| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/base/virtualsocketserver.h" |
| |
| #include <errno.h> |
| #include <math.h> |
| |
| #include <algorithm> |
| #include <map> |
| #include <vector> |
| |
| #include "webrtc/base/common.h" |
| #include "webrtc/base/logging.h" |
| #include "webrtc/base/physicalsocketserver.h" |
| #include "webrtc/base/socketaddresspair.h" |
| #include "webrtc/base/thread.h" |
| #include "webrtc/base/timeutils.h" |
| |
| namespace rtc { |
| #if defined(WEBRTC_WIN) |
| const in_addr kInitialNextIPv4 = { {0x01, 0, 0, 0} }; |
| #else |
| // This value is entirely arbitrary, hence the lack of concern about endianness. |
| const in_addr kInitialNextIPv4 = { 0x01000000 }; |
| #endif |
| // Starts at ::2 so as to not cause confusion with ::1. |
| const in6_addr kInitialNextIPv6 = { { { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 |
| } } }; |
| |
| const uint16 kFirstEphemeralPort = 49152; |
| const uint16 kLastEphemeralPort = 65535; |
| const uint16 kEphemeralPortCount = kLastEphemeralPort - kFirstEphemeralPort + 1; |
| const uint32 kDefaultNetworkCapacity = 64 * 1024; |
| const uint32 kDefaultTcpBufferSize = 32 * 1024; |
| |
| const uint32 UDP_HEADER_SIZE = 28; // IP + UDP headers |
| const uint32 TCP_HEADER_SIZE = 40; // IP + TCP headers |
| const uint32 TCP_MSS = 1400; // Maximum segment size |
| |
| // Note: The current algorithm doesn't work for sample sizes smaller than this. |
| const int NUM_SAMPLES = 1000; |
| |
| enum { |
| MSG_ID_PACKET, |
| MSG_ID_CONNECT, |
| MSG_ID_DISCONNECT, |
| }; |
| |
| // Packets are passed between sockets as messages. We copy the data just like |
| // the kernel does. |
| class Packet : public MessageData { |
| public: |
| Packet(const char* data, size_t size, const SocketAddress& from) |
| : size_(size), consumed_(0), from_(from) { |
| ASSERT(NULL != data); |
| data_ = new char[size_]; |
| memcpy(data_, data, size_); |
| } |
| |
| virtual ~Packet() { |
| delete[] data_; |
| } |
| |
| const char* data() const { return data_ + consumed_; } |
| size_t size() const { return size_ - consumed_; } |
| const SocketAddress& from() const { return from_; } |
| |
| // Remove the first size bytes from the data. |
| void Consume(size_t size) { |
| ASSERT(size + consumed_ < size_); |
| consumed_ += size; |
| } |
| |
| private: |
| char* data_; |
| size_t size_, consumed_; |
| SocketAddress from_; |
| }; |
| |
| struct MessageAddress : public MessageData { |
| explicit MessageAddress(const SocketAddress& a) : addr(a) { } |
| SocketAddress addr; |
| }; |
| |
| // Implements the socket interface using the virtual network. Packets are |
| // passed as messages using the message queue of the socket server. |
| class VirtualSocket : public AsyncSocket, public MessageHandler { |
| public: |
| VirtualSocket(VirtualSocketServer* server, int family, int type, bool async) |
| : server_(server), family_(family), type_(type), async_(async), |
| state_(CS_CLOSED), error_(0), listen_queue_(NULL), |
| write_enabled_(false), |
| network_size_(0), recv_buffer_size_(0), bound_(false), was_any_(false) { |
| ASSERT((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM)); |
| ASSERT(async_ || (type_ != SOCK_STREAM)); // We only support async streams |
| } |
| |
| virtual ~VirtualSocket() { |
| Close(); |
| |
| for (RecvBuffer::iterator it = recv_buffer_.begin(); |
| it != recv_buffer_.end(); ++it) { |
| delete *it; |
| } |
| } |
| |
| virtual SocketAddress GetLocalAddress() const { |
| return local_addr_; |
| } |
| |
| virtual SocketAddress GetRemoteAddress() const { |
| return remote_addr_; |
| } |
| |
| // Used by server sockets to set the local address without binding. |
| void SetLocalAddress(const SocketAddress& addr) { |
| local_addr_ = addr; |
| } |
| |
| virtual int Bind(const SocketAddress& addr) { |
| if (!local_addr_.IsNil()) { |
| error_ = EINVAL; |
| return -1; |
| } |
| local_addr_ = addr; |
| int result = server_->Bind(this, &local_addr_); |
| if (result != 0) { |
| local_addr_.Clear(); |
| error_ = EADDRINUSE; |
| } else { |
| bound_ = true; |
| was_any_ = addr.IsAnyIP(); |
| } |
| return result; |
| } |
| |
| virtual int Connect(const SocketAddress& addr) { |
| return InitiateConnect(addr, true); |
| } |
| |
| virtual int Close() { |
| if (!local_addr_.IsNil() && bound_) { |
| // Remove from the binding table. |
| server_->Unbind(local_addr_, this); |
| bound_ = false; |
| } |
| |
| if (SOCK_STREAM == type_) { |
| // Cancel pending sockets |
| if (listen_queue_) { |
| while (!listen_queue_->empty()) { |
| SocketAddress addr = listen_queue_->front(); |
| |
| // Disconnect listening socket. |
| server_->Disconnect(server_->LookupBinding(addr)); |
| listen_queue_->pop_front(); |
| } |
| delete listen_queue_; |
| listen_queue_ = NULL; |
| } |
| // Disconnect stream sockets |
| if (CS_CONNECTED == state_) { |
| // Disconnect remote socket, check if it is a child of a server socket. |
| VirtualSocket* socket = |
| server_->LookupConnection(local_addr_, remote_addr_); |
| if (!socket) { |
| // Not a server socket child, then see if it is bound. |
| // TODO: If this is indeed a server socket that has no |
| // children this will cause the server socket to be |
| // closed. This might lead to unexpected results, how to fix this? |
| socket = server_->LookupBinding(remote_addr_); |
| } |
| server_->Disconnect(socket); |
| |
| // Remove mapping for both directions. |
| server_->RemoveConnection(remote_addr_, local_addr_); |
| server_->RemoveConnection(local_addr_, remote_addr_); |
| } |
| // Cancel potential connects |
| MessageList msgs; |
| if (server_->msg_queue_) { |
| server_->msg_queue_->Clear(this, MSG_ID_CONNECT, &msgs); |
| } |
| for (MessageList::iterator it = msgs.begin(); it != msgs.end(); ++it) { |
| ASSERT(NULL != it->pdata); |
| MessageAddress* data = static_cast<MessageAddress*>(it->pdata); |
| |
| // Lookup remote side. |
| VirtualSocket* socket = server_->LookupConnection(local_addr_, |
| data->addr); |
| if (socket) { |
| // Server socket, remote side is a socket retreived by |
| // accept. Accepted sockets are not bound so we will not |
| // find it by looking in the bindings table. |
| server_->Disconnect(socket); |
| server_->RemoveConnection(local_addr_, data->addr); |
| } else { |
| server_->Disconnect(server_->LookupBinding(data->addr)); |
| } |
| delete data; |
| } |
| // Clear incoming packets and disconnect messages |
| if (server_->msg_queue_) { |
| server_->msg_queue_->Clear(this); |
| } |
| } |
| |
| state_ = CS_CLOSED; |
| local_addr_.Clear(); |
| remote_addr_.Clear(); |
| return 0; |
| } |
| |
| virtual int Send(const void *pv, size_t cb) { |
| if (CS_CONNECTED != state_) { |
| error_ = ENOTCONN; |
| return -1; |
| } |
| if (SOCK_DGRAM == type_) { |
| return SendUdp(pv, cb, remote_addr_); |
| } else { |
| return SendTcp(pv, cb); |
| } |
| } |
| |
| virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr) { |
| if (SOCK_DGRAM == type_) { |
| return SendUdp(pv, cb, addr); |
| } else { |
| if (CS_CONNECTED != state_) { |
| error_ = ENOTCONN; |
| return -1; |
| } |
| return SendTcp(pv, cb); |
| } |
| } |
| |
| virtual int Recv(void *pv, size_t cb) { |
| SocketAddress addr; |
| return RecvFrom(pv, cb, &addr); |
| } |
| |
| virtual int RecvFrom(void *pv, size_t cb, SocketAddress *paddr) { |
| // If we don't have a packet, then either error or wait for one to arrive. |
| if (recv_buffer_.empty()) { |
| if (async_) { |
| error_ = EAGAIN; |
| return -1; |
| } |
| while (recv_buffer_.empty()) { |
| Message msg; |
| server_->msg_queue_->Get(&msg); |
| server_->msg_queue_->Dispatch(&msg); |
| } |
| } |
| |
| // Return the packet at the front of the queue. |
| Packet* packet = recv_buffer_.front(); |
| size_t data_read = _min(cb, packet->size()); |
| memcpy(pv, packet->data(), data_read); |
| *paddr = packet->from(); |
| |
| if (data_read < packet->size()) { |
| packet->Consume(data_read); |
| } else { |
| recv_buffer_.pop_front(); |
| delete packet; |
| } |
| |
| if (SOCK_STREAM == type_) { |
| bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity_); |
| recv_buffer_size_ -= data_read; |
| if (was_full) { |
| VirtualSocket* sender = server_->LookupBinding(remote_addr_); |
| ASSERT(NULL != sender); |
| server_->SendTcp(sender); |
| } |
| } |
| |
| return static_cast<int>(data_read); |
| } |
| |
| virtual int Listen(int backlog) { |
| ASSERT(SOCK_STREAM == type_); |
| ASSERT(CS_CLOSED == state_); |
| if (local_addr_.IsNil()) { |
| error_ = EINVAL; |
| return -1; |
| } |
| ASSERT(NULL == listen_queue_); |
| listen_queue_ = new ListenQueue; |
| state_ = CS_CONNECTING; |
| return 0; |
| } |
| |
| virtual VirtualSocket* Accept(SocketAddress *paddr) { |
| if (NULL == listen_queue_) { |
| error_ = EINVAL; |
| return NULL; |
| } |
| while (!listen_queue_->empty()) { |
| VirtualSocket* socket = new VirtualSocket(server_, AF_INET, type_, |
| async_); |
| |
| // Set the new local address to the same as this server socket. |
| socket->SetLocalAddress(local_addr_); |
| // Sockets made from a socket that 'was Any' need to inherit that. |
| socket->set_was_any(was_any_); |
| SocketAddress remote_addr(listen_queue_->front()); |
| int result = socket->InitiateConnect(remote_addr, false); |
| listen_queue_->pop_front(); |
| if (result != 0) { |
| delete socket; |
| continue; |
| } |
| socket->CompleteConnect(remote_addr, false); |
| if (paddr) { |
| *paddr = remote_addr; |
| } |
| return socket; |
| } |
| error_ = EWOULDBLOCK; |
| return NULL; |
| } |
| |
| virtual int GetError() const { |
| return error_; |
| } |
| |
| virtual void SetError(int error) { |
| error_ = error; |
| } |
| |
| virtual ConnState GetState() const { |
| return state_; |
| } |
| |
| virtual int GetOption(Option opt, int* value) { |
| OptionsMap::const_iterator it = options_map_.find(opt); |
| if (it == options_map_.end()) { |
| return -1; |
| } |
| *value = it->second; |
| return 0; // 0 is success to emulate getsockopt() |
| } |
| |
| virtual int SetOption(Option opt, int value) { |
| options_map_[opt] = value; |
| return 0; // 0 is success to emulate setsockopt() |
| } |
| |
| virtual int EstimateMTU(uint16* mtu) { |
| if (CS_CONNECTED != state_) |
| return ENOTCONN; |
| else |
| return 65536; |
| } |
| |
| void OnMessage(Message *pmsg) { |
| if (pmsg->message_id == MSG_ID_PACKET) { |
| //ASSERT(!local_addr_.IsAny()); |
| ASSERT(NULL != pmsg->pdata); |
| Packet* packet = static_cast<Packet*>(pmsg->pdata); |
| |
| recv_buffer_.push_back(packet); |
| |
| if (async_) { |
| SignalReadEvent(this); |
| } |
| } else if (pmsg->message_id == MSG_ID_CONNECT) { |
| ASSERT(NULL != pmsg->pdata); |
| MessageAddress* data = static_cast<MessageAddress*>(pmsg->pdata); |
| if (listen_queue_ != NULL) { |
| listen_queue_->push_back(data->addr); |
| if (async_) { |
| SignalReadEvent(this); |
| } |
| } else if ((SOCK_STREAM == type_) && (CS_CONNECTING == state_)) { |
| CompleteConnect(data->addr, true); |
| } else { |
| LOG(LS_VERBOSE) << "Socket at " << local_addr_ << " is not listening"; |
| server_->Disconnect(server_->LookupBinding(data->addr)); |
| } |
| delete data; |
| } else if (pmsg->message_id == MSG_ID_DISCONNECT) { |
| ASSERT(SOCK_STREAM == type_); |
| if (CS_CLOSED != state_) { |
| int error = (CS_CONNECTING == state_) ? ECONNREFUSED : 0; |
| state_ = CS_CLOSED; |
| remote_addr_.Clear(); |
| if (async_) { |
| SignalCloseEvent(this, error); |
| } |
| } |
| } else { |
| ASSERT(false); |
| } |
| } |
| |
| bool was_any() { return was_any_; } |
| void set_was_any(bool was_any) { was_any_ = was_any; } |
| |
| private: |
| struct NetworkEntry { |
| size_t size; |
| uint32 done_time; |
| }; |
| |
| typedef std::deque<SocketAddress> ListenQueue; |
| typedef std::deque<NetworkEntry> NetworkQueue; |
| typedef std::vector<char> SendBuffer; |
| typedef std::list<Packet*> RecvBuffer; |
| typedef std::map<Option, int> OptionsMap; |
| |
| int InitiateConnect(const SocketAddress& addr, bool use_delay) { |
| if (!remote_addr_.IsNil()) { |
| error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS; |
| return -1; |
| } |
| if (local_addr_.IsNil()) { |
| // If there's no local address set, grab a random one in the correct AF. |
| int result = 0; |
| if (addr.ipaddr().family() == AF_INET) { |
| result = Bind(SocketAddress("0.0.0.0", 0)); |
| } else if (addr.ipaddr().family() == AF_INET6) { |
| result = Bind(SocketAddress("::", 0)); |
| } |
| if (result != 0) { |
| return result; |
| } |
| } |
| if (type_ == SOCK_DGRAM) { |
| remote_addr_ = addr; |
| state_ = CS_CONNECTED; |
| } else { |
| int result = server_->Connect(this, addr, use_delay); |
| if (result != 0) { |
| error_ = EHOSTUNREACH; |
| return -1; |
| } |
| state_ = CS_CONNECTING; |
| } |
| return 0; |
| } |
| |
| void CompleteConnect(const SocketAddress& addr, bool notify) { |
| ASSERT(CS_CONNECTING == state_); |
| remote_addr_ = addr; |
| state_ = CS_CONNECTED; |
| server_->AddConnection(remote_addr_, local_addr_, this); |
| if (async_ && notify) { |
| SignalConnectEvent(this); |
| } |
| } |
| |
| int SendUdp(const void* pv, size_t cb, const SocketAddress& addr) { |
| // If we have not been assigned a local port, then get one. |
| if (local_addr_.IsNil()) { |
| local_addr_ = EmptySocketAddressWithFamily(addr.ipaddr().family()); |
| int result = server_->Bind(this, &local_addr_); |
| if (result != 0) { |
| local_addr_.Clear(); |
| error_ = EADDRINUSE; |
| return result; |
| } |
| } |
| |
| // Send the data in a message to the appropriate socket. |
| return server_->SendUdp(this, static_cast<const char*>(pv), cb, addr); |
| } |
| |
| int SendTcp(const void* pv, size_t cb) { |
| size_t capacity = server_->send_buffer_capacity_ - send_buffer_.size(); |
| if (0 == capacity) { |
| write_enabled_ = true; |
| error_ = EWOULDBLOCK; |
| return -1; |
| } |
| size_t consumed = _min(cb, capacity); |
| const char* cpv = static_cast<const char*>(pv); |
| send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed); |
| server_->SendTcp(this); |
| return static_cast<int>(consumed); |
| } |
| |
| VirtualSocketServer* server_; |
| int family_; |
| int type_; |
| bool async_; |
| ConnState state_; |
| int error_; |
| SocketAddress local_addr_; |
| SocketAddress remote_addr_; |
| |
| // Pending sockets which can be Accepted |
| ListenQueue* listen_queue_; |
| |
| // Data which tcp has buffered for sending |
| SendBuffer send_buffer_; |
| bool write_enabled_; |
| |
| // Critical section to protect the recv_buffer and queue_ |
| CriticalSection crit_; |
| |
| // Network model that enforces bandwidth and capacity constraints |
| NetworkQueue network_; |
| size_t network_size_; |
| |
| // Data which has been received from the network |
| RecvBuffer recv_buffer_; |
| // The amount of data which is in flight or in recv_buffer_ |
| size_t recv_buffer_size_; |
| |
| // Is this socket bound? |
| bool bound_; |
| |
| // When we bind a socket to Any, VSS's Bind gives it another address. For |
| // dual-stack sockets, we want to distinguish between sockets that were |
| // explicitly given a particular address and sockets that had one picked |
| // for them by VSS. |
| bool was_any_; |
| |
| // Store the options that are set |
| OptionsMap options_map_; |
| |
| friend class VirtualSocketServer; |
| }; |
| |
| VirtualSocketServer::VirtualSocketServer(SocketServer* ss) |
| : server_(ss), server_owned_(false), msg_queue_(NULL), stop_on_idle_(false), |
| network_delay_(Time()), next_ipv4_(kInitialNextIPv4), |
| next_ipv6_(kInitialNextIPv6), next_port_(kFirstEphemeralPort), |
| bindings_(new AddressMap()), connections_(new ConnectionMap()), |
| bandwidth_(0), network_capacity_(kDefaultNetworkCapacity), |
| send_buffer_capacity_(kDefaultTcpBufferSize), |
| recv_buffer_capacity_(kDefaultTcpBufferSize), |
| delay_mean_(0), delay_stddev_(0), delay_samples_(NUM_SAMPLES), |
| delay_dist_(NULL), drop_prob_(0.0) { |
| if (!server_) { |
| server_ = new PhysicalSocketServer(); |
| server_owned_ = true; |
| } |
| UpdateDelayDistribution(); |
| } |
| |
| VirtualSocketServer::~VirtualSocketServer() { |
| delete bindings_; |
| delete connections_; |
| delete delay_dist_; |
| if (server_owned_) { |
| delete server_; |
| } |
| } |
| |
| IPAddress VirtualSocketServer::GetNextIP(int family) { |
| if (family == AF_INET) { |
| IPAddress next_ip(next_ipv4_); |
| next_ipv4_.s_addr = |
| HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1); |
| return next_ip; |
| } else if (family == AF_INET6) { |
| IPAddress next_ip(next_ipv6_); |
| uint32* as_ints = reinterpret_cast<uint32*>(&next_ipv6_.s6_addr); |
| as_ints[3] += 1; |
| return next_ip; |
| } |
| return IPAddress(); |
| } |
| |
| uint16 VirtualSocketServer::GetNextPort() { |
| uint16 port = next_port_; |
| if (next_port_ < kLastEphemeralPort) { |
| ++next_port_; |
| } else { |
| next_port_ = kFirstEphemeralPort; |
| } |
| return port; |
| } |
| |
| Socket* VirtualSocketServer::CreateSocket(int type) { |
| return CreateSocket(AF_INET, type); |
| } |
| |
| Socket* VirtualSocketServer::CreateSocket(int family, int type) { |
| return CreateSocketInternal(family, type); |
| } |
| |
| AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int type) { |
| return CreateAsyncSocket(AF_INET, type); |
| } |
| |
| AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int family, int type) { |
| return CreateSocketInternal(family, type); |
| } |
| |
| VirtualSocket* VirtualSocketServer::CreateSocketInternal(int family, int type) { |
| return new VirtualSocket(this, family, type, true); |
| } |
| |
| void VirtualSocketServer::SetMessageQueue(MessageQueue* msg_queue) { |
| msg_queue_ = msg_queue; |
| if (msg_queue_) { |
| msg_queue_->SignalQueueDestroyed.connect(this, |
| &VirtualSocketServer::OnMessageQueueDestroyed); |
| } |
| } |
| |
| bool VirtualSocketServer::Wait(int cmsWait, bool process_io) { |
| ASSERT(msg_queue_ == Thread::Current()); |
| if (stop_on_idle_ && Thread::Current()->empty()) { |
| return false; |
| } |
| return socketserver()->Wait(cmsWait, process_io); |
| } |
| |
| void VirtualSocketServer::WakeUp() { |
| socketserver()->WakeUp(); |
| } |
| |
| bool VirtualSocketServer::ProcessMessagesUntilIdle() { |
| ASSERT(msg_queue_ == Thread::Current()); |
| stop_on_idle_ = true; |
| while (!msg_queue_->empty()) { |
| Message msg; |
| if (msg_queue_->Get(&msg, kForever)) { |
| msg_queue_->Dispatch(&msg); |
| } |
| } |
| stop_on_idle_ = false; |
| return !msg_queue_->IsQuitting(); |
| } |
| |
| int VirtualSocketServer::Bind(VirtualSocket* socket, |
| const SocketAddress& addr) { |
| ASSERT(NULL != socket); |
| // Address must be completely specified at this point |
| ASSERT(!IPIsUnspec(addr.ipaddr())); |
| ASSERT(addr.port() != 0); |
| |
| // Normalize the address (turns v6-mapped addresses into v4-addresses). |
| SocketAddress normalized(addr.ipaddr().Normalized(), addr.port()); |
| |
| AddressMap::value_type entry(normalized, socket); |
| return bindings_->insert(entry).second ? 0 : -1; |
| } |
| |
| int VirtualSocketServer::Bind(VirtualSocket* socket, SocketAddress* addr) { |
| ASSERT(NULL != socket); |
| |
| if (IPIsAny(addr->ipaddr())) { |
| addr->SetIP(GetNextIP(addr->ipaddr().family())); |
| } else if (!IPIsUnspec(addr->ipaddr())) { |
| addr->SetIP(addr->ipaddr().Normalized()); |
| } else { |
| ASSERT(false); |
| } |
| |
| if (addr->port() == 0) { |
| for (int i = 0; i < kEphemeralPortCount; ++i) { |
| addr->SetPort(GetNextPort()); |
| if (bindings_->find(*addr) == bindings_->end()) { |
| break; |
| } |
| } |
| } |
| |
| return Bind(socket, *addr); |
| } |
| |
| VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) { |
| SocketAddress normalized(addr.ipaddr().Normalized(), |
| addr.port()); |
| AddressMap::iterator it = bindings_->find(normalized); |
| return (bindings_->end() != it) ? it->second : NULL; |
| } |
| |
| int VirtualSocketServer::Unbind(const SocketAddress& addr, |
| VirtualSocket* socket) { |
| SocketAddress normalized(addr.ipaddr().Normalized(), |
| addr.port()); |
| ASSERT((*bindings_)[normalized] == socket); |
| bindings_->erase(bindings_->find(normalized)); |
| return 0; |
| } |
| |
| void VirtualSocketServer::AddConnection(const SocketAddress& local, |
| const SocketAddress& remote, |
| VirtualSocket* remote_socket) { |
| // Add this socket pair to our routing table. This will allow |
| // multiple clients to connect to the same server address. |
| SocketAddress local_normalized(local.ipaddr().Normalized(), |
| local.port()); |
| SocketAddress remote_normalized(remote.ipaddr().Normalized(), |
| remote.port()); |
| SocketAddressPair address_pair(local_normalized, remote_normalized); |
| connections_->insert(std::pair<SocketAddressPair, |
| VirtualSocket*>(address_pair, remote_socket)); |
| } |
| |
| VirtualSocket* VirtualSocketServer::LookupConnection( |
| const SocketAddress& local, |
| const SocketAddress& remote) { |
| SocketAddress local_normalized(local.ipaddr().Normalized(), |
| local.port()); |
| SocketAddress remote_normalized(remote.ipaddr().Normalized(), |
| remote.port()); |
| SocketAddressPair address_pair(local_normalized, remote_normalized); |
| ConnectionMap::iterator it = connections_->find(address_pair); |
| return (connections_->end() != it) ? it->second : NULL; |
| } |
| |
| void VirtualSocketServer::RemoveConnection(const SocketAddress& local, |
| const SocketAddress& remote) { |
| SocketAddress local_normalized(local.ipaddr().Normalized(), |
| local.port()); |
| SocketAddress remote_normalized(remote.ipaddr().Normalized(), |
| remote.port()); |
| SocketAddressPair address_pair(local_normalized, remote_normalized); |
| connections_->erase(address_pair); |
| } |
| |
| static double Random() { |
| return static_cast<double>(rand()) / RAND_MAX; |
| } |
| |
| int VirtualSocketServer::Connect(VirtualSocket* socket, |
| const SocketAddress& remote_addr, |
| bool use_delay) { |
| uint32 delay = use_delay ? GetRandomTransitDelay() : 0; |
| VirtualSocket* remote = LookupBinding(remote_addr); |
| if (!CanInteractWith(socket, remote)) { |
| LOG(LS_INFO) << "Address family mismatch between " |
| << socket->GetLocalAddress() << " and " << remote_addr; |
| return -1; |
| } |
| if (remote != NULL) { |
| SocketAddress addr = socket->GetLocalAddress(); |
| msg_queue_->PostDelayed(delay, remote, MSG_ID_CONNECT, |
| new MessageAddress(addr)); |
| } else { |
| LOG(LS_INFO) << "No one listening at " << remote_addr; |
| msg_queue_->PostDelayed(delay, socket, MSG_ID_DISCONNECT); |
| } |
| return 0; |
| } |
| |
| bool VirtualSocketServer::Disconnect(VirtualSocket* socket) { |
| if (socket) { |
| // Remove the mapping. |
| msg_queue_->Post(socket, MSG_ID_DISCONNECT); |
| return true; |
| } |
| return false; |
| } |
| |
| int VirtualSocketServer::SendUdp(VirtualSocket* socket, |
| const char* data, size_t data_size, |
| const SocketAddress& remote_addr) { |
| // See if we want to drop this packet. |
| if (Random() < drop_prob_) { |
| LOG(LS_VERBOSE) << "Dropping packet: bad luck"; |
| return static_cast<int>(data_size); |
| } |
| |
| VirtualSocket* recipient = LookupBinding(remote_addr); |
| if (!recipient) { |
| // Make a fake recipient for address family checking. |
| scoped_ptr<VirtualSocket> dummy_socket( |
| CreateSocketInternal(AF_INET, SOCK_DGRAM)); |
| dummy_socket->SetLocalAddress(remote_addr); |
| if (!CanInteractWith(socket, dummy_socket.get())) { |
| LOG(LS_VERBOSE) << "Incompatible address families: " |
| << socket->GetLocalAddress() << " and " << remote_addr; |
| return -1; |
| } |
| LOG(LS_VERBOSE) << "No one listening at " << remote_addr; |
| return static_cast<int>(data_size); |
| } |
| |
| if (!CanInteractWith(socket, recipient)) { |
| LOG(LS_VERBOSE) << "Incompatible address families: " |
| << socket->GetLocalAddress() << " and " << remote_addr; |
| return -1; |
| } |
| |
| CritScope cs(&socket->crit_); |
| |
| uint32 cur_time = Time(); |
| PurgeNetworkPackets(socket, cur_time); |
| |
| // Determine whether we have enough bandwidth to accept this packet. To do |
| // this, we need to update the send queue. Once we know it's current size, |
| // we know whether we can fit this packet. |
| // |
| // NOTE: There are better algorithms for maintaining such a queue (such as |
| // "Derivative Random Drop"); however, this algorithm is a more accurate |
| // simulation of what a normal network would do. |
| |
| size_t packet_size = data_size + UDP_HEADER_SIZE; |
| if (socket->network_size_ + packet_size > network_capacity_) { |
| LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded"; |
| return static_cast<int>(data_size); |
| } |
| |
| AddPacketToNetwork(socket, recipient, cur_time, data, data_size, |
| UDP_HEADER_SIZE, false); |
| |
| return static_cast<int>(data_size); |
| } |
| |
| void VirtualSocketServer::SendTcp(VirtualSocket* socket) { |
| // TCP can't send more data than will fill up the receiver's buffer. |
| // We track the data that is in the buffer plus data in flight using the |
| // recipient's recv_buffer_size_. Anything beyond that must be stored in the |
| // sender's buffer. We will trigger the buffered data to be sent when data |
| // is read from the recv_buffer. |
| |
| // Lookup the local/remote pair in the connections table. |
| VirtualSocket* recipient = LookupConnection(socket->local_addr_, |
| socket->remote_addr_); |
| if (!recipient) { |
| LOG(LS_VERBOSE) << "Sending data to no one."; |
| return; |
| } |
| |
| CritScope cs(&socket->crit_); |
| |
| uint32 cur_time = Time(); |
| PurgeNetworkPackets(socket, cur_time); |
| |
| while (true) { |
| size_t available = recv_buffer_capacity_ - recipient->recv_buffer_size_; |
| size_t max_data_size = _min<size_t>(available, TCP_MSS - TCP_HEADER_SIZE); |
| size_t data_size = _min(socket->send_buffer_.size(), max_data_size); |
| if (0 == data_size) |
| break; |
| |
| AddPacketToNetwork(socket, recipient, cur_time, &socket->send_buffer_[0], |
| data_size, TCP_HEADER_SIZE, true); |
| recipient->recv_buffer_size_ += data_size; |
| |
| size_t new_buffer_size = socket->send_buffer_.size() - data_size; |
| // Avoid undefined access beyond the last element of the vector. |
| // This only happens when new_buffer_size is 0. |
| if (data_size < socket->send_buffer_.size()) { |
| // memmove is required for potentially overlapping source/destination. |
| memmove(&socket->send_buffer_[0], &socket->send_buffer_[data_size], |
| new_buffer_size); |
| } |
| socket->send_buffer_.resize(new_buffer_size); |
| } |
| |
| if (socket->write_enabled_ |
| && (socket->send_buffer_.size() < send_buffer_capacity_)) { |
| socket->write_enabled_ = false; |
| socket->SignalWriteEvent(socket); |
| } |
| } |
| |
| void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender, |
| VirtualSocket* recipient, |
| uint32 cur_time, |
| const char* data, |
| size_t data_size, |
| size_t header_size, |
| bool ordered) { |
| VirtualSocket::NetworkEntry entry; |
| entry.size = data_size + header_size; |
| |
| sender->network_size_ += entry.size; |
| uint32 send_delay = SendDelay(static_cast<uint32>(sender->network_size_)); |
| entry.done_time = cur_time + send_delay; |
| sender->network_.push_back(entry); |
| |
| // Find the delay for crossing the many virtual hops of the network. |
| uint32 transit_delay = GetRandomTransitDelay(); |
| |
| // Post the packet as a message to be delivered (on our own thread) |
| Packet* p = new Packet(data, data_size, sender->local_addr_); |
| uint32 ts = TimeAfter(send_delay + transit_delay); |
| if (ordered) { |
| // Ensure that new packets arrive after previous ones |
| // TODO: consider ordering on a per-socket basis, since this |
| // introduces artifical delay. |
| ts = TimeMax(ts, network_delay_); |
| } |
| msg_queue_->PostAt(ts, recipient, MSG_ID_PACKET, p); |
| network_delay_ = TimeMax(ts, network_delay_); |
| } |
| |
| void VirtualSocketServer::PurgeNetworkPackets(VirtualSocket* socket, |
| uint32 cur_time) { |
| while (!socket->network_.empty() && |
| (socket->network_.front().done_time <= cur_time)) { |
| ASSERT(socket->network_size_ >= socket->network_.front().size); |
| socket->network_size_ -= socket->network_.front().size; |
| socket->network_.pop_front(); |
| } |
| } |
| |
| uint32 VirtualSocketServer::SendDelay(uint32 size) { |
| if (bandwidth_ == 0) |
| return 0; |
| else |
| return 1000 * size / bandwidth_; |
| } |
| |
| #if 0 |
| void PrintFunction(std::vector<std::pair<double, double> >* f) { |
| return; |
| double sum = 0; |
| for (uint32 i = 0; i < f->size(); ++i) { |
| std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl; |
| sum += (*f)[i].second; |
| } |
| if (!f->empty()) { |
| const double mean = sum / f->size(); |
| double sum_sq_dev = 0; |
| for (uint32 i = 0; i < f->size(); ++i) { |
| double dev = (*f)[i].second - mean; |
| sum_sq_dev += dev * dev; |
| } |
| std::cout << "Mean = " << mean << " StdDev = " |
| << sqrt(sum_sq_dev / f->size()) << std::endl; |
| } |
| } |
| #endif // <unused> |
| |
| void VirtualSocketServer::UpdateDelayDistribution() { |
| Function* dist = CreateDistribution(delay_mean_, delay_stddev_, |
| delay_samples_); |
| // We take a lock just to make sure we don't leak memory. |
| { |
| CritScope cs(&delay_crit_); |
| delete delay_dist_; |
| delay_dist_ = dist; |
| } |
| } |
| |
| static double PI = 4 * atan(1.0); |
| |
| static double Normal(double x, double mean, double stddev) { |
| double a = (x - mean) * (x - mean) / (2 * stddev * stddev); |
| return exp(-a) / (stddev * sqrt(2 * PI)); |
| } |
| |
| #if 0 // static unused gives a warning |
| static double Pareto(double x, double min, double k) { |
| if (x < min) |
| return 0; |
| else |
| return k * std::pow(min, k) / std::pow(x, k+1); |
| } |
| #endif |
| |
| VirtualSocketServer::Function* VirtualSocketServer::CreateDistribution( |
| uint32 mean, uint32 stddev, uint32 samples) { |
| Function* f = new Function(); |
| |
| if (0 == stddev) { |
| f->push_back(Point(mean, 1.0)); |
| } else { |
| double start = 0; |
| if (mean >= 4 * static_cast<double>(stddev)) |
| start = mean - 4 * static_cast<double>(stddev); |
| double end = mean + 4 * static_cast<double>(stddev); |
| |
| for (uint32 i = 0; i < samples; i++) { |
| double x = start + (end - start) * i / (samples - 1); |
| double y = Normal(x, mean, stddev); |
| f->push_back(Point(x, y)); |
| } |
| } |
| return Resample(Invert(Accumulate(f)), 0, 1, samples); |
| } |
| |
| uint32 VirtualSocketServer::GetRandomTransitDelay() { |
| size_t index = rand() % delay_dist_->size(); |
| double delay = (*delay_dist_)[index].second; |
| //LOG_F(LS_INFO) << "random[" << index << "] = " << delay; |
| return static_cast<uint32>(delay); |
| } |
| |
| struct FunctionDomainCmp { |
| bool operator()(const VirtualSocketServer::Point& p1, |
| const VirtualSocketServer::Point& p2) { |
| return p1.first < p2.first; |
| } |
| bool operator()(double v1, const VirtualSocketServer::Point& p2) { |
| return v1 < p2.first; |
| } |
| bool operator()(const VirtualSocketServer::Point& p1, double v2) { |
| return p1.first < v2; |
| } |
| }; |
| |
| VirtualSocketServer::Function* VirtualSocketServer::Accumulate(Function* f) { |
| ASSERT(f->size() >= 1); |
| double v = 0; |
| for (Function::size_type i = 0; i < f->size() - 1; ++i) { |
| double dx = (*f)[i + 1].first - (*f)[i].first; |
| double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2; |
| (*f)[i].second = v; |
| v = v + dx * avgy; |
| } |
| (*f)[f->size()-1].second = v; |
| return f; |
| } |
| |
| VirtualSocketServer::Function* VirtualSocketServer::Invert(Function* f) { |
| for (Function::size_type i = 0; i < f->size(); ++i) |
| std::swap((*f)[i].first, (*f)[i].second); |
| |
| std::sort(f->begin(), f->end(), FunctionDomainCmp()); |
| return f; |
| } |
| |
| VirtualSocketServer::Function* VirtualSocketServer::Resample( |
| Function* f, double x1, double x2, uint32 samples) { |
| Function* g = new Function(); |
| |
| for (size_t i = 0; i < samples; i++) { |
| double x = x1 + (x2 - x1) * i / (samples - 1); |
| double y = Evaluate(f, x); |
| g->push_back(Point(x, y)); |
| } |
| |
| delete f; |
| return g; |
| } |
| |
| double VirtualSocketServer::Evaluate(Function* f, double x) { |
| Function::iterator iter = |
| std::lower_bound(f->begin(), f->end(), x, FunctionDomainCmp()); |
| if (iter == f->begin()) { |
| return (*f)[0].second; |
| } else if (iter == f->end()) { |
| ASSERT(f->size() >= 1); |
| return (*f)[f->size() - 1].second; |
| } else if (iter->first == x) { |
| return iter->second; |
| } else { |
| double x1 = (iter - 1)->first; |
| double y1 = (iter - 1)->second; |
| double x2 = iter->first; |
| double y2 = iter->second; |
| return y1 + (y2 - y1) * (x - x1) / (x2 - x1); |
| } |
| } |
| |
| bool VirtualSocketServer::CanInteractWith(VirtualSocket* local, |
| VirtualSocket* remote) { |
| if (!local || !remote) { |
| return false; |
| } |
| IPAddress local_ip = local->GetLocalAddress().ipaddr(); |
| IPAddress remote_ip = remote->GetLocalAddress().ipaddr(); |
| IPAddress local_normalized = local_ip.Normalized(); |
| IPAddress remote_normalized = remote_ip.Normalized(); |
| // Check if the addresses are the same family after Normalization (turns |
| // mapped IPv6 address into IPv4 addresses). |
| // This will stop unmapped V6 addresses from talking to mapped V6 addresses. |
| if (local_normalized.family() == remote_normalized.family()) { |
| return true; |
| } |
| |
| // If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY. |
| int remote_v6_only = 0; |
| remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only); |
| if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) { |
| return true; |
| } |
| // Same check, backwards. |
| int local_v6_only = 0; |
| local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only); |
| if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) { |
| return true; |
| } |
| |
| // Check to see if either socket was explicitly bound to IPv6-any. |
| // These sockets can talk with anyone. |
| if (local_ip.family() == AF_INET6 && local->was_any()) { |
| return true; |
| } |
| if (remote_ip.family() == AF_INET6 && remote->was_any()) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| } // namespace rtc |