blob: 7980f9db8ad4ac0accbe097ea0e454a80730f76c [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "p2p/base/port.h"
#include <cstddef>
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
#include "api/array_view.h"
#include "api/rtc_error.h"
#include "api/units/time_delta.h"
#include "p2p/base/p2p_constants.h"
#include "p2p/base/stun_request.h"
#include "rtc_base/byte_buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/crypto_random.h"
#include "rtc_base/ip_address.h"
#include "rtc_base/logging.h"
#include "rtc_base/mdns_responder_interface.h"
#include "rtc_base/net_helper.h"
#include "rtc_base/network.h"
#include "rtc_base/socket_address.h"
#include "rtc_base/string_encode.h"
#include "rtc_base/string_utils.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
using webrtc::IceCandidateType;
namespace cricket {
namespace {
using ::webrtc::IceCandidateType;
using ::webrtc::RTCError;
using ::webrtc::RTCErrorType;
using ::webrtc::TaskQueueBase;
using ::webrtc::TimeDelta;
rtc::PacketInfoProtocolType ConvertProtocolTypeToPacketInfoProtocolType(
cricket::ProtocolType type) {
switch (type) {
case cricket::ProtocolType::PROTO_UDP:
return rtc::PacketInfoProtocolType::kUdp;
case cricket::ProtocolType::PROTO_TCP:
return rtc::PacketInfoProtocolType::kTcp;
case cricket::ProtocolType::PROTO_SSLTCP:
return rtc::PacketInfoProtocolType::kSsltcp;
case cricket::ProtocolType::PROTO_TLS:
return rtc::PacketInfoProtocolType::kTls;
default:
return rtc::PacketInfoProtocolType::kUnknown;
}
}
// The delay before we begin checking if this port is useless. We set
// it to a little higher than a total STUN timeout.
const int kPortTimeoutDelay = cricket::STUN_TOTAL_TIMEOUT + 5000;
} // namespace
static const char* const PROTO_NAMES[] = {UDP_PROTOCOL_NAME, TCP_PROTOCOL_NAME,
SSLTCP_PROTOCOL_NAME,
TLS_PROTOCOL_NAME};
const char* ProtoToString(ProtocolType proto) {
return PROTO_NAMES[proto];
}
std::optional<ProtocolType> StringToProto(absl::string_view proto_name) {
for (size_t i = 0; i <= PROTO_LAST; ++i) {
if (absl::EqualsIgnoreCase(PROTO_NAMES[i], proto_name)) {
return static_cast<ProtocolType>(i);
}
}
return std::nullopt;
}
// RFC 6544, TCP candidate encoding rules.
const int DISCARD_PORT = 9;
const char TCPTYPE_ACTIVE_STR[] = "active";
const char TCPTYPE_PASSIVE_STR[] = "passive";
const char TCPTYPE_SIMOPEN_STR[] = "so";
Port::Port(const PortParametersRef& args, webrtc::IceCandidateType type)
: Port(args, type, 0, 0, true) {}
Port::Port(const PortParametersRef& args,
webrtc::IceCandidateType type,
uint16_t min_port,
uint16_t max_port,
bool shared_socket /*= false*/)
: thread_(args.network_thread),
factory_(args.socket_factory),
field_trials_(args.field_trials),
type_(type),
send_retransmit_count_attribute_(false),
network_(args.network),
min_port_(min_port),
max_port_(max_port),
component_(ICE_CANDIDATE_COMPONENT_DEFAULT),
generation_(0),
ice_username_fragment_(args.ice_username_fragment),
password_(args.ice_password),
timeout_delay_(kPortTimeoutDelay),
enable_port_packets_(false),
ice_role_(ICEROLE_UNKNOWN),
tiebreaker_(0),
shared_socket_(shared_socket),
network_cost_(args.network->GetCost(*field_trials_)),
weak_factory_(this) {
RTC_DCHECK_RUN_ON(thread_);
RTC_DCHECK(factory_ != nullptr);
// TODO(pthatcher): Remove this old behavior once we're sure no one
// relies on it. If the username_fragment and password are empty,
// we should just create one.
if (ice_username_fragment_.empty()) {
RTC_DCHECK(password_.empty());
ice_username_fragment_ = rtc::CreateRandomString(ICE_UFRAG_LENGTH);
password_ = rtc::CreateRandomString(ICE_PWD_LENGTH);
}
network_->SignalTypeChanged.connect(this, &Port::OnNetworkTypeChanged);
PostDestroyIfDead(/*delayed=*/true);
RTC_LOG(LS_INFO) << ToString() << ": Port created with network cost "
<< network_cost_;
}
Port::~Port() {
RTC_DCHECK_RUN_ON(thread_);
DestroyAllConnections();
CancelPendingTasks();
}
IceCandidateType Port::Type() const {
return type_;
}
const rtc::Network* Port::Network() const {
return network_;
}
IceRole Port::GetIceRole() const {
return ice_role_;
}
void Port::SetIceRole(IceRole role) {
ice_role_ = role;
}
void Port::SetIceTiebreaker(uint64_t tiebreaker) {
tiebreaker_ = tiebreaker;
}
uint64_t Port::IceTiebreaker() const {
return tiebreaker_;
}
bool Port::SharedSocket() const {
return shared_socket_;
}
void Port::SetIceParameters(int component,
absl::string_view username_fragment,
absl::string_view password) {
RTC_DCHECK_RUN_ON(thread_);
component_ = component;
ice_username_fragment_ = std::string(username_fragment);
password_ = std::string(password);
for (Candidate& c : candidates_) {
c.set_component(component);
c.set_username(username_fragment);
c.set_password(password);
}
// In case any connections exist make sure we update them too.
for (auto& [unused, connection] : connections_) {
connection->UpdateLocalIceParameters(component, username_fragment,
password);
}
}
const std::vector<Candidate>& Port::Candidates() const {
return candidates_;
}
Connection* Port::GetConnection(const rtc::SocketAddress& remote_addr) {
AddressMap::const_iterator iter = connections_.find(remote_addr);
if (iter != connections_.end())
return iter->second;
else
return NULL;
}
void Port::AddAddress(const rtc::SocketAddress& address,
const rtc::SocketAddress& base_address,
const rtc::SocketAddress& related_address,
absl::string_view protocol,
absl::string_view relay_protocol,
absl::string_view tcptype,
IceCandidateType type,
uint32_t type_preference,
uint32_t relay_preference,
absl::string_view url,
bool is_final) {
RTC_DCHECK_RUN_ON(thread_);
// TODO(tommi): Set relay_protocol and optionally provide the base address
// to automatically compute the foundation in the ctor? It would be a good
// thing for the Candidate class to know the base address and keep it const.
Candidate c(component_, protocol, address, 0U, username_fragment(), password_,
type, generation_, "", network_->id(), network_cost_);
// Set the relay protocol before computing the foundation field.
c.set_relay_protocol(relay_protocol);
// TODO(bugs.webrtc.org/14605): ensure IceTiebreaker() is set.
c.ComputeFoundation(base_address, tiebreaker_);
c.set_priority(
c.GetPriority(type_preference, network_->preference(), relay_preference,
field_trials_->IsEnabled(
"WebRTC-IncreaseIceCandidatePriorityHostSrflx")));
#if RTC_DCHECK_IS_ON
if (protocol == TCP_PROTOCOL_NAME && c.is_local()) {
RTC_DCHECK(!tcptype.empty());
}
#endif
c.set_tcptype(tcptype);
c.set_network_name(network_->name());
c.set_network_type(network_->type());
c.set_underlying_type_for_vpn(network_->underlying_type_for_vpn());
c.set_url(url);
c.set_related_address(related_address);
bool pending = MaybeObfuscateAddress(c, is_final);
if (!pending) {
FinishAddingAddress(c, is_final);
}
}
bool Port::MaybeObfuscateAddress(const Candidate& c, bool is_final) {
// TODO(bugs.webrtc.org/9723): Use a config to control the feature of IP
// handling with mDNS.
if (network_->GetMdnsResponder() == nullptr) {
return false;
}
if (!c.is_local()) {
return false;
}
auto copy = c;
auto weak_ptr = weak_factory_.GetWeakPtr();
auto callback = [weak_ptr, copy, is_final](const rtc::IPAddress& addr,
absl::string_view name) mutable {
RTC_DCHECK(copy.address().ipaddr() == addr);
rtc::SocketAddress hostname_address(name, copy.address().port());
// In Port and Connection, we need the IP address information to
// correctly handle the update of candidate type to prflx. The removal
// of IP address when signaling this candidate will take place in
// BasicPortAllocatorSession::OnCandidateReady, via SanitizeCandidate.
hostname_address.SetResolvedIP(addr);
copy.set_address(hostname_address);
copy.set_related_address(rtc::SocketAddress());
if (weak_ptr != nullptr) {
RTC_DCHECK_RUN_ON(weak_ptr->thread_);
weak_ptr->set_mdns_name_registration_status(
MdnsNameRegistrationStatus::kCompleted);
weak_ptr->FinishAddingAddress(copy, is_final);
}
};
set_mdns_name_registration_status(MdnsNameRegistrationStatus::kInProgress);
network_->GetMdnsResponder()->CreateNameForAddress(copy.address().ipaddr(),
callback);
return true;
}
void Port::FinishAddingAddress(const Candidate& c, bool is_final) {
candidates_.push_back(c);
SignalCandidateReady(this, c);
PostAddAddress(is_final);
}
void Port::PostAddAddress(bool is_final) {
if (is_final) {
SignalPortComplete(this);
}
}
void Port::AddOrReplaceConnection(Connection* conn) {
auto ret = connections_.insert(
std::make_pair(conn->remote_candidate().address(), conn));
// If there is a different connection on the same remote address, replace
// it with the new one and destroy the old one.
if (ret.second == false && ret.first->second != conn) {
RTC_LOG(LS_WARNING)
<< ToString()
<< ": A new connection was created on an existing remote address. "
"New remote candidate: "
<< conn->remote_candidate().ToSensitiveString();
std::unique_ptr<Connection> old_conn = absl::WrapUnique(ret.first->second);
ret.first->second = conn;
HandleConnectionDestroyed(old_conn.get());
old_conn->Shutdown();
}
}
void Port::OnReadPacket(const rtc::ReceivedPacket& packet, ProtocolType proto) {
const char* data = reinterpret_cast<const char*>(packet.payload().data());
size_t size = packet.payload().size();
const rtc::SocketAddress& addr = packet.source_address();
// If the user has enabled port packets, just hand this over.
if (enable_port_packets_) {
SignalReadPacket(this, data, size, addr);
return;
}
// If this is an authenticated STUN request, then signal unknown address and
// send back a proper binding response.
std::unique_ptr<IceMessage> msg;
std::string remote_username;
if (!GetStunMessage(data, size, addr, &msg, &remote_username)) {
RTC_LOG(LS_ERROR) << ToString()
<< ": Received non-STUN packet from unknown address: "
<< addr.ToSensitiveString();
} else if (!msg) {
// STUN message handled already
} else if (msg->type() == STUN_BINDING_REQUEST) {
RTC_LOG(LS_INFO) << "Received " << StunMethodToString(msg->type())
<< " id=" << rtc::hex_encode(msg->transaction_id())
<< " from unknown address " << addr.ToSensitiveString();
// We need to signal an unknown address before we handle any role conflict
// below. Otherwise there would be no candidate pair and TURN entry created
// to send the error response in case of a role conflict.
SignalUnknownAddress(this, addr, proto, msg.get(), remote_username, false);
// Check for role conflicts.
if (!MaybeIceRoleConflict(addr, msg.get(), remote_username)) {
RTC_LOG(LS_INFO) << "Received conflicting role from the peer.";
return;
}
} else if (msg->type() == GOOG_PING_REQUEST) {
// This is a PING sent to a connection that was destroyed.
// Send back that this is the case and a authenticated BINDING
// is needed.
SendBindingErrorResponse(msg.get(), addr, STUN_ERROR_BAD_REQUEST,
STUN_ERROR_REASON_BAD_REQUEST);
} else {
// NOTE(tschmelcher): STUN_BINDING_RESPONSE is benign. It occurs if we
// pruned a connection for this port while it had STUN requests in flight,
// because we then get back responses for them, which this code correctly
// does not handle.
if (msg->type() != STUN_BINDING_RESPONSE &&
msg->type() != GOOG_PING_RESPONSE &&
msg->type() != GOOG_PING_ERROR_RESPONSE) {
RTC_LOG(LS_ERROR) << ToString()
<< ": Received unexpected STUN message type: "
<< msg->type() << " from unknown address: "
<< addr.ToSensitiveString();
}
}
}
void Port::OnReadyToSend() {
AddressMap::iterator iter = connections_.begin();
for (; iter != connections_.end(); ++iter) {
iter->second->OnReadyToSend();
}
}
void Port::AddPrflxCandidate(const Candidate& local) {
RTC_DCHECK_RUN_ON(thread_);
candidates_.push_back(local);
}
bool Port::GetStunMessage(const char* data,
size_t size,
const rtc::SocketAddress& addr,
std::unique_ptr<IceMessage>* out_msg,
std::string* out_username) {
RTC_DCHECK_RUN_ON(thread_);
// NOTE: This could clearly be optimized to avoid allocating any memory.
// However, at the data rates we'll be looking at on the client side,
// this probably isn't worth worrying about.
RTC_DCHECK(out_msg != NULL);
RTC_DCHECK(out_username != NULL);
out_username->clear();
// Don't bother parsing the packet if we can tell it's not STUN.
// In ICE mode, all STUN packets will have a valid fingerprint.
// Except GOOG_PING_REQUEST/RESPONSE that does not send fingerprint.
int types[] = {GOOG_PING_REQUEST, GOOG_PING_RESPONSE,
GOOG_PING_ERROR_RESPONSE};
if (!StunMessage::IsStunMethod(types, data, size) &&
!StunMessage::ValidateFingerprint(data, size)) {
return false;
}
// Parse the request message. If the packet is not a complete and correct
// STUN message, then ignore it.
std::unique_ptr<IceMessage> stun_msg(new IceMessage());
rtc::ByteBufferReader buf(
rtc::MakeArrayView(reinterpret_cast<const uint8_t*>(data), size));
if (!stun_msg->Read(&buf) || (buf.Length() > 0)) {
return false;
}
// Get list of attributes in the "comprehension-required" range that were not
// comprehended. If one or more is found, the behavior differs based on the
// type of the incoming message; see below.
std::vector<uint16_t> unknown_attributes =
stun_msg->GetNonComprehendedAttributes();
if (stun_msg->type() == STUN_BINDING_REQUEST) {
// Check for the presence of USERNAME and MESSAGE-INTEGRITY (if ICE) first.
// If not present, fail with a 400 Bad Request.
if (!stun_msg->GetByteString(STUN_ATTR_USERNAME) ||
!stun_msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY)) {
RTC_LOG(LS_ERROR) << ToString() << ": Received "
<< StunMethodToString(stun_msg->type())
<< " without username/M-I from: "
<< addr.ToSensitiveString();
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_BAD_REQUEST,
STUN_ERROR_REASON_BAD_REQUEST);
return true;
}
// If the username is bad or unknown, fail with a 401 Unauthorized.
std::string local_ufrag;
std::string remote_ufrag;
if (!ParseStunUsername(stun_msg.get(), &local_ufrag, &remote_ufrag) ||
local_ufrag != username_fragment()) {
RTC_LOG(LS_ERROR) << ToString() << ": Received "
<< StunMethodToString(stun_msg->type())
<< " with bad local username " << local_ufrag
<< " from " << addr.ToSensitiveString();
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
STUN_ERROR_REASON_UNAUTHORIZED);
return true;
}
// If ICE, and the MESSAGE-INTEGRITY is bad, fail with a 401 Unauthorized
if (stun_msg->ValidateMessageIntegrity(password_) !=
StunMessage::IntegrityStatus::kIntegrityOk) {
RTC_LOG(LS_ERROR) << ToString() << ": Received "
<< StunMethodToString(stun_msg->type())
<< " with bad M-I from " << addr.ToSensitiveString()
<< ", password_=" << password_;
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
STUN_ERROR_REASON_UNAUTHORIZED);
return true;
}
// If a request contains unknown comprehension-required attributes, reply
// with an error. See RFC5389 section 7.3.1.
if (!unknown_attributes.empty()) {
SendUnknownAttributesErrorResponse(stun_msg.get(), addr,
unknown_attributes);
return true;
}
out_username->assign(remote_ufrag);
} else if ((stun_msg->type() == STUN_BINDING_RESPONSE) ||
(stun_msg->type() == STUN_BINDING_ERROR_RESPONSE)) {
if (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE) {
if (const StunErrorCodeAttribute* error_code = stun_msg->GetErrorCode()) {
RTC_LOG(LS_ERROR) << ToString() << ": Received "
<< StunMethodToString(stun_msg->type())
<< ": class=" << error_code->eclass()
<< " number=" << error_code->number() << " reason='"
<< error_code->reason() << "' from "
<< addr.ToSensitiveString();
// Return message to allow error-specific processing
} else {
RTC_LOG(LS_ERROR) << ToString() << ": Received "
<< StunMethodToString(stun_msg->type())
<< " without a error code from "
<< addr.ToSensitiveString();
return true;
}
}
// If a response contains unknown comprehension-required attributes, it's
// simply discarded and the transaction is considered failed. See RFC5389
// sections 7.3.3 and 7.3.4.
if (!unknown_attributes.empty()) {
RTC_LOG(LS_ERROR) << ToString()
<< ": Discarding STUN response due to unknown "
"comprehension-required attribute";
return true;
}
// NOTE: Username should not be used in verifying response messages.
out_username->clear();
} else if (stun_msg->type() == STUN_BINDING_INDICATION) {
RTC_LOG(LS_VERBOSE) << ToString() << ": Received "
<< StunMethodToString(stun_msg->type()) << ": from "
<< addr.ToSensitiveString();
out_username->clear();
// If an indication contains unknown comprehension-required attributes,[]
// it's simply discarded. See RFC5389 section 7.3.2.
if (!unknown_attributes.empty()) {
RTC_LOG(LS_ERROR) << ToString()
<< ": Discarding STUN indication due to "
"unknown comprehension-required attribute";
return true;
}
// No stun attributes will be verified, if it's stun indication message.
// Returning from end of the this method.
} else if (stun_msg->type() == GOOG_PING_REQUEST) {
if (stun_msg->ValidateMessageIntegrity(password_) !=
StunMessage::IntegrityStatus::kIntegrityOk) {
RTC_LOG(LS_ERROR) << ToString() << ": Received "
<< StunMethodToString(stun_msg->type())
<< " with bad M-I from " << addr.ToSensitiveString()
<< ", password_=" << password_;
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
STUN_ERROR_REASON_UNAUTHORIZED);
return true;
}
RTC_LOG(LS_VERBOSE) << ToString() << ": Received "
<< StunMethodToString(stun_msg->type()) << " from "
<< addr.ToSensitiveString();
out_username->clear();
} else if (stun_msg->type() == GOOG_PING_RESPONSE ||
stun_msg->type() == GOOG_PING_ERROR_RESPONSE) {
// note: the MessageIntegrity32 will be verified in Connection.cc
RTC_LOG(LS_VERBOSE) << ToString() << ": Received "
<< StunMethodToString(stun_msg->type()) << " from "
<< addr.ToSensitiveString();
out_username->clear();
} else {
RTC_LOG(LS_ERROR) << ToString()
<< ": Received STUN packet with invalid type ("
<< stun_msg->type() << ") from "
<< addr.ToSensitiveString();
return true;
}
// Return the STUN message found.
*out_msg = std::move(stun_msg);
return true;
}
bool Port::IsCompatibleAddress(const rtc::SocketAddress& addr) {
// Get a representative IP for the Network this port is configured to use.
rtc::IPAddress ip = network_->GetBestIP();
// We use single-stack sockets, so families must match.
if (addr.family() != ip.family()) {
return false;
}
// Link-local IPv6 ports can only connect to other link-local IPv6 ports.
if (ip.family() == AF_INET6 &&
(IPIsLinkLocal(ip) != IPIsLinkLocal(addr.ipaddr()))) {
return false;
}
return true;
}
rtc::DiffServCodePoint Port::StunDscpValue() const {
// By default, inherit from whatever the MediaChannel sends.
return rtc::DSCP_NO_CHANGE;
}
void Port::DestroyAllConnections() {
RTC_DCHECK_RUN_ON(thread_);
for (auto& [unused, connection] : connections_) {
connection->Shutdown();
delete connection;
}
connections_.clear();
}
void Port::set_timeout_delay(int delay) {
RTC_DCHECK_RUN_ON(thread_);
// Although this method is meant to only be used by tests, some downstream
// projects have started using it. Ideally we should update our tests to not
// require to modify this state and instead use a testing harness that allows
// adjusting the clock and then just use the kPortTimeoutDelay constant
// directly.
timeout_delay_ = delay;
}
bool Port::ParseStunUsername(const StunMessage* stun_msg,
std::string* local_ufrag,
std::string* remote_ufrag) const {
// The packet must include a username that either begins or ends with our
// fragment. It should begin with our fragment if it is a request and it
// should end with our fragment if it is a response.
local_ufrag->clear();
remote_ufrag->clear();
const StunByteStringAttribute* username_attr =
stun_msg->GetByteString(STUN_ATTR_USERNAME);
if (username_attr == NULL)
return false;
// RFRAG:LFRAG
const absl::string_view username = username_attr->string_view();
size_t colon_pos = username.find(':');
if (colon_pos == absl::string_view::npos) {
return false;
}
*local_ufrag = std::string(username.substr(0, colon_pos));
*remote_ufrag = std::string(username.substr(colon_pos + 1, username.size()));
return true;
}
bool Port::MaybeIceRoleConflict(const rtc::SocketAddress& addr,
IceMessage* stun_msg,
absl::string_view remote_ufrag) {
RTC_DCHECK_RUN_ON(thread_);
// Validate ICE_CONTROLLING or ICE_CONTROLLED attributes.
bool ret = true;
IceRole remote_ice_role = ICEROLE_UNKNOWN;
uint64_t remote_tiebreaker = 0;
const StunUInt64Attribute* stun_attr =
stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
if (stun_attr) {
remote_ice_role = ICEROLE_CONTROLLING;
remote_tiebreaker = stun_attr->value();
}
// If `remote_ufrag` is same as port local username fragment and
// tie breaker value received in the ping message matches port
// tiebreaker value this must be a loopback call.
// We will treat this as valid scenario.
if (remote_ice_role == ICEROLE_CONTROLLING &&
username_fragment() == remote_ufrag &&
remote_tiebreaker == IceTiebreaker()) {
return true;
}
stun_attr = stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
if (stun_attr) {
remote_ice_role = ICEROLE_CONTROLLED;
remote_tiebreaker = stun_attr->value();
}
switch (ice_role_) {
case ICEROLE_CONTROLLING:
if (ICEROLE_CONTROLLING == remote_ice_role) {
if (remote_tiebreaker >= tiebreaker_) {
SignalRoleConflict(this);
} else {
// Send Role Conflict (487) error response.
SendBindingErrorResponse(stun_msg, addr, STUN_ERROR_ROLE_CONFLICT,
STUN_ERROR_REASON_ROLE_CONFLICT);
ret = false;
}
}
break;
case ICEROLE_CONTROLLED:
if (ICEROLE_CONTROLLED == remote_ice_role) {
if (remote_tiebreaker < tiebreaker_) {
SignalRoleConflict(this);
} else {
// Send Role Conflict (487) error response.
SendBindingErrorResponse(stun_msg, addr, STUN_ERROR_ROLE_CONFLICT,
STUN_ERROR_REASON_ROLE_CONFLICT);
ret = false;
}
}
break;
default:
RTC_DCHECK_NOTREACHED();
}
return ret;
}
std::string Port::CreateStunUsername(absl::string_view remote_username) const {
RTC_DCHECK_RUN_ON(thread_);
return std::string(remote_username) + ":" + username_fragment();
}
bool Port::HandleIncomingPacket(rtc::AsyncPacketSocket* /* socket */,
const rtc::ReceivedPacket& /* packet */) {
RTC_DCHECK_NOTREACHED();
return false;
}
bool Port::CanHandleIncomingPacketsFrom(const rtc::SocketAddress&) const {
return false;
}
void Port::SendBindingErrorResponse(StunMessage* message,
const rtc::SocketAddress& addr,
int error_code,
absl::string_view reason) {
RTC_DCHECK_RUN_ON(thread_);
RTC_DCHECK(message->type() == STUN_BINDING_REQUEST ||
message->type() == GOOG_PING_REQUEST);
// Fill in the response message.
StunMessage response(message->type() == STUN_BINDING_REQUEST
? STUN_BINDING_ERROR_RESPONSE
: GOOG_PING_ERROR_RESPONSE,
message->transaction_id());
// When doing GICE, we need to write out the error code incorrectly to
// maintain backwards compatiblility.
auto error_attr = StunAttribute::CreateErrorCode();
error_attr->SetCode(error_code);
error_attr->SetReason(std::string(reason));
response.AddAttribute(std::move(error_attr));
// Per Section 10.1.2, certain error cases don't get a MESSAGE-INTEGRITY,
// because we don't have enough information to determine the shared secret.
if (error_code != STUN_ERROR_BAD_REQUEST &&
error_code != STUN_ERROR_UNAUTHORIZED &&
message->type() != GOOG_PING_REQUEST) {
if (message->type() == STUN_BINDING_REQUEST) {
response.AddMessageIntegrity(password_);
} else {
response.AddMessageIntegrity32(password_);
}
}
if (message->type() == STUN_BINDING_REQUEST) {
response.AddFingerprint();
}
// Send the response message.
rtc::ByteBufferWriter buf;
response.Write(&buf);
rtc::PacketOptions options(StunDscpValue());
options.info_signaled_after_sent.packet_type =
rtc::PacketType::kIceConnectivityCheckResponse;
SendTo(buf.Data(), buf.Length(), addr, options, false);
RTC_LOG(LS_INFO) << ToString() << ": Sending STUN "
<< StunMethodToString(response.type())
<< ": reason=" << reason << " to "
<< addr.ToSensitiveString();
}
void Port::SendUnknownAttributesErrorResponse(
StunMessage* message,
const rtc::SocketAddress& addr,
const std::vector<uint16_t>& unknown_types) {
RTC_DCHECK_RUN_ON(thread_);
RTC_DCHECK(message->type() == STUN_BINDING_REQUEST);
// Fill in the response message.
StunMessage response(STUN_BINDING_ERROR_RESPONSE, message->transaction_id());
auto error_attr = StunAttribute::CreateErrorCode();
error_attr->SetCode(STUN_ERROR_UNKNOWN_ATTRIBUTE);
error_attr->SetReason(STUN_ERROR_REASON_UNKNOWN_ATTRIBUTE);
response.AddAttribute(std::move(error_attr));
std::unique_ptr<StunUInt16ListAttribute> unknown_attr =
StunAttribute::CreateUnknownAttributes();
for (uint16_t type : unknown_types) {
unknown_attr->AddType(type);
}
response.AddAttribute(std::move(unknown_attr));
response.AddMessageIntegrity(password_);
response.AddFingerprint();
// Send the response message.
rtc::ByteBufferWriter buf;
response.Write(&buf);
rtc::PacketOptions options(StunDscpValue());
options.info_signaled_after_sent.packet_type =
rtc::PacketType::kIceConnectivityCheckResponse;
SendTo(buf.Data(), buf.Length(), addr, options, false);
RTC_LOG(LS_ERROR) << ToString() << ": Sending STUN binding error: reason="
<< STUN_ERROR_UNKNOWN_ATTRIBUTE << " to "
<< addr.ToSensitiveString();
}
void Port::KeepAliveUntilPruned() {
// If it is pruned, we won't bring it up again.
if (state_ == State::INIT) {
state_ = State::KEEP_ALIVE_UNTIL_PRUNED;
}
}
void Port::Prune() {
state_ = State::PRUNED;
PostDestroyIfDead(/*delayed=*/false);
}
// Call to stop any currently pending operations from running.
void Port::CancelPendingTasks() {
TRACE_EVENT0("webrtc", "Port::CancelPendingTasks");
RTC_DCHECK_RUN_ON(thread_);
weak_factory_.InvalidateWeakPtrs();
}
void Port::PostDestroyIfDead(bool delayed) {
rtc::WeakPtr<Port> weak_ptr = NewWeakPtr();
auto task = [weak_ptr = std::move(weak_ptr)] {
if (weak_ptr) {
weak_ptr->DestroyIfDead();
}
};
if (delayed) {
thread_->PostDelayedTask(std::move(task),
TimeDelta::Millis(timeout_delay_));
} else {
thread_->PostTask(std::move(task));
}
}
void Port::DestroyIfDead() {
RTC_DCHECK_RUN_ON(thread_);
bool dead =
(state_ == State::INIT || state_ == State::PRUNED) &&
connections_.empty() &&
rtc::TimeMillis() - last_time_all_connections_removed_ >= timeout_delay_;
if (dead) {
Destroy();
}
}
void Port::SubscribePortDestroyed(
std::function<void(PortInterface*)> callback) {
port_destroyed_callback_list_.AddReceiver(callback);
}
void Port::SendPortDestroyed(Port* port) {
port_destroyed_callback_list_.Send(port);
}
void Port::OnNetworkTypeChanged(const rtc::Network* network) {
RTC_DCHECK(network == network_);
UpdateNetworkCost();
}
std::string Port::ToString() const {
rtc::StringBuilder ss;
ss << "Port[" << rtc::ToHex(reinterpret_cast<uintptr_t>(this)) << ":"
<< content_name_ << ":" << component_ << ":" << generation_ << ":"
<< webrtc::IceCandidateTypeToString(type_) << ":" << network_->ToString()
<< "]";
return ss.Release();
}
// TODO(honghaiz): Make the network cost configurable from user setting.
void Port::UpdateNetworkCost() {
RTC_DCHECK_RUN_ON(thread_);
uint16_t new_cost = network_->GetCost(field_trials());
if (network_cost_ == new_cost) {
return;
}
RTC_LOG(LS_INFO) << "Network cost changed from " << network_cost_ << " to "
<< new_cost
<< ". Number of candidates created: " << candidates_.size()
<< ". Number of connections created: "
<< connections_.size();
network_cost_ = new_cost;
for (cricket::Candidate& candidate : candidates_)
candidate.set_network_cost(network_cost_);
for (auto& [unused, connection] : connections_)
connection->SetLocalCandidateNetworkCost(network_cost_);
}
void Port::EnablePortPackets() {
enable_port_packets_ = true;
}
bool Port::OnConnectionDestroyed(Connection* conn) {
if (connections_.erase(conn->remote_candidate().address()) == 0) {
// This could indicate a programmer error outside of webrtc so while we
// do have this check here to alert external developers, we also need to
// handle it since it might be a corner case not caught in tests.
RTC_DCHECK_NOTREACHED() << "Calling Destroy recursively?";
return false;
}
HandleConnectionDestroyed(conn);
// Ports time out after all connections fail if it is not marked as
// "keep alive until pruned."
// Note: If a new connection is added after this message is posted, but it
// fails and is removed before kPortTimeoutDelay, then this message will
// not cause the Port to be destroyed.
if (connections_.empty()) {
last_time_all_connections_removed_ = rtc::TimeMillis();
PostDestroyIfDead(/*delayed=*/true);
}
return true;
}
void Port::DestroyConnectionInternal(Connection* conn, bool async) {
RTC_DCHECK_RUN_ON(thread_);
if (!OnConnectionDestroyed(conn))
return;
conn->Shutdown();
if (async) {
// Unwind the stack before deleting the object in case upstream callers
// need to refer to the Connection's state as part of teardown.
// NOTE: We move ownership of `conn` into the capture section of the lambda
// so that the object will always be deleted, including if PostTask fails.
// In such a case (only tests), deletion would happen inside of the call
// to `DestroyConnection()`.
thread_->PostTask([conn = absl::WrapUnique(conn)]() {});
} else {
delete conn;
}
}
void Port::Destroy() {
RTC_DCHECK(connections_.empty());
RTC_LOG(LS_INFO) << ToString() << ": Port deleted";
SendPortDestroyed(this);
delete this;
}
const std::string& Port::username_fragment() const {
RTC_DCHECK_RUN_ON(thread_);
return ice_username_fragment_;
}
void Port::CopyPortInformationToPacketInfo(rtc::PacketInfo* info) const {
info->protocol = ConvertProtocolTypeToPacketInfoProtocolType(GetProtocol());
info->network_id = Network()->id();
}
} // namespace cricket