blob: b2b4c213fe56122ede4477231aaae6378bc4e82c [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/frame_buffer2.h"
#include <algorithm>
#include <cstring>
#include <queue>
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/modules/video_coding/jitter_estimator.h"
#include "webrtc/modules/video_coding/timing.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
namespace video_coding {
namespace {
// Max number of frames the buffer will hold.
constexpr int kMaxFramesBuffered = 600;
// Max number of decoded frame info that will be saved.
constexpr int kMaxFramesHistory = 20;
} // namespace
FrameBuffer::FrameBuffer(Clock* clock,
VCMJitterEstimator* jitter_estimator,
VCMTiming* timing)
: clock_(clock),
new_countinuous_frame_event_(false, false),
jitter_estimator_(jitter_estimator),
timing_(timing),
inter_frame_delay_(clock_->TimeInMilliseconds()),
last_decoded_frame_it_(frames_.end()),
last_continuous_frame_it_(frames_.end()),
num_frames_history_(0),
num_frames_buffered_(0),
stopped_(false),
protection_mode_(kProtectionNack) {}
FrameBuffer::ReturnReason FrameBuffer::NextFrame(
int64_t max_wait_time_ms,
std::unique_ptr<FrameObject>* frame_out) {
int64_t latest_return_time = clock_->TimeInMilliseconds() + max_wait_time_ms;
int64_t wait_ms = max_wait_time_ms;
FrameMap::iterator next_frame_it;
do {
int64_t now_ms = clock_->TimeInMilliseconds();
{
rtc::CritScope lock(&crit_);
new_countinuous_frame_event_.Reset();
if (stopped_)
return kStopped;
wait_ms = max_wait_time_ms;
// Need to hold |crit_| in order to use |frames_|, therefore we
// set it here in the loop instead of outside the loop in order to not
// acquire the lock unnecesserily.
next_frame_it = frames_.end();
// |frame_it| points to the first frame after the
// |last_decoded_frame_it_|.
auto frame_it = frames_.end();
if (last_decoded_frame_it_ == frames_.end()) {
frame_it = frames_.begin();
} else {
frame_it = last_decoded_frame_it_;
++frame_it;
}
// |continuous_end_it| points to the first frame after the
// |last_continuous_frame_it_|.
auto continuous_end_it = last_continuous_frame_it_;
if (continuous_end_it != frames_.end())
++continuous_end_it;
for (; frame_it != continuous_end_it; ++frame_it) {
if (frame_it->second.num_missing_decodable > 0)
continue;
FrameObject* frame = frame_it->second.frame.get();
next_frame_it = frame_it;
if (frame->RenderTime() == -1)
frame->SetRenderTime(timing_->RenderTimeMs(frame->timestamp, now_ms));
wait_ms = timing_->MaxWaitingTime(frame->RenderTime(), now_ms);
// This will cause the frame buffer to prefer high framerate rather
// than high resolution in the case of the decoder not decoding fast
// enough and the stream has multiple spatial and temporal layers.
if (wait_ms == 0)
continue;
break;
}
} // rtc::Critscope lock(&crit_);
wait_ms = std::min<int64_t>(wait_ms, latest_return_time - now_ms);
wait_ms = std::max<int64_t>(wait_ms, 0);
} while (new_countinuous_frame_event_.Wait(wait_ms));
rtc::CritScope lock(&crit_);
if (next_frame_it != frames_.end()) {
std::unique_ptr<FrameObject> frame = std::move(next_frame_it->second.frame);
int64_t received_time = frame->ReceivedTime();
uint32_t timestamp = frame->Timestamp();
int64_t frame_delay;
if (inter_frame_delay_.CalculateDelay(timestamp, &frame_delay,
received_time)) {
jitter_estimator_->UpdateEstimate(frame_delay, frame->size);
}
float rtt_mult = protection_mode_ == kProtectionNackFEC ? 0.0 : 1.0;
timing_->SetJitterDelay(jitter_estimator_->GetJitterEstimate(rtt_mult));
timing_->UpdateCurrentDelay(frame->RenderTime(),
clock_->TimeInMilliseconds());
PropagateDecodability(next_frame_it->second);
AdvanceLastDecodedFrame(next_frame_it);
*frame_out = std::move(frame);
return kFrameFound;
} else {
return kTimeout;
}
}
void FrameBuffer::SetProtectionMode(VCMVideoProtection mode) {
rtc::CritScope lock(&crit_);
protection_mode_ = mode;
}
void FrameBuffer::Start() {
rtc::CritScope lock(&crit_);
stopped_ = false;
}
void FrameBuffer::Stop() {
rtc::CritScope lock(&crit_);
stopped_ = true;
new_countinuous_frame_event_.Set();
}
int FrameBuffer::InsertFrame(std::unique_ptr<FrameObject> frame) {
rtc::CritScope lock(&crit_);
FrameKey key(frame->picture_id, frame->spatial_layer);
int last_continuous_picture_id =
last_continuous_frame_it_ == frames_.end()
? -1
: last_continuous_frame_it_->first.picture_id;
if (num_frames_buffered_ >= kMaxFramesBuffered) {
LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id
<< ":" << static_cast<int>(key.spatial_layer)
<< ") could not be inserted due to the frame "
<< "buffer being full, dropping frame.";
return last_continuous_picture_id;
}
if (frame->inter_layer_predicted && frame->spatial_layer == 0) {
LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id
<< ":" << static_cast<int>(key.spatial_layer)
<< ") is marked as inter layer predicted, dropping frame.";
return last_continuous_picture_id;
}
if (last_decoded_frame_it_ != frames_.end() &&
key < last_decoded_frame_it_->first) {
LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id
<< ":" << static_cast<int>(key.spatial_layer)
<< ") inserted after frame ("
<< last_decoded_frame_it_->first.picture_id << ":"
<< static_cast<int>(
last_decoded_frame_it_->first.spatial_layer)
<< ") was handed off for decoding, dropping frame.";
return last_continuous_picture_id;
}
auto info = frames_.insert(std::make_pair(key, FrameInfo())).first;
if (!UpdateFrameInfoWithIncomingFrame(*frame, info)) {
frames_.erase(info);
return last_continuous_picture_id;
}
info->second.frame = std::move(frame);
++num_frames_buffered_;
if (info->second.num_missing_continuous == 0) {
info->second.continuous = true;
PropagateContinuity(info);
last_continuous_picture_id = last_continuous_frame_it_->first.picture_id;
// Since we now have new continuous frames there might be a better frame
// to return from NextFrame. Signal that thread so that it again can choose
// which frame to return.
new_countinuous_frame_event_.Set();
}
return last_continuous_picture_id;
}
void FrameBuffer::PropagateContinuity(FrameMap::iterator start) {
RTC_DCHECK(start->second.continuous);
if (last_continuous_frame_it_ == frames_.end())
last_continuous_frame_it_ = start;
std::queue<FrameMap::iterator> continuous_frames;
continuous_frames.push(start);
// A simple BFS to traverse continuous frames.
while (!continuous_frames.empty()) {
auto frame = continuous_frames.front();
continuous_frames.pop();
if (last_continuous_frame_it_->first < frame->first)
last_continuous_frame_it_ = frame;
// Loop through all dependent frames, and if that frame no longer has
// any unfulfilled dependencies then that frame is continuous as well.
for (size_t d = 0; d < frame->second.num_dependent_frames; ++d) {
auto frame_ref = frames_.find(frame->second.dependent_frames[d]);
--frame_ref->second.num_missing_continuous;
if (frame_ref->second.num_missing_continuous == 0) {
frame_ref->second.continuous = true;
continuous_frames.push(frame_ref);
}
}
}
}
void FrameBuffer::PropagateDecodability(const FrameInfo& info) {
for (size_t d = 0; d < info.num_dependent_frames; ++d) {
auto ref_info = frames_.find(info.dependent_frames[d]);
RTC_DCHECK_GT(ref_info->second.num_missing_decodable, 0U);
--ref_info->second.num_missing_decodable;
}
}
void FrameBuffer::AdvanceLastDecodedFrame(FrameMap::iterator decoded) {
if (last_decoded_frame_it_ == frames_.end()) {
last_decoded_frame_it_ = frames_.begin();
} else {
RTC_DCHECK(last_decoded_frame_it_->first < decoded->first);
++last_decoded_frame_it_;
}
--num_frames_buffered_;
++num_frames_history_;
// First, delete non-decoded frames from the history.
while (last_decoded_frame_it_ != decoded) {
if (last_decoded_frame_it_->second.frame)
--num_frames_buffered_;
last_decoded_frame_it_ = frames_.erase(last_decoded_frame_it_);
}
// Then remove old history if we have too much history saved.
if (num_frames_history_ > kMaxFramesHistory) {
frames_.erase(frames_.begin());
--num_frames_history_;
}
}
bool FrameBuffer::UpdateFrameInfoWithIncomingFrame(const FrameObject& frame,
FrameMap::iterator info) {
FrameKey key(frame.picture_id, frame.spatial_layer);
info->second.num_missing_continuous = frame.num_references;
info->second.num_missing_decodable = frame.num_references;
RTC_DCHECK(last_decoded_frame_it_ == frames_.end() ||
last_decoded_frame_it_->first < info->first);
// Check how many dependencies that have already been fulfilled.
for (size_t i = 0; i < frame.num_references; ++i) {
FrameKey ref_key(frame.references[i], frame.spatial_layer);
auto ref_info = frames_.find(ref_key);
// Does |frame| depend on a frame earlier than the last decoded frame?
if (last_decoded_frame_it_ != frames_.end() &&
ref_key <= last_decoded_frame_it_->first) {
if (ref_info == frames_.end()) {
LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< key.picture_id << ":"
<< static_cast<int>(key.spatial_layer)
<< " depends on a non-decoded frame more previous than "
<< "the last decoded frame, dropping frame.";
return false;
}
--info->second.num_missing_continuous;
--info->second.num_missing_decodable;
} else {
if (ref_info == frames_.end())
ref_info = frames_.insert(std::make_pair(ref_key, FrameInfo())).first;
if (ref_info->second.continuous)
--info->second.num_missing_continuous;
// Add backwards reference so |frame| can be updated when new
// frames are inserted or decoded.
ref_info->second.dependent_frames[ref_info->second.num_dependent_frames] =
key;
++ref_info->second.num_dependent_frames;
}
}
// Check if we have the lower spatial layer frame.
if (frame.inter_layer_predicted) {
++info->second.num_missing_continuous;
++info->second.num_missing_decodable;
FrameKey ref_key(frame.picture_id, frame.spatial_layer - 1);
// Gets or create the FrameInfo for the referenced frame.
auto ref_info = frames_.insert(std::make_pair(ref_key, FrameInfo())).first;
if (ref_info->second.continuous)
--info->second.num_missing_continuous;
if (ref_info == last_decoded_frame_it_) {
--info->second.num_missing_decodable;
} else {
ref_info->second.dependent_frames[ref_info->second.num_dependent_frames] =
key;
++ref_info->second.num_dependent_frames;
}
}
return true;
}
} // namespace video_coding
} // namespace webrtc