| /* |
| * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/agc2/vad_with_level.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <cmath> |
| |
| #include "api/array_view.h" |
| #include "common_audio/include/audio_util.h" |
| #include "common_audio/resampler/include/push_resampler.h" |
| #include "modules/audio_processing/agc2/agc2_common.h" |
| #include "modules/audio_processing/agc2/rnn_vad/common.h" |
| #include "modules/audio_processing/agc2/rnn_vad/features_extraction.h" |
| #include "modules/audio_processing/agc2/rnn_vad/rnn.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| using VoiceActivityDetector = VadLevelAnalyzer::VoiceActivityDetector; |
| |
| // Default VAD that combines a resampler and the RNN VAD. |
| // Computes the speech probability on the first channel. |
| class Vad : public VoiceActivityDetector { |
| public: |
| explicit Vad(const AvailableCpuFeatures& cpu_features) |
| : features_extractor_(cpu_features), rnn_vad_(cpu_features) {} |
| Vad(const Vad&) = delete; |
| Vad& operator=(const Vad&) = delete; |
| ~Vad() = default; |
| |
| void Reset() override { rnn_vad_.Reset(); } |
| |
| float ComputeProbability(AudioFrameView<const float> frame) override { |
| // The source number of channels is 1, because we always use the 1st |
| // channel. |
| resampler_.InitializeIfNeeded( |
| /*sample_rate_hz=*/static_cast<int>(frame.samples_per_channel() * 100), |
| rnn_vad::kSampleRate24kHz, |
| /*num_channels=*/1); |
| |
| std::array<float, rnn_vad::kFrameSize10ms24kHz> work_frame; |
| // Feed the 1st channel to the resampler. |
| resampler_.Resample(frame.channel(0).data(), frame.samples_per_channel(), |
| work_frame.data(), rnn_vad::kFrameSize10ms24kHz); |
| |
| std::array<float, rnn_vad::kFeatureVectorSize> feature_vector; |
| const bool is_silence = features_extractor_.CheckSilenceComputeFeatures( |
| work_frame, feature_vector); |
| return rnn_vad_.ComputeVadProbability(feature_vector, is_silence); |
| } |
| |
| private: |
| PushResampler<float> resampler_; |
| rnn_vad::FeaturesExtractor features_extractor_; |
| rnn_vad::RnnVad rnn_vad_; |
| }; |
| |
| } // namespace |
| |
| VadLevelAnalyzer::VadLevelAnalyzer(int vad_reset_period_ms, |
| const AvailableCpuFeatures& cpu_features) |
| : VadLevelAnalyzer(vad_reset_period_ms, |
| std::make_unique<Vad>(cpu_features)) {} |
| |
| VadLevelAnalyzer::VadLevelAnalyzer(int vad_reset_period_ms, |
| std::unique_ptr<VoiceActivityDetector> vad) |
| : vad_(std::move(vad)), |
| vad_reset_period_frames_( |
| rtc::CheckedDivExact(vad_reset_period_ms, kFrameDurationMs)), |
| time_to_vad_reset_(vad_reset_period_frames_) { |
| RTC_DCHECK(vad_); |
| RTC_DCHECK_GT(vad_reset_period_frames_, 1); |
| } |
| |
| VadLevelAnalyzer::~VadLevelAnalyzer() = default; |
| |
| VadLevelAnalyzer::Result VadLevelAnalyzer::AnalyzeFrame( |
| AudioFrameView<const float> frame) { |
| // Periodically reset the VAD. |
| time_to_vad_reset_--; |
| if (time_to_vad_reset_ <= 0) { |
| vad_->Reset(); |
| time_to_vad_reset_ = vad_reset_period_frames_; |
| } |
| // Compute levels. |
| float peak = 0.0f; |
| float rms = 0.0f; |
| for (const auto& x : frame.channel(0)) { |
| peak = std::max(std::fabs(x), peak); |
| rms += x * x; |
| } |
| return {vad_->ComputeProbability(frame), |
| FloatS16ToDbfs(std::sqrt(rms / frame.samples_per_channel())), |
| FloatS16ToDbfs(peak)}; |
| } |
| |
| } // namespace webrtc |