blob: 3a9ae4ec3c25d7a7595a6655819db9bbfe1ff1bd [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/test/fake_encoder.h"
#include <algorithm>
#include "webrtc/test/gtest.h"
#include "webrtc/base/checks.h"
#include "webrtc/modules/video_coding/include/video_codec_interface.h"
#include "webrtc/system_wrappers/include/sleep.h"
namespace webrtc {
namespace test {
FakeEncoder::FakeEncoder(Clock* clock)
: clock_(clock),
callback_(NULL),
target_bitrate_kbps_(0),
max_target_bitrate_kbps_(-1),
last_encode_time_ms_(0) {
// Generate some arbitrary not-all-zero data
for (size_t i = 0; i < sizeof(encoded_buffer_); ++i) {
encoded_buffer_[i] = static_cast<uint8_t>(i);
}
}
FakeEncoder::~FakeEncoder() {}
void FakeEncoder::SetMaxBitrate(int max_kbps) {
RTC_DCHECK_GE(max_kbps, -1); // max_kbps == -1 disables it.
max_target_bitrate_kbps_ = max_kbps;
}
int32_t FakeEncoder::InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) {
config_ = *config;
target_bitrate_kbps_ = config_.startBitrate;
return 0;
}
int32_t FakeEncoder::Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
RTC_DCHECK_GT(config_.maxFramerate, 0);
int64_t time_since_last_encode_ms = 1000 / config_.maxFramerate;
int64_t time_now_ms = clock_->TimeInMilliseconds();
const bool first_encode = last_encode_time_ms_ == 0;
if (!first_encode) {
// For all frames but the first we can estimate the display time by looking
// at the display time of the previous frame.
time_since_last_encode_ms = time_now_ms - last_encode_time_ms_;
}
if (time_since_last_encode_ms > 3 * 1000 / config_.maxFramerate) {
// Rudimentary check to make sure we don't widely overshoot bitrate target
// when resuming encoding after a suspension.
time_since_last_encode_ms = 3 * 1000 / config_.maxFramerate;
}
size_t bits_available =
static_cast<size_t>(target_bitrate_kbps_ * time_since_last_encode_ms);
size_t min_bits = static_cast<size_t>(
config_.simulcastStream[0].minBitrate * time_since_last_encode_ms);
if (bits_available < min_bits)
bits_available = min_bits;
size_t max_bits =
static_cast<size_t>(max_target_bitrate_kbps_ * time_since_last_encode_ms);
if (max_bits > 0 && max_bits < bits_available)
bits_available = max_bits;
last_encode_time_ms_ = time_now_ms;
RTC_DCHECK_GT(config_.numberOfSimulcastStreams, 0);
for (unsigned char i = 0; i < config_.numberOfSimulcastStreams; ++i) {
CodecSpecificInfo specifics;
memset(&specifics, 0, sizeof(specifics));
specifics.codecType = kVideoCodecGeneric;
specifics.codecSpecific.generic.simulcast_idx = i;
size_t min_stream_bits = static_cast<size_t>(
config_.simulcastStream[i].minBitrate * time_since_last_encode_ms);
size_t max_stream_bits = static_cast<size_t>(
config_.simulcastStream[i].maxBitrate * time_since_last_encode_ms);
size_t stream_bits = (bits_available > max_stream_bits) ? max_stream_bits :
bits_available;
size_t stream_bytes = (stream_bits + 7) / 8;
if (first_encode) {
// The first frame is a key frame and should be larger.
// TODO(holmer): The FakeEncoder should store the bits_available between
// encodes so that it can compensate for oversized frames.
stream_bytes *= 10;
}
if (stream_bytes > sizeof(encoded_buffer_))
stream_bytes = sizeof(encoded_buffer_);
// Always encode something on the first frame.
if (min_stream_bits > bits_available && i > 0)
continue;
EncodedImage encoded(
encoded_buffer_, stream_bytes, sizeof(encoded_buffer_));
encoded._timeStamp = input_image.timestamp();
encoded.capture_time_ms_ = input_image.render_time_ms();
encoded._frameType = (*frame_types)[i];
encoded._encodedWidth = config_.simulcastStream[i].width;
encoded._encodedHeight = config_.simulcastStream[i].height;
RTC_DCHECK(callback_ != NULL);
specifics.codec_name = ImplementationName();
if (callback_->Encoded(encoded, &specifics, NULL) != 0)
return -1;
bits_available -= std::min(encoded._length * 8, bits_available);
}
return 0;
}
int32_t FakeEncoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
callback_ = callback;
return 0;
}
int32_t FakeEncoder::Release() { return 0; }
int32_t FakeEncoder::SetChannelParameters(uint32_t packet_loss, int64_t rtt) {
return 0;
}
int32_t FakeEncoder::SetRates(uint32_t new_target_bitrate, uint32_t framerate) {
target_bitrate_kbps_ = new_target_bitrate;
return 0;
}
const char* FakeEncoder::kImplementationName = "fake_encoder";
const char* FakeEncoder::ImplementationName() const {
return kImplementationName;
}
FakeH264Encoder::FakeH264Encoder(Clock* clock)
: FakeEncoder(clock), callback_(NULL), idr_counter_(0) {
FakeEncoder::RegisterEncodeCompleteCallback(this);
}
int32_t FakeH264Encoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
callback_ = callback;
return 0;
}
EncodedImageCallback::Result FakeH264Encoder::OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragments) {
const size_t kSpsSize = 8;
const size_t kPpsSize = 11;
const int kIdrFrequency = 10;
RTPFragmentationHeader fragmentation;
if (idr_counter_++ % kIdrFrequency == 0 &&
encoded_image._length > kSpsSize + kPpsSize + 1) {
const size_t kNumSlices = 3;
fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = kSpsSize;
fragmentation.fragmentationOffset[1] = kSpsSize;
fragmentation.fragmentationLength[1] = kPpsSize;
fragmentation.fragmentationOffset[2] = kSpsSize + kPpsSize;
fragmentation.fragmentationLength[2] =
encoded_image._length - (kSpsSize + kPpsSize);
const size_t kSpsNalHeader = 0x67;
const size_t kPpsNalHeader = 0x68;
const size_t kIdrNalHeader = 0x65;
encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kSpsNalHeader;
encoded_image._buffer[fragmentation.fragmentationOffset[1]] = kPpsNalHeader;
encoded_image._buffer[fragmentation.fragmentationOffset[2]] = kIdrNalHeader;
} else {
const size_t kNumSlices = 1;
fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = encoded_image._length;
const size_t kNalHeader = 0x41;
encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kNalHeader;
}
uint8_t value = 0;
int fragment_counter = 0;
for (size_t i = 0; i < encoded_image._length; ++i) {
if (fragment_counter == fragmentation.fragmentationVectorSize ||
i != fragmentation.fragmentationOffset[fragment_counter]) {
encoded_image._buffer[i] = value++;
} else {
++fragment_counter;
}
}
CodecSpecificInfo specifics;
memset(&specifics, 0, sizeof(specifics));
specifics.codecType = kVideoCodecH264;
return callback_->OnEncodedImage(encoded_image, &specifics, &fragmentation);
}
DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms)
: test::FakeEncoder(clock),
delay_ms_(delay_ms) {}
int32_t DelayedEncoder::Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
SleepMs(delay_ms_);
return FakeEncoder::Encode(input_image, codec_specific_info, frame_types);
}
} // namespace test
} // namespace webrtc