|  | /* | 
|  | *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "modules/audio_processing/aec3/vector_math.h" | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include "rtc_base/system/arch.h" | 
|  | #include "system_wrappers/include/cpu_features_wrapper.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | #if defined(WEBRTC_HAS_NEON) | 
|  |  | 
|  | TEST(VectorMath, Sqrt) { | 
|  | std::array<float, kFftLengthBy2Plus1> x; | 
|  | std::array<float, kFftLengthBy2Plus1> z; | 
|  | std::array<float, kFftLengthBy2Plus1> z_neon; | 
|  |  | 
|  | for (size_t k = 0; k < x.size(); ++k) { | 
|  | x[k] = (2.f / 3.f) * k; | 
|  | } | 
|  |  | 
|  | std::copy(x.begin(), x.end(), z.begin()); | 
|  | aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z); | 
|  | std::copy(x.begin(), x.end(), z_neon.begin()); | 
|  | aec3::VectorMath(Aec3Optimization::kNeon).Sqrt(z_neon); | 
|  | for (size_t k = 0; k < z.size(); ++k) { | 
|  | EXPECT_NEAR(z[k], z_neon[k], 0.0001f); | 
|  | EXPECT_NEAR(sqrtf(x[k]), z_neon[k], 0.0001f); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(VectorMath, Multiply) { | 
|  | std::array<float, kFftLengthBy2Plus1> x; | 
|  | std::array<float, kFftLengthBy2Plus1> y; | 
|  | std::array<float, kFftLengthBy2Plus1> z; | 
|  | std::array<float, kFftLengthBy2Plus1> z_neon; | 
|  |  | 
|  | for (size_t k = 0; k < x.size(); ++k) { | 
|  | x[k] = k; | 
|  | y[k] = (2.f / 3.f) * k; | 
|  | } | 
|  |  | 
|  | aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z); | 
|  | aec3::VectorMath(Aec3Optimization::kNeon).Multiply(x, y, z_neon); | 
|  | for (size_t k = 0; k < z.size(); ++k) { | 
|  | EXPECT_FLOAT_EQ(z[k], z_neon[k]); | 
|  | EXPECT_FLOAT_EQ(x[k] * y[k], z_neon[k]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(VectorMath, Accumulate) { | 
|  | std::array<float, kFftLengthBy2Plus1> x; | 
|  | std::array<float, kFftLengthBy2Plus1> z; | 
|  | std::array<float, kFftLengthBy2Plus1> z_neon; | 
|  |  | 
|  | for (size_t k = 0; k < x.size(); ++k) { | 
|  | x[k] = k; | 
|  | z[k] = z_neon[k] = 2.f * k; | 
|  | } | 
|  |  | 
|  | aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z); | 
|  | aec3::VectorMath(Aec3Optimization::kNeon).Accumulate(x, z_neon); | 
|  | for (size_t k = 0; k < z.size(); ++k) { | 
|  | EXPECT_FLOAT_EQ(z[k], z_neon[k]); | 
|  | EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_neon[k]); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_ARCH_X86_FAMILY) | 
|  |  | 
|  | TEST(VectorMath, Sse2Sqrt) { | 
|  | if (GetCPUInfo(kSSE2) != 0) { | 
|  | std::array<float, kFftLengthBy2Plus1> x; | 
|  | std::array<float, kFftLengthBy2Plus1> z; | 
|  | std::array<float, kFftLengthBy2Plus1> z_sse2; | 
|  |  | 
|  | for (size_t k = 0; k < x.size(); ++k) { | 
|  | x[k] = (2.f / 3.f) * k; | 
|  | } | 
|  |  | 
|  | std::copy(x.begin(), x.end(), z.begin()); | 
|  | aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z); | 
|  | std::copy(x.begin(), x.end(), z_sse2.begin()); | 
|  | aec3::VectorMath(Aec3Optimization::kSse2).Sqrt(z_sse2); | 
|  | EXPECT_EQ(z, z_sse2); | 
|  | for (size_t k = 0; k < z.size(); ++k) { | 
|  | EXPECT_FLOAT_EQ(z[k], z_sse2[k]); | 
|  | EXPECT_FLOAT_EQ(sqrtf(x[k]), z_sse2[k]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(VectorMath, Avx2Sqrt) { | 
|  | if (GetCPUInfo(kAVX2) != 0) { | 
|  | std::array<float, kFftLengthBy2Plus1> x; | 
|  | std::array<float, kFftLengthBy2Plus1> z; | 
|  | std::array<float, kFftLengthBy2Plus1> z_avx2; | 
|  |  | 
|  | for (size_t k = 0; k < x.size(); ++k) { | 
|  | x[k] = (2.f / 3.f) * k; | 
|  | } | 
|  |  | 
|  | std::copy(x.begin(), x.end(), z.begin()); | 
|  | aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z); | 
|  | std::copy(x.begin(), x.end(), z_avx2.begin()); | 
|  | aec3::VectorMath(Aec3Optimization::kAvx2).Sqrt(z_avx2); | 
|  | EXPECT_EQ(z, z_avx2); | 
|  | for (size_t k = 0; k < z.size(); ++k) { | 
|  | EXPECT_FLOAT_EQ(z[k], z_avx2[k]); | 
|  | EXPECT_FLOAT_EQ(sqrtf(x[k]), z_avx2[k]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(VectorMath, Sse2Multiply) { | 
|  | if (GetCPUInfo(kSSE2) != 0) { | 
|  | std::array<float, kFftLengthBy2Plus1> x; | 
|  | std::array<float, kFftLengthBy2Plus1> y; | 
|  | std::array<float, kFftLengthBy2Plus1> z; | 
|  | std::array<float, kFftLengthBy2Plus1> z_sse2; | 
|  |  | 
|  | for (size_t k = 0; k < x.size(); ++k) { | 
|  | x[k] = k; | 
|  | y[k] = (2.f / 3.f) * k; | 
|  | } | 
|  |  | 
|  | aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z); | 
|  | aec3::VectorMath(Aec3Optimization::kSse2).Multiply(x, y, z_sse2); | 
|  | for (size_t k = 0; k < z.size(); ++k) { | 
|  | EXPECT_FLOAT_EQ(z[k], z_sse2[k]); | 
|  | EXPECT_FLOAT_EQ(x[k] * y[k], z_sse2[k]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(VectorMath, Avx2Multiply) { | 
|  | if (GetCPUInfo(kAVX2) != 0) { | 
|  | std::array<float, kFftLengthBy2Plus1> x; | 
|  | std::array<float, kFftLengthBy2Plus1> y; | 
|  | std::array<float, kFftLengthBy2Plus1> z; | 
|  | std::array<float, kFftLengthBy2Plus1> z_avx2; | 
|  |  | 
|  | for (size_t k = 0; k < x.size(); ++k) { | 
|  | x[k] = k; | 
|  | y[k] = (2.f / 3.f) * k; | 
|  | } | 
|  |  | 
|  | aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z); | 
|  | aec3::VectorMath(Aec3Optimization::kAvx2).Multiply(x, y, z_avx2); | 
|  | for (size_t k = 0; k < z.size(); ++k) { | 
|  | EXPECT_FLOAT_EQ(z[k], z_avx2[k]); | 
|  | EXPECT_FLOAT_EQ(x[k] * y[k], z_avx2[k]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(VectorMath, Sse2Accumulate) { | 
|  | if (GetCPUInfo(kSSE2) != 0) { | 
|  | std::array<float, kFftLengthBy2Plus1> x; | 
|  | std::array<float, kFftLengthBy2Plus1> z; | 
|  | std::array<float, kFftLengthBy2Plus1> z_sse2; | 
|  |  | 
|  | for (size_t k = 0; k < x.size(); ++k) { | 
|  | x[k] = k; | 
|  | z[k] = z_sse2[k] = 2.f * k; | 
|  | } | 
|  |  | 
|  | aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z); | 
|  | aec3::VectorMath(Aec3Optimization::kSse2).Accumulate(x, z_sse2); | 
|  | for (size_t k = 0; k < z.size(); ++k) { | 
|  | EXPECT_FLOAT_EQ(z[k], z_sse2[k]); | 
|  | EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_sse2[k]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(VectorMath, Avx2Accumulate) { | 
|  | if (GetCPUInfo(kAVX2) != 0) { | 
|  | std::array<float, kFftLengthBy2Plus1> x; | 
|  | std::array<float, kFftLengthBy2Plus1> z; | 
|  | std::array<float, kFftLengthBy2Plus1> z_avx2; | 
|  |  | 
|  | for (size_t k = 0; k < x.size(); ++k) { | 
|  | x[k] = k; | 
|  | z[k] = z_avx2[k] = 2.f * k; | 
|  | } | 
|  |  | 
|  | aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z); | 
|  | aec3::VectorMath(Aec3Optimization::kAvx2).Accumulate(x, z_avx2); | 
|  | for (size_t k = 0; k < z.size(); ++k) { | 
|  | EXPECT_FLOAT_EQ(z[k], z_avx2[k]); | 
|  | EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_avx2[k]); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | }  // namespace webrtc |