blob: ee353065ea3d690d0ef89faf05bb55304ba88341 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Unit tests for DelayManager class.
#include "modules/audio_coding/neteq/delay_manager.h"
#include <math.h>
#include <memory>
#include "absl/types/optional.h"
#include "modules/audio_coding/neteq/histogram.h"
#include "modules/audio_coding/neteq/mock/mock_histogram.h"
#include "modules/audio_coding/neteq/mock/mock_statistics_calculator.h"
#include "rtc_base/checks.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr int kMaxNumberOfPackets = 200;
constexpr int kTimeStepMs = 10;
constexpr int kFs = 8000;
constexpr int kFrameSizeMs = 20;
constexpr int kTsIncrement = kFrameSizeMs * kFs / 1000;
constexpr int kMaxBufferSizeMs = kMaxNumberOfPackets * kFrameSizeMs;
} // namespace
class DelayManagerTest : public ::testing::Test {
protected:
DelayManagerTest();
virtual void SetUp();
absl::optional<int> InsertNextPacket();
void IncreaseTime(int inc_ms);
TickTimer tick_timer_;
DelayManager dm_;
uint32_t ts_;
};
DelayManagerTest::DelayManagerTest()
: dm_(DelayManager::Config(), &tick_timer_), ts_(0x12345678) {}
void DelayManagerTest::SetUp() {
dm_.SetPacketAudioLength(kFrameSizeMs);
}
absl::optional<int> DelayManagerTest::InsertNextPacket() {
auto relative_delay = dm_.Update(ts_, kFs);
ts_ += kTsIncrement;
return relative_delay;
}
void DelayManagerTest::IncreaseTime(int inc_ms) {
for (int t = 0; t < inc_ms; t += kTimeStepMs) {
tick_timer_.Increment();
}
}
TEST_F(DelayManagerTest, CreateAndDestroy) {
// Nothing to do here. The test fixture creates and destroys the DelayManager
// object.
}
TEST_F(DelayManagerTest, UpdateNormal) {
for (int i = 0; i < 50; ++i) {
InsertNextPacket();
IncreaseTime(kFrameSizeMs);
}
EXPECT_EQ(20, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, MaxDelay) {
InsertNextPacket();
const int kMaxDelayMs = 60;
EXPECT_GT(dm_.TargetDelayMs(), kMaxDelayMs);
EXPECT_TRUE(dm_.SetMaximumDelay(kMaxDelayMs));
InsertNextPacket();
EXPECT_EQ(kMaxDelayMs, dm_.TargetDelayMs());
// Target level at least should be one packet.
EXPECT_FALSE(dm_.SetMaximumDelay(kFrameSizeMs - 1));
}
TEST_F(DelayManagerTest, MinDelay) {
InsertNextPacket();
int kMinDelayMs = 7 * kFrameSizeMs;
EXPECT_LT(dm_.TargetDelayMs(), kMinDelayMs);
dm_.SetMinimumDelay(kMinDelayMs);
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
EXPECT_EQ(kMinDelayMs, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, BaseMinimumDelayCheckValidRange) {
// Base minimum delay should be between [0, 10000] milliseconds.
EXPECT_FALSE(dm_.SetBaseMinimumDelay(-1));
EXPECT_FALSE(dm_.SetBaseMinimumDelay(10001));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), 0);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(7999));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), 7999);
}
TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMinimumDelay) {
constexpr int kBaseMinimumDelayMs = 100;
constexpr int kMinimumDelayMs = 200;
// Base minimum delay sets lower bound on minimum. That is why when base
// minimum delay is lower than minimum delay we use minimum delay.
RTC_DCHECK_LT(kBaseMinimumDelayMs, kMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMinimumDelay) {
constexpr int kBaseMinimumDelayMs = 70;
constexpr int kMinimumDelayMs = 30;
// Base minimum delay sets lower bound on minimum. That is why when base
// minimum delay is greater than minimum delay we use base minimum delay.
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) {
constexpr int kBaseMinimumDelayMs = kMaxBufferSizeMs + 1;
constexpr int kMinimumDelayMs = 12;
constexpr int kMaximumDelayMs = 20;
constexpr int kMaxBufferSizeMsQ75 = 3 * kMaxBufferSizeMs / 4;
EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
// Base minimum delay is greater than minimum delay, that is why we clamp
// it to current the highest possible value which is maximum delay.
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaxBufferSizeMs);
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs);
RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMsQ75);
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
// Unset maximum value.
EXPECT_TRUE(dm_.SetMaximumDelay(0));
// With maximum value unset, the highest possible value now is 75% of
// currently possible maximum buffer size.
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaxBufferSizeMsQ75);
}
TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMaximumDelay) {
constexpr int kMaximumDelayMs = 400;
constexpr int kBaseMinimumDelayMs = kMaximumDelayMs + 1;
constexpr int kMinimumDelayMs = 20;
// Base minimum delay is greater than minimum delay, that is why we clamp
// it to current the highest possible value which is kMaximumDelayMs.
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs);
RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMs);
EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaximumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMaxSize) {
constexpr int kMaximumDelayMs = 400;
constexpr int kBaseMinimumDelayMs = kMaximumDelayMs - 1;
constexpr int kMinimumDelayMs = 20;
// Base minimum delay is greater than minimum delay, and lower than maximum
// delays that is why it is used.
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
RTC_DCHECK_LT(kBaseMinimumDelayMs, kMaximumDelayMs);
EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs);
}
TEST_F(DelayManagerTest, MinimumDelayMemorization) {
// Check that when we increase base minimum delay to value higher than
// minimum delay then minimum delay is still memorized. This allows to
// restore effective minimum delay to memorized minimum delay value when we
// decrease base minimum delay.
constexpr int kBaseMinimumDelayMsLow = 10;
constexpr int kMinimumDelayMs = 20;
constexpr int kBaseMinimumDelayMsHigh = 30;
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
// Minimum delay is used as it is higher than base minimum delay.
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsHigh));
// Base minimum delay is used as it is now higher than minimum delay.
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMsHigh);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow));
// Check that minimum delay is memorized and is used again.
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelay) {
// First packet arrival.
InsertNextPacket();
constexpr int kBaseMinimumDelayMs = 7 * kFrameSizeMs;
EXPECT_LT(dm_.TargetDelayMs(), kBaseMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
EXPECT_EQ(kBaseMinimumDelayMs, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, Failures) {
// Wrong sample rate.
EXPECT_EQ(absl::nullopt, dm_.Update(0, -1));
// Wrong packet size.
EXPECT_EQ(-1, dm_.SetPacketAudioLength(0));
EXPECT_EQ(-1, dm_.SetPacketAudioLength(-1));
// Minimum delay higher than a maximum delay is not accepted.
EXPECT_TRUE(dm_.SetMaximumDelay(20));
EXPECT_FALSE(dm_.SetMinimumDelay(40));
// Maximum delay less than minimum delay is not accepted.
EXPECT_TRUE(dm_.SetMaximumDelay(100));
EXPECT_TRUE(dm_.SetMinimumDelay(80));
EXPECT_FALSE(dm_.SetMaximumDelay(60));
}
TEST_F(DelayManagerTest, RelativeArrivalDelayStatistic) {
EXPECT_EQ(absl::nullopt, InsertNextPacket());
IncreaseTime(kFrameSizeMs);
EXPECT_EQ(0, InsertNextPacket());
IncreaseTime(2 * kFrameSizeMs);
EXPECT_EQ(20, InsertNextPacket());
}
} // namespace webrtc