityQueue : public std::priority_queue<DelayedMessage> {
public:
container_type& container() { return c; }
void reheap() { make_heap(c.begin(), c.end(), comp); }
};
void DoDelayPost(int cmsDelay, uint32 tstamp, MessageHandler *phandler,
uint32 id, MessageData* pdata);
// The SocketServer is not owned by MessageQueue.
SocketServer* ss_;
// If a server isn't supplied in the constructor, use this one.
scoped_ptr<SocketServer> default_ss_;
bool fStop_;
bool fPeekKeep_;
Message msgPeek_;
MessageList msgq_;
PriorityQueue dmsgq_;
uint32 dmsgq_next_num_;
mutable CriticalSection crit_;
private:
DISALLOW_COPY_AND_ASSIGN(MessageQueue);
};
} // namespace rtc
#endif // WEBRTC_BASE_MESSAGEQUEUE_H_