| /* |
| * Copyright 2009 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "p2p/client/basic_port_allocator.h" |
| |
| #include <memory> |
| #include <ostream> // no-presubmit-check TODO(webrtc:8982) |
| |
| #include "absl/algorithm/container.h" |
| #include "absl/strings/string_view.h" |
| #include "p2p/base/basic_packet_socket_factory.h" |
| #include "p2p/base/p2p_constants.h" |
| #include "p2p/base/stun_port.h" |
| #include "p2p/base/stun_request.h" |
| #include "p2p/base/stun_server.h" |
| #include "p2p/base/test_stun_server.h" |
| #include "p2p/base/test_turn_server.h" |
| #include "rtc_base/fake_clock.h" |
| #include "rtc_base/fake_mdns_responder.h" |
| #include "rtc_base/fake_network.h" |
| #include "rtc_base/firewall_socket_server.h" |
| #include "rtc_base/gunit.h" |
| #include "rtc_base/ip_address.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/nat_server.h" |
| #include "rtc_base/nat_socket_factory.h" |
| #include "rtc_base/nat_types.h" |
| #include "rtc_base/net_helper.h" |
| #include "rtc_base/net_helpers.h" |
| #include "rtc_base/net_test_helpers.h" |
| #include "rtc_base/network.h" |
| #include "rtc_base/network_constants.h" |
| #include "rtc_base/network_monitor.h" |
| #include "rtc_base/socket.h" |
| #include "rtc_base/socket_address.h" |
| #include "rtc_base/socket_address_pair.h" |
| #include "rtc_base/thread.h" |
| #include "rtc_base/virtual_socket_server.h" |
| #include "system_wrappers/include/metrics.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| #include "test/scoped_key_value_config.h" |
| |
| using rtc::IPAddress; |
| using rtc::SocketAddress; |
| using ::testing::Contains; |
| using ::testing::Not; |
| |
| #define MAYBE_SKIP_IPV4 \ |
| if (!rtc::HasIPv4Enabled()) { \ |
| RTC_LOG(LS_INFO) << "No IPv4... skipping"; \ |
| return; \ |
| } |
| |
| static const SocketAddress kAnyAddr("0.0.0.0", 0); |
| static const SocketAddress kClientAddr("11.11.11.11", 0); |
| static const SocketAddress kClientAddr2("22.22.22.22", 0); |
| static const SocketAddress kLoopbackAddr("127.0.0.1", 0); |
| static const SocketAddress kPrivateAddr("192.168.1.11", 0); |
| static const SocketAddress kPrivateAddr2("192.168.1.12", 0); |
| static const SocketAddress kClientIPv6Addr("2401:fa00:4:1000:be30:5bff:fee5:c3", |
| 0); |
| static const SocketAddress kClientIPv6Addr2( |
| "2401:fa00:4:2000:be30:5bff:fee5:c3", |
| 0); |
| static const SocketAddress kClientIPv6Addr3( |
| "2401:fa00:4:3000:be30:5bff:fee5:c3", |
| 0); |
| static const SocketAddress kClientIPv6Addr4( |
| "2401:fa00:4:4000:be30:5bff:fee5:c3", |
| 0); |
| static const SocketAddress kClientIPv6Addr5( |
| "2401:fa00:4:5000:be30:5bff:fee5:c3", |
| 0); |
| static const SocketAddress kNatUdpAddr("77.77.77.77", rtc::NAT_SERVER_UDP_PORT); |
| static const SocketAddress kNatTcpAddr("77.77.77.77", rtc::NAT_SERVER_TCP_PORT); |
| static const SocketAddress kRemoteClientAddr("22.22.22.22", 0); |
| static const SocketAddress kStunAddr("99.99.99.1", cricket::STUN_SERVER_PORT); |
| static const SocketAddress kTurnUdpIntAddr("99.99.99.4", 3478); |
| static const SocketAddress kTurnUdpIntIPv6Addr( |
| "2402:fb00:4:1000:be30:5bff:fee5:c3", |
| 3479); |
| static const SocketAddress kTurnTcpIntAddr("99.99.99.5", 3478); |
| static const SocketAddress kTurnTcpIntIPv6Addr( |
| "2402:fb00:4:2000:be30:5bff:fee5:c3", |
| 3479); |
| static const SocketAddress kTurnUdpExtAddr("99.99.99.6", 0); |
| |
| // Minimum and maximum port for port range tests. |
| static const int kMinPort = 10000; |
| static const int kMaxPort = 10099; |
| |
| // Based on ICE_UFRAG_LENGTH |
| static const char kIceUfrag0[] = "UF00"; |
| // Based on ICE_PWD_LENGTH |
| static const char kIcePwd0[] = "TESTICEPWD00000000000000"; |
| |
| static const char kContentName[] = "test content"; |
| |
| static const int kDefaultAllocationTimeout = 3000; |
| static const char kTurnUsername[] = "test"; |
| static const char kTurnPassword[] = "test"; |
| |
| // STUN timeout (with all retries) is cricket::STUN_TOTAL_TIMEOUT. |
| // Add some margin of error for slow bots. |
| static const int kStunTimeoutMs = cricket::STUN_TOTAL_TIMEOUT; |
| |
| constexpr uint64_t kTiebreakerDefault = 44444; |
| |
| namespace { |
| |
| void CheckStunKeepaliveIntervalOfAllReadyPorts( |
| const cricket::PortAllocatorSession* allocator_session, |
| int expected) { |
| auto ready_ports = allocator_session->ReadyPorts(); |
| for (const auto* port : ready_ports) { |
| if (port->Type() == cricket::STUN_PORT_TYPE || |
| (port->Type() == cricket::LOCAL_PORT_TYPE && |
| port->GetProtocol() == cricket::PROTO_UDP)) { |
| EXPECT_EQ( |
| static_cast<const cricket::UDPPort*>(port)->stun_keepalive_delay(), |
| expected); |
| } |
| } |
| } |
| |
| } // namespace |
| |
| namespace cricket { |
| |
| // Helper for dumping candidates |
| std::ostream& operator<<(std::ostream& os, |
| const std::vector<Candidate>& candidates) { |
| os << '['; |
| bool first = true; |
| for (const Candidate& c : candidates) { |
| if (!first) { |
| os << ", "; |
| } |
| os << c.ToString(); |
| first = false; |
| } |
| os << ']'; |
| return os; |
| } |
| |
| class BasicPortAllocatorTestBase : public ::testing::Test, |
| public sigslot::has_slots<> { |
| public: |
| BasicPortAllocatorTestBase() |
| : vss_(new rtc::VirtualSocketServer()), |
| fss_(new rtc::FirewallSocketServer(vss_.get())), |
| socket_factory_(fss_.get()), |
| thread_(fss_.get()), |
| // Note that the NAT is not used by default. ResetWithStunServerAndNat |
| // must be called. |
| nat_factory_(vss_.get(), kNatUdpAddr, kNatTcpAddr), |
| nat_socket_factory_(new rtc::BasicPacketSocketFactory(&nat_factory_)), |
| stun_server_(TestStunServer::Create(fss_.get(), kStunAddr, thread_)), |
| turn_server_(rtc::Thread::Current(), |
| fss_.get(), |
| kTurnUdpIntAddr, |
| kTurnUdpExtAddr), |
| candidate_allocation_done_(false) { |
| ServerAddresses stun_servers; |
| stun_servers.insert(kStunAddr); |
| |
| allocator_ = std::make_unique<BasicPortAllocator>( |
| &network_manager_, &socket_factory_, stun_servers, &field_trials_); |
| allocator_->Initialize(); |
| allocator_->set_step_delay(kMinimumStepDelay); |
| allocator_->SetIceTiebreaker(kTiebreakerDefault); |
| webrtc::metrics::Reset(); |
| } |
| |
| void AddInterface(const SocketAddress& addr) { |
| network_manager_.AddInterface(addr); |
| } |
| void AddInterface(const SocketAddress& addr, absl::string_view if_name) { |
| network_manager_.AddInterface(addr, if_name); |
| } |
| void AddInterface(const SocketAddress& addr, |
| absl::string_view if_name, |
| rtc::AdapterType type) { |
| network_manager_.AddInterface(addr, if_name, type); |
| } |
| // The default source address is the public address that STUN server will |
| // observe when the endpoint is sitting on the public internet and the local |
| // port is bound to the "any" address. Intended for simulating the situation |
| // that client binds the "any" address, and that's also the address returned |
| // by getsockname/GetLocalAddress, so that the client can learn the actual |
| // local address only from the STUN response. |
| void AddInterfaceAsDefaultSourceAddresss(const SocketAddress& addr) { |
| AddInterface(addr); |
| // When a binding comes from the any address, the `addr` will be used as the |
| // srflx address. |
| vss_->SetDefaultSourceAddress(addr.ipaddr()); |
| } |
| void RemoveInterface(const SocketAddress& addr) { |
| network_manager_.RemoveInterface(addr); |
| } |
| bool SetPortRange(int min_port, int max_port) { |
| return allocator_->SetPortRange(min_port, max_port); |
| } |
| // Endpoint is on the public network. No STUN or TURN. |
| void ResetWithNoServersOrNat() { |
| allocator_.reset( |
| new BasicPortAllocator(&network_manager_, &socket_factory_)); |
| allocator_->Initialize(); |
| allocator_->SetIceTiebreaker(kTiebreakerDefault); |
| allocator_->set_step_delay(kMinimumStepDelay); |
| } |
| // Endpoint is behind a NAT, with STUN specified. |
| void ResetWithStunServerAndNat(const rtc::SocketAddress& stun_server) { |
| ResetWithStunServer(stun_server, true); |
| } |
| // Endpoint is on the public network, with STUN specified. |
| void ResetWithStunServerNoNat(const rtc::SocketAddress& stun_server) { |
| ResetWithStunServer(stun_server, false); |
| } |
| // Endpoint is on the public network, with TURN specified. |
| void ResetWithTurnServersNoNat(const rtc::SocketAddress& udp_turn, |
| const rtc::SocketAddress& tcp_turn) { |
| ResetWithNoServersOrNat(); |
| AddTurnServers(udp_turn, tcp_turn); |
| } |
| |
| RelayServerConfig CreateTurnServers(const rtc::SocketAddress& udp_turn, |
| const rtc::SocketAddress& tcp_turn) { |
| RelayServerConfig turn_server; |
| RelayCredentials credentials(kTurnUsername, kTurnPassword); |
| turn_server.credentials = credentials; |
| |
| if (!udp_turn.IsNil()) { |
| turn_server.ports.push_back(ProtocolAddress(udp_turn, PROTO_UDP)); |
| } |
| if (!tcp_turn.IsNil()) { |
| turn_server.ports.push_back(ProtocolAddress(tcp_turn, PROTO_TCP)); |
| } |
| return turn_server; |
| } |
| |
| void AddTurnServers(const rtc::SocketAddress& udp_turn, |
| const rtc::SocketAddress& tcp_turn) { |
| RelayServerConfig turn_server = CreateTurnServers(udp_turn, tcp_turn); |
| allocator_->AddTurnServerForTesting(turn_server); |
| } |
| |
| bool CreateSession(int component) { |
| session_ = CreateSession("session", component); |
| if (!session_) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool CreateSession(int component, absl::string_view content_name) { |
| session_ = CreateSession("session", content_name, component); |
| if (!session_) { |
| return false; |
| } |
| return true; |
| } |
| |
| std::unique_ptr<PortAllocatorSession> CreateSession(absl::string_view sid, |
| int component) { |
| return CreateSession(sid, kContentName, component); |
| } |
| |
| std::unique_ptr<PortAllocatorSession> CreateSession( |
| absl::string_view sid, |
| absl::string_view content_name, |
| int component) { |
| return CreateSession(sid, content_name, component, kIceUfrag0, kIcePwd0); |
| } |
| |
| std::unique_ptr<PortAllocatorSession> CreateSession( |
| absl::string_view sid, |
| absl::string_view content_name, |
| int component, |
| absl::string_view ice_ufrag, |
| absl::string_view ice_pwd) { |
| std::unique_ptr<PortAllocatorSession> session = |
| allocator_->CreateSession(content_name, component, ice_ufrag, ice_pwd); |
| session->SignalPortReady.connect(this, |
| &BasicPortAllocatorTestBase::OnPortReady); |
| session->SignalPortsPruned.connect( |
| this, &BasicPortAllocatorTestBase::OnPortsPruned); |
| session->SignalCandidatesReady.connect( |
| this, &BasicPortAllocatorTestBase::OnCandidatesReady); |
| session->SignalCandidatesRemoved.connect( |
| this, &BasicPortAllocatorTestBase::OnCandidatesRemoved); |
| session->SignalCandidatesAllocationDone.connect( |
| this, &BasicPortAllocatorTestBase::OnCandidatesAllocationDone); |
| session->set_ice_tiebreaker(kTiebreakerDefault); |
| return session; |
| } |
| |
| // Return true if the addresses are the same, or the port is 0 in `pattern` |
| // (acting as a wildcard) and the IPs are the same. |
| // Even with a wildcard port, the port of the address should be nonzero if |
| // the IP is nonzero. |
| static bool AddressMatch(const SocketAddress& address, |
| const SocketAddress& pattern) { |
| return address.ipaddr() == pattern.ipaddr() && |
| ((pattern.port() == 0 && |
| (address.port() != 0 || IPIsAny(address.ipaddr()))) || |
| (pattern.port() != 0 && address.port() == pattern.port())); |
| } |
| |
| // Returns the number of ports that have matching type, protocol and |
| // address. |
| static int CountPorts(const std::vector<PortInterface*>& ports, |
| absl::string_view type, |
| ProtocolType protocol, |
| const SocketAddress& client_addr) { |
| return absl::c_count_if( |
| ports, [type, protocol, client_addr](PortInterface* port) { |
| return port->Type() == type && port->GetProtocol() == protocol && |
| port->Network()->GetBestIP() == client_addr.ipaddr(); |
| }); |
| } |
| |
| static int CountCandidates(const std::vector<Candidate>& candidates, |
| absl::string_view type, |
| absl::string_view proto, |
| const SocketAddress& addr) { |
| return absl::c_count_if( |
| candidates, [type, proto, addr](const Candidate& c) { |
| return c.type() == type && c.protocol() == proto && |
| AddressMatch(c.address(), addr); |
| }); |
| } |
| |
| // Find a candidate and return it. |
| static bool FindCandidate(const std::vector<Candidate>& candidates, |
| absl::string_view type, |
| absl::string_view proto, |
| const SocketAddress& addr, |
| Candidate* found) { |
| auto it = |
| absl::c_find_if(candidates, [type, proto, addr](const Candidate& c) { |
| return c.type() == type && c.protocol() == proto && |
| AddressMatch(c.address(), addr); |
| }); |
| if (it != candidates.end() && found) { |
| *found = *it; |
| } |
| return it != candidates.end(); |
| } |
| |
| // Convenience method to call FindCandidate with no return. |
| static bool HasCandidate(const std::vector<Candidate>& candidates, |
| absl::string_view type, |
| absl::string_view proto, |
| const SocketAddress& addr) { |
| return FindCandidate(candidates, type, proto, addr, nullptr); |
| } |
| |
| // Version of HasCandidate that also takes a related address. |
| static bool HasCandidateWithRelatedAddr( |
| const std::vector<Candidate>& candidates, |
| absl::string_view type, |
| absl::string_view proto, |
| const SocketAddress& addr, |
| const SocketAddress& related_addr) { |
| return absl::c_any_of( |
| candidates, [type, proto, addr, related_addr](const Candidate& c) { |
| return c.type() == type && c.protocol() == proto && |
| AddressMatch(c.address(), addr) && |
| AddressMatch(c.related_address(), related_addr); |
| }); |
| } |
| |
| static bool CheckPort(const rtc::SocketAddress& addr, |
| int min_port, |
| int max_port) { |
| return (addr.port() >= min_port && addr.port() <= max_port); |
| } |
| |
| static bool HasNetwork(const std::vector<const rtc::Network*>& networks, |
| const rtc::Network& to_be_found) { |
| auto it = |
| absl::c_find_if(networks, [to_be_found](const rtc::Network* network) { |
| return network->description() == to_be_found.description() && |
| network->name() == to_be_found.name() && |
| network->prefix() == to_be_found.prefix(); |
| }); |
| return it != networks.end(); |
| } |
| |
| void OnCandidatesAllocationDone(PortAllocatorSession* session) { |
| // We should only get this callback once, except in the mux test where |
| // we have multiple port allocation sessions. |
| if (session == session_.get()) { |
| ASSERT_FALSE(candidate_allocation_done_); |
| candidate_allocation_done_ = true; |
| } |
| EXPECT_TRUE(session->CandidatesAllocationDone()); |
| } |
| |
| // Check if all ports allocated have send-buffer size `expected`. If |
| // `expected` == -1, check if GetOptions returns SOCKET_ERROR. |
| void CheckSendBufferSizesOfAllPorts(int expected) { |
| std::vector<PortInterface*>::iterator it; |
| for (it = ports_.begin(); it < ports_.end(); ++it) { |
| int send_buffer_size; |
| if (expected == -1) { |
| EXPECT_EQ(SOCKET_ERROR, |
| (*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size)); |
| } else { |
| EXPECT_EQ(0, |
| (*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size)); |
| ASSERT_EQ(expected, send_buffer_size); |
| } |
| } |
| } |
| |
| rtc::VirtualSocketServer* virtual_socket_server() { return vss_.get(); } |
| |
| protected: |
| BasicPortAllocator& allocator() { return *allocator_; } |
| |
| void OnPortReady(PortAllocatorSession* ses, PortInterface* port) { |
| RTC_LOG(LS_INFO) << "OnPortReady: " << port->ToString(); |
| ports_.push_back(port); |
| // Make sure the new port is added to ReadyPorts. |
| auto ready_ports = ses->ReadyPorts(); |
| EXPECT_THAT(ready_ports, Contains(port)); |
| } |
| void OnPortsPruned(PortAllocatorSession* ses, |
| const std::vector<PortInterface*>& pruned_ports) { |
| RTC_LOG(LS_INFO) << "Number of ports pruned: " << pruned_ports.size(); |
| auto ready_ports = ses->ReadyPorts(); |
| auto new_end = ports_.end(); |
| for (PortInterface* port : pruned_ports) { |
| new_end = std::remove(ports_.begin(), new_end, port); |
| // Make sure the pruned port is not in ReadyPorts. |
| EXPECT_THAT(ready_ports, Not(Contains(port))); |
| } |
| ports_.erase(new_end, ports_.end()); |
| } |
| |
| void OnCandidatesReady(PortAllocatorSession* ses, |
| const std::vector<Candidate>& candidates) { |
| for (const Candidate& candidate : candidates) { |
| RTC_LOG(LS_INFO) << "OnCandidatesReady: " << candidate.ToString(); |
| // Sanity check that the ICE component is set. |
| EXPECT_EQ(ICE_CANDIDATE_COMPONENT_RTP, candidate.component()); |
| candidates_.push_back(candidate); |
| } |
| // Make sure the new candidates are added to Candidates. |
| auto ses_candidates = ses->ReadyCandidates(); |
| for (const Candidate& candidate : candidates) { |
| EXPECT_THAT(ses_candidates, Contains(candidate)); |
| } |
| } |
| |
| void OnCandidatesRemoved(PortAllocatorSession* session, |
| const std::vector<Candidate>& removed_candidates) { |
| auto new_end = std::remove_if( |
| candidates_.begin(), candidates_.end(), |
| [removed_candidates](Candidate& candidate) { |
| for (const Candidate& removed_candidate : removed_candidates) { |
| if (candidate.MatchesForRemoval(removed_candidate)) { |
| return true; |
| } |
| } |
| return false; |
| }); |
| candidates_.erase(new_end, candidates_.end()); |
| } |
| |
| bool HasRelayAddress(const ProtocolAddress& proto_addr) { |
| for (size_t i = 0; i < allocator_->turn_servers().size(); ++i) { |
| RelayServerConfig server_config = allocator_->turn_servers()[i]; |
| PortList::const_iterator relay_port; |
| for (relay_port = server_config.ports.begin(); |
| relay_port != server_config.ports.end(); ++relay_port) { |
| if (proto_addr.address == relay_port->address && |
| proto_addr.proto == relay_port->proto) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void ResetWithStunServer(const rtc::SocketAddress& stun_server, |
| bool with_nat) { |
| if (with_nat) { |
| nat_server_.reset(new rtc::NATServer( |
| rtc::NAT_OPEN_CONE, vss_.get(), kNatUdpAddr, kNatTcpAddr, vss_.get(), |
| rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0))); |
| } else { |
| nat_socket_factory_ = |
| std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get()); |
| } |
| |
| ServerAddresses stun_servers; |
| if (!stun_server.IsNil()) { |
| stun_servers.insert(stun_server); |
| } |
| allocator_.reset(new BasicPortAllocator(&network_manager_, |
| nat_socket_factory_.get(), |
| stun_servers, &field_trials_)); |
| allocator_->Initialize(); |
| allocator_->set_step_delay(kMinimumStepDelay); |
| } |
| |
| std::unique_ptr<rtc::VirtualSocketServer> vss_; |
| std::unique_ptr<rtc::FirewallSocketServer> fss_; |
| rtc::BasicPacketSocketFactory socket_factory_; |
| rtc::AutoSocketServerThread thread_; |
| std::unique_ptr<rtc::NATServer> nat_server_; |
| rtc::NATSocketFactory nat_factory_; |
| std::unique_ptr<rtc::BasicPacketSocketFactory> nat_socket_factory_; |
| TestStunServer::StunServerPtr stun_server_; |
| TestTurnServer turn_server_; |
| rtc::FakeNetworkManager network_manager_; |
| std::unique_ptr<BasicPortAllocator> allocator_; |
| std::unique_ptr<PortAllocatorSession> session_; |
| std::vector<PortInterface*> ports_; |
| std::vector<Candidate> candidates_; |
| bool candidate_allocation_done_; |
| webrtc::test::ScopedKeyValueConfig field_trials_; |
| }; |
| |
| class BasicPortAllocatorTestWithRealClock : public BasicPortAllocatorTestBase { |
| }; |
| |
| class FakeClockBase { |
| public: |
| rtc::ScopedFakeClock fake_clock; |
| }; |
| |
| class BasicPortAllocatorTest : public FakeClockBase, |
| public BasicPortAllocatorTestBase { |
| public: |
| // This function starts the port/address gathering and check the existence of |
| // candidates as specified. When `expect_stun_candidate` is true, |
| // `stun_candidate_addr` carries the expected reflective address, which is |
| // also the related address for TURN candidate if it is expected. Otherwise, |
| // it should be ignore. |
| void CheckDisableAdapterEnumeration( |
| uint32_t total_ports, |
| const rtc::IPAddress& host_candidate_addr, |
| const rtc::IPAddress& stun_candidate_addr, |
| const rtc::IPAddress& relay_candidate_udp_transport_addr, |
| const rtc::IPAddress& relay_candidate_tcp_transport_addr) { |
| network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(), |
| rtc::IPAddress()); |
| if (!session_) { |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| } |
| session_->set_flags(session_->flags() | |
| PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| allocator().set_allow_tcp_listen(false); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| |
| uint32_t total_candidates = 0; |
| if (!host_candidate_addr.IsNil()) { |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", |
| rtc::SocketAddress(kPrivateAddr.ipaddr(), 0))); |
| ++total_candidates; |
| } |
| if (!stun_candidate_addr.IsNil()) { |
| rtc::SocketAddress related_address(host_candidate_addr, 0); |
| if (host_candidate_addr.IsNil()) { |
| related_address.SetIP(rtc::GetAnyIP(stun_candidate_addr.family())); |
| } |
| EXPECT_TRUE(HasCandidateWithRelatedAddr( |
| candidates_, "stun", "udp", |
| rtc::SocketAddress(stun_candidate_addr, 0), related_address)); |
| ++total_candidates; |
| } |
| if (!relay_candidate_udp_transport_addr.IsNil()) { |
| EXPECT_TRUE(HasCandidateWithRelatedAddr( |
| candidates_, "relay", "udp", |
| rtc::SocketAddress(relay_candidate_udp_transport_addr, 0), |
| rtc::SocketAddress(stun_candidate_addr, 0))); |
| ++total_candidates; |
| } |
| if (!relay_candidate_tcp_transport_addr.IsNil()) { |
| EXPECT_TRUE(HasCandidateWithRelatedAddr( |
| candidates_, "relay", "udp", |
| rtc::SocketAddress(relay_candidate_tcp_transport_addr, 0), |
| rtc::SocketAddress(stun_candidate_addr, 0))); |
| ++total_candidates; |
| } |
| |
| EXPECT_EQ(total_candidates, candidates_.size()); |
| EXPECT_EQ(total_ports, ports_.size()); |
| } |
| |
| void TestIPv6TurnPortPrunesIPv4TurnPort() { |
| turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP); |
| // Add two IP addresses on the same interface. |
| AddInterface(kClientAddr, "net1"); |
| AddInterface(kClientIPv6Addr, "net1"); |
| allocator_.reset( |
| new BasicPortAllocator(&network_manager_, &socket_factory_)); |
| allocator_->Initialize(); |
| allocator_->SetConfiguration(allocator_->stun_servers(), |
| allocator_->turn_servers(), 0, |
| webrtc::PRUNE_BASED_ON_PRIORITY); |
| AddTurnServers(kTurnUdpIntIPv6Addr, rtc::SocketAddress()); |
| AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); |
| |
| allocator_->set_step_delay(kMinimumStepDelay); |
| allocator_->set_flags( |
| allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP); |
| |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Three ports (one IPv4 STUN, one IPv6 STUN and one TURN) will be ready. |
| EXPECT_EQ(3U, session_->ReadyPorts().size()); |
| EXPECT_EQ(3U, ports_.size()); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr)); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr)); |
| EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr)); |
| EXPECT_EQ(0, CountPorts(ports_, "relay", PROTO_UDP, kClientAddr)); |
| |
| // Now that we remove candidates when a TURN port is pruned, there will be |
| // exactly 3 candidates in both `candidates_` and `ready_candidates`. |
| EXPECT_EQ(3U, candidates_.size()); |
| const std::vector<Candidate>& ready_candidates = |
| session_->ReadyCandidates(); |
| EXPECT_EQ(3U, ready_candidates.size()); |
| EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); |
| } |
| |
| void TestTurnPortPrunesWithUdpAndTcpPorts( |
| webrtc::PortPrunePolicy prune_policy, |
| bool tcp_pruned) { |
| turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); |
| AddInterface(kClientAddr); |
| allocator_.reset( |
| new BasicPortAllocator(&network_manager_, &socket_factory_)); |
| allocator_->Initialize(); |
| allocator_->SetConfiguration(allocator_->stun_servers(), |
| allocator_->turn_servers(), 0, prune_policy); |
| AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); |
| allocator_->set_step_delay(kMinimumStepDelay); |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_DISABLE_TCP); |
| |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Only 2 ports (one STUN and one TURN) are actually being used. |
| EXPECT_EQ(2U, session_->ReadyPorts().size()); |
| // We have verified that each port, when it is added to `ports_`, it is |
| // found in `ready_ports`, and when it is pruned, it is not found in |
| // `ready_ports`, so we only need to verify the content in one of them. |
| EXPECT_EQ(2U, ports_.size()); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr)); |
| int num_udp_ports = tcp_pruned ? 1 : 0; |
| EXPECT_EQ(num_udp_ports, |
| CountPorts(ports_, "relay", PROTO_UDP, kClientAddr)); |
| EXPECT_EQ(1 - num_udp_ports, |
| CountPorts(ports_, "relay", PROTO_TCP, kClientAddr)); |
| |
| // Now that we remove candidates when a TURN port is pruned, `candidates_` |
| // should only contains two candidates regardless whether the TCP TURN port |
| // is created before or after the UDP turn port. |
| EXPECT_EQ(2U, candidates_.size()); |
| // There will only be 2 candidates in `ready_candidates` because it only |
| // includes the candidates in the ready ports. |
| const std::vector<Candidate>& ready_candidates = |
| session_->ReadyCandidates(); |
| EXPECT_EQ(2U, ready_candidates.size()); |
| EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr)); |
| |
| // The external candidate is always udp. |
| EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); |
| } |
| |
| void TestEachInterfaceHasItsOwnTurnPorts() { |
| turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); |
| turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP); |
| turn_server_.AddInternalSocket(kTurnTcpIntIPv6Addr, PROTO_TCP); |
| // Add two interfaces both having IPv4 and IPv6 addresses. |
| AddInterface(kClientAddr, "net1", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(kClientIPv6Addr, "net1", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(kClientAddr2, "net2", rtc::ADAPTER_TYPE_CELLULAR); |
| AddInterface(kClientIPv6Addr2, "net2", rtc::ADAPTER_TYPE_CELLULAR); |
| allocator_.reset( |
| new BasicPortAllocator(&network_manager_, &socket_factory_)); |
| allocator_->Initialize(); |
| allocator_->SetConfiguration(allocator_->stun_servers(), |
| allocator_->turn_servers(), 0, |
| webrtc::PRUNE_BASED_ON_PRIORITY); |
| // Have both UDP/TCP and IPv4/IPv6 TURN ports. |
| AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); |
| AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr); |
| |
| allocator_->set_step_delay(kMinimumStepDelay); |
| allocator_->set_flags( |
| allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // 10 ports (4 STUN and 1 TURN ports on each interface) will be ready to |
| // use. |
| EXPECT_EQ(10U, session_->ReadyPorts().size()); |
| EXPECT_EQ(10U, ports_.size()); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr)); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr2)); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr)); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr2)); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr)); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr2)); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr)); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr2)); |
| EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr)); |
| EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr2)); |
| |
| // Now that we remove candidates when TURN ports are pruned, there will be |
| // exactly 10 candidates in `candidates_`. |
| EXPECT_EQ(10U, candidates_.size()); |
| const std::vector<Candidate>& ready_candidates = |
| session_->ReadyCandidates(); |
| EXPECT_EQ(10U, ready_candidates.size()); |
| EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr2)); |
| EXPECT_TRUE( |
| HasCandidate(ready_candidates, "local", "udp", kClientIPv6Addr)); |
| EXPECT_TRUE( |
| HasCandidate(ready_candidates, "local", "udp", kClientIPv6Addr2)); |
| EXPECT_TRUE(HasCandidate(ready_candidates, "local", "tcp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(ready_candidates, "local", "tcp", kClientAddr2)); |
| EXPECT_TRUE( |
| HasCandidate(ready_candidates, "local", "tcp", kClientIPv6Addr)); |
| EXPECT_TRUE( |
| HasCandidate(ready_candidates, "local", "tcp", kClientIPv6Addr2)); |
| EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); |
| } |
| }; |
| |
| // Tests that we can init the port allocator and create a session. |
| TEST_F(BasicPortAllocatorTest, TestBasic) { |
| EXPECT_EQ(&network_manager_, allocator().network_manager()); |
| EXPECT_EQ(kStunAddr, *allocator().stun_servers().begin()); |
| ASSERT_EQ(0u, allocator().turn_servers().size()); |
| |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| EXPECT_FALSE(session_->CandidatesAllocationDone()); |
| } |
| |
| // Tests that our network filtering works properly. |
| TEST_F(BasicPortAllocatorTest, TestIgnoreOnlyLoopbackNetworkByDefault) { |
| AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0", |
| rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0", |
| rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0", |
| rtc::ADAPTER_TYPE_CELLULAR); |
| AddInterface(SocketAddress(IPAddress(0x12345603U), 0), "test_vpn0", |
| rtc::ADAPTER_TYPE_VPN); |
| AddInterface(SocketAddress(IPAddress(0x12345604U), 0), "test_lo", |
| rtc::ADAPTER_TYPE_LOOPBACK); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | |
| PORTALLOCATOR_DISABLE_TCP); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(4U, candidates_.size()); |
| for (const Candidate& candidate : candidates_) { |
| EXPECT_LT(candidate.address().ip(), 0x12345604U); |
| } |
| } |
| |
| TEST_F(BasicPortAllocatorTest, TestIgnoreNetworksAccordingToIgnoreMask) { |
| AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0", |
| rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0", |
| rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0", |
| rtc::ADAPTER_TYPE_CELLULAR); |
| allocator_->SetNetworkIgnoreMask(rtc::ADAPTER_TYPE_ETHERNET | |
| rtc::ADAPTER_TYPE_LOOPBACK | |
| rtc::ADAPTER_TYPE_WIFI); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | |
| PORTALLOCATOR_DISABLE_TCP); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(1U, candidates_.size()); |
| EXPECT_EQ(0x12345602U, candidates_[0].address().ip()); |
| } |
| |
| // Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and |
| // both Wi-Fi and cell interfaces are available, only Wi-Fi is used. |
| TEST_F(BasicPortAllocatorTest, |
| WifiUsedInsteadOfCellWhenCostlyNetworksDisabled) { |
| SocketAddress wifi(IPAddress(0x12345600U), 0); |
| SocketAddress cell(IPAddress(0x12345601U), 0); |
| AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); |
| // Disable all but UDP candidates to make the test simpler. |
| allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | |
| cricket::PORTALLOCATOR_DISABLE_RELAY | |
| cricket::PORTALLOCATOR_DISABLE_TCP | |
| cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Should only get one Wi-Fi candidate. |
| EXPECT_EQ(1U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi)); |
| } |
| |
| // Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and |
| // both "unknown" and cell interfaces are available, only the unknown are used. |
| // The unknown interface may be something that ultimately uses Wi-Fi, so we do |
| // this to be on the safe side. |
| TEST_F(BasicPortAllocatorTest, |
| UnknownInterfaceUsedInsteadOfCellWhenCostlyNetworksDisabled) { |
| SocketAddress cell(IPAddress(0x12345601U), 0); |
| SocketAddress unknown1(IPAddress(0x12345602U), 0); |
| SocketAddress unknown2(IPAddress(0x12345603U), 0); |
| AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); |
| AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN); |
| AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN); |
| // Disable all but UDP candidates to make the test simpler. |
| allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | |
| cricket::PORTALLOCATOR_DISABLE_RELAY | |
| cricket::PORTALLOCATOR_DISABLE_TCP | |
| cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Should only get two candidates, none of which is cell. |
| EXPECT_EQ(2U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", unknown1)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", unknown2)); |
| } |
| |
| // Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and |
| // there are a mix of Wi-Fi, "unknown" and cell interfaces, only the Wi-Fi |
| // interface is used. |
| TEST_F(BasicPortAllocatorTest, |
| WifiUsedInsteadOfUnknownOrCellWhenCostlyNetworksDisabled) { |
| SocketAddress wifi(IPAddress(0x12345600U), 0); |
| SocketAddress cellular(IPAddress(0x12345601U), 0); |
| SocketAddress unknown1(IPAddress(0x12345602U), 0); |
| SocketAddress unknown2(IPAddress(0x12345603U), 0); |
| AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); |
| AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN); |
| AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN); |
| // Disable all but UDP candidates to make the test simpler. |
| allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | |
| cricket::PORTALLOCATOR_DISABLE_RELAY | |
| cricket::PORTALLOCATOR_DISABLE_TCP | |
| cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Should only get one Wi-Fi candidate. |
| EXPECT_EQ(1U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi)); |
| } |
| |
| // Test that if the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set, but the |
| // only interface available is cellular, it ends up used anyway. A costly |
| // connection is always better than no connection. |
| TEST_F(BasicPortAllocatorTest, |
| CellUsedWhenCostlyNetworksDisabledButThereAreNoOtherInterfaces) { |
| SocketAddress cellular(IPAddress(0x12345601U), 0); |
| AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); |
| // Disable all but UDP candidates to make the test simpler. |
| allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | |
| cricket::PORTALLOCATOR_DISABLE_RELAY | |
| cricket::PORTALLOCATOR_DISABLE_TCP | |
| cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Make sure we got the cell candidate. |
| EXPECT_EQ(1U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", cellular)); |
| } |
| |
| // Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is |
| // a WiFi network with link-local IP address and a cellular network, then the |
| // cellular candidate will still be gathered. |
| TEST_F(BasicPortAllocatorTest, |
| CellNotRemovedWhenCostlyNetworksDisabledAndWifiIsLinkLocal) { |
| SocketAddress wifi_link_local("169.254.0.1", 0); |
| SocketAddress cellular(IPAddress(0x12345601U), 0); |
| AddInterface(wifi_link_local, "test_wlan0", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); |
| |
| allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | |
| cricket::PORTALLOCATOR_DISABLE_RELAY | |
| cricket::PORTALLOCATOR_DISABLE_TCP | |
| cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Make sure we got both wifi and cell candidates. |
| EXPECT_EQ(2U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi_link_local)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", cellular)); |
| } |
| |
| // Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is |
| // a WiFi network with link-local IP address, a WiFi network with a normal IP |
| // address and a cellular network, then the cellular candidate will not be |
| // gathered. |
| TEST_F(BasicPortAllocatorTest, |
| CellRemovedWhenCostlyNetworksDisabledAndBothWifisPresent) { |
| SocketAddress wifi(IPAddress(0x12345600U), 0); |
| SocketAddress wifi_link_local("169.254.0.1", 0); |
| SocketAddress cellular(IPAddress(0x12345601U), 0); |
| AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(wifi_link_local, "test_wlan1", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); |
| |
| allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | |
| cricket::PORTALLOCATOR_DISABLE_RELAY | |
| cricket::PORTALLOCATOR_DISABLE_TCP | |
| cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Make sure we got only wifi candidates. |
| EXPECT_EQ(2U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi_link_local)); |
| } |
| |
| // Test that the adapter types of the Ethernet and the VPN can be correctly |
| // identified so that the Ethernet has a lower network cost than the VPN, and |
| // the Ethernet is not filtered out if PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is |
| // set. |
| TEST_F(BasicPortAllocatorTest, |
| EthernetIsNotFilteredOutWhenCostlyNetworksDisabledAndVpnPresent) { |
| AddInterface(kClientAddr, "eth0", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientAddr2, "tap0", rtc::ADAPTER_TYPE_VPN); |
| allocator().set_flags(PORTALLOCATOR_DISABLE_COSTLY_NETWORKS | |
| PORTALLOCATOR_DISABLE_RELAY | |
| PORTALLOCATOR_DISABLE_TCP); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // The VPN tap0 network should be filtered out as a costly network, and we |
| // should have a UDP port and a STUN port from the Ethernet eth0. |
| ASSERT_EQ(2U, ports_.size()); |
| EXPECT_EQ(ports_[0]->Network()->name(), "eth0"); |
| EXPECT_EQ(ports_[1]->Network()->name(), "eth0"); |
| } |
| |
| // Test that no more than allocator.max_ipv6_networks() IPv6 networks are used |
| // to gather candidates. |
| TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitEnforced) { |
| // Add three IPv6 network interfaces, but tell the allocator to only use two. |
| allocator().set_max_ipv6_networks(2); |
| AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientIPv6Addr3, "eth2", rtc::ADAPTER_TYPE_ETHERNET); |
| |
| // To simplify the test, only gather UDP host candidates. |
| allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | |
| PORTALLOCATOR_DISABLE_STUN | |
| PORTALLOCATOR_DISABLE_RELAY); |
| |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(2U, candidates_.size()); |
| // Ensure the expected two interfaces (eth0 and eth1) were used. |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr2)); |
| } |
| |
| // Ensure that allocator.max_ipv6_networks() doesn't prevent IPv4 networks from |
| // being used. |
| TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitDoesNotImpactIpv4Networks) { |
| // Set the "max IPv6" limit to 1, adding two IPv6 and two IPv4 networks. |
| allocator().set_max_ipv6_networks(1); |
| AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientAddr, "eth2", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientAddr2, "eth3", rtc::ADAPTER_TYPE_ETHERNET); |
| |
| // To simplify the test, only gather UDP host candidates. |
| allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | |
| PORTALLOCATOR_DISABLE_STUN | |
| PORTALLOCATOR_DISABLE_RELAY); |
| |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| // Ensure that only one IPv6 interface was used, but both IPv4 interfaces |
| // were used. |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr2)); |
| } |
| |
| // Test that we could use loopback interface as host candidate. |
| TEST_F(BasicPortAllocatorTest, TestLoopbackNetworkInterface) { |
| AddInterface(kLoopbackAddr, "test_loopback", rtc::ADAPTER_TYPE_LOOPBACK); |
| allocator_->SetNetworkIgnoreMask(0); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | |
| PORTALLOCATOR_DISABLE_TCP); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(1U, candidates_.size()); |
| } |
| |
| // Tests that we can get all the desired addresses successfully. |
| TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithMinimumStepDelay) { |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| EXPECT_EQ(3U, ports_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); |
| } |
| |
| // Test that when the same network interface is brought down and up, the |
| // port allocator session will restart a new allocation sequence if |
| // it is not stopped. |
| TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionNotStopped) { |
| std::string if_name("test_net0"); |
| AddInterface(kClientAddr, if_name); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| EXPECT_EQ(3U, ports_.size()); |
| candidate_allocation_done_ = false; |
| candidates_.clear(); |
| ports_.clear(); |
| |
| // Disable socket creation to simulate the network interface being down. When |
| // no network interfaces are available, BasicPortAllocator will fall back to |
| // binding to the "ANY" address, so we need to make sure that fails too. |
| fss_->set_tcp_sockets_enabled(false); |
| fss_->set_udp_sockets_enabled(false); |
| RemoveInterface(kClientAddr); |
| SIMULATED_WAIT(false, 1000, fake_clock); |
| EXPECT_EQ(0U, candidates_.size()); |
| ports_.clear(); |
| candidate_allocation_done_ = false; |
| |
| // When the same interfaces are added again, new candidates/ports should be |
| // generated. |
| fss_->set_tcp_sockets_enabled(true); |
| fss_->set_udp_sockets_enabled(true); |
| AddInterface(kClientAddr, if_name); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| EXPECT_EQ(3U, ports_.size()); |
| } |
| |
| // Test that when the same network interface is brought down and up, the |
| // port allocator session will not restart a new allocation sequence if |
| // it is stopped. |
| TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionStopped) { |
| std::string if_name("test_net0"); |
| AddInterface(kClientAddr, if_name); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| EXPECT_EQ(3U, ports_.size()); |
| session_->StopGettingPorts(); |
| candidates_.clear(); |
| ports_.clear(); |
| |
| RemoveInterface(kClientAddr); |
| // Wait one (simulated) second and then verify no new candidates have |
| // appeared. |
| SIMULATED_WAIT(false, 1000, fake_clock); |
| EXPECT_EQ(0U, candidates_.size()); |
| EXPECT_EQ(0U, ports_.size()); |
| |
| // When the same interfaces are added again, new candidates/ports should not |
| // be generated because the session has stopped. |
| AddInterface(kClientAddr, if_name); |
| SIMULATED_WAIT(false, 1000, fake_clock); |
| EXPECT_EQ(0U, candidates_.size()); |
| EXPECT_EQ(0U, ports_.size()); |
| } |
| |
| // Similar to the above tests, but tests a situation when sockets can't be |
| // bound to a network interface, then after a network change event can be. |
| // Related bug: https://bugs.chromium.org/p/webrtc/issues/detail?id=8256 |
| TEST_F(BasicPortAllocatorTest, CandidatesRegatheredAfterBindingFails) { |
| // Only test local ports to simplify test. |
| ResetWithNoServersOrNat(); |
| // Provide a situation where the interface appears to be available, but |
| // binding the sockets fails. See bug for description of when this can |
| // happen. |
| std::string if_name("test_net0"); |
| AddInterface(kClientAddr, if_name); |
| fss_->set_tcp_sockets_enabled(false); |
| fss_->set_udp_sockets_enabled(false); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Make sure we actually prevented candidates from being gathered (other than |
| // a single TCP active candidate, since that doesn't require creating a |
| // socket). |
| ASSERT_EQ(1U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); |
| candidate_allocation_done_ = false; |
| |
| // Now simulate the interface coming up, with the newfound ability to bind |
| // sockets. |
| fss_->set_tcp_sockets_enabled(true); |
| fss_->set_udp_sockets_enabled(true); |
| AddInterface(kClientAddr, if_name); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Should get UDP and TCP candidate. |
| ASSERT_EQ(2U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| // TODO(deadbeef): This is actually the same active TCP candidate as before. |
| // We should extend this test to also verify that a server candidate is |
| // gathered. |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); |
| } |
| |
| // Verify candidates with default step delay of 1sec. |
| TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithOneSecondStepDelay) { |
| AddInterface(kClientAddr); |
| allocator_->set_step_delay(kDefaultStepDelay); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock); |
| EXPECT_EQ(2U, ports_.size()); |
| ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 2000, fake_clock); |
| EXPECT_EQ(3U, ports_.size()); |
| |
| ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 1500, fake_clock); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); |
| EXPECT_EQ(3U, ports_.size()); |
| EXPECT_TRUE(candidate_allocation_done_); |
| // If we Stop gathering now, we shouldn't get a second "done" callback. |
| session_->StopGettingPorts(); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, TestSetupVideoRtpPortsWithNormalSendBuffers) { |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP, CN_VIDEO)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| // If we Stop gathering now, we shouldn't get a second "done" callback. |
| session_->StopGettingPorts(); |
| |
| // All ports should have unset send-buffer sizes. |
| CheckSendBufferSizesOfAllPorts(-1); |
| } |
| |
| // Tests that we can get callback after StopGetAllPorts when called in the |
| // middle of gathering. |
| TEST_F(BasicPortAllocatorTest, TestStopGetAllPorts) { |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(2U, ports_.size()); |
| session_->StopGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| } |
| |
| // Test that we restrict client ports appropriately when a port range is set. |
| // We check the candidates for udp/stun/tcp ports, and the from address |
| // for relay ports. |
| TEST_F(BasicPortAllocatorTest, TestGetAllPortsPortRange) { |
| AddInterface(kClientAddr); |
| // Check that an invalid port range fails. |
| EXPECT_FALSE(SetPortRange(kMaxPort, kMinPort)); |
| // Check that a null port range succeeds. |
| EXPECT_TRUE(SetPortRange(0, 0)); |
| // Check that a valid port range succeeds. |
| EXPECT_TRUE(SetPortRange(kMinPort, kMaxPort)); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| EXPECT_EQ(3U, ports_.size()); |
| |
| int num_nonrelay_candidates = 0; |
| for (const Candidate& candidate : candidates_) { |
| // Check the port number for the UDP/STUN/TCP port objects. |
| if (candidate.type() != RELAY_PORT_TYPE) { |
| EXPECT_TRUE(CheckPort(candidate.address(), kMinPort, kMaxPort)); |
| ++num_nonrelay_candidates; |
| } |
| } |
| EXPECT_EQ(3, num_nonrelay_candidates); |
| } |
| |
| // Test that if we have no network adapters, we bind to the ANY address and |
| // still get non-host candidates. |
| TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoAdapters) { |
| // Default config uses GTURN and no NAT, so replace that with the |
| // desired setup (NAT, STUN server, TURN server, UDP/TCP). |
| ResetWithStunServerAndNat(kStunAddr); |
| turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); |
| AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); |
| AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(4U, ports_.size()); |
| EXPECT_EQ(1, CountPorts(ports_, "stun", PROTO_UDP, kAnyAddr)); |
| EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kAnyAddr)); |
| // Two TURN ports, using UDP/TCP for the first hop to the TURN server. |
| EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kAnyAddr)); |
| EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_TCP, kAnyAddr)); |
| // The "any" address port should be in the signaled ready ports, but the host |
| // candidate for it is useless and shouldn't be signaled. So we only have |
| // STUN/TURN candidates. |
| EXPECT_EQ(3U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", |
| rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0))); |
| // Again, two TURN candidates, using UDP/TCP for the first hop to the TURN |
| // server. |
| EXPECT_EQ(2, |
| CountCandidates(candidates_, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); |
| } |
| |
| // Test that when enumeration is disabled, we should not have any ports when |
| // candidate_filter() is set to CF_RELAY and no relay is specified. |
| TEST_F(BasicPortAllocatorTest, |
| TestDisableAdapterEnumerationWithoutNatRelayTransportOnly) { |
| ResetWithStunServerNoNat(kStunAddr); |
| allocator().SetCandidateFilter(CF_RELAY); |
| // Expect to see no ports and no candidates. |
| CheckDisableAdapterEnumeration(0U, rtc::IPAddress(), rtc::IPAddress(), |
| rtc::IPAddress(), rtc::IPAddress()); |
| } |
| |
| // Test that even with multiple interfaces, the result should still be a single |
| // default private, one STUN and one TURN candidate since we bind to any address |
| // (i.e. all 0s). |
| TEST_F(BasicPortAllocatorTest, |
| TestDisableAdapterEnumerationBehindNatMultipleInterfaces) { |
| AddInterface(kPrivateAddr); |
| AddInterface(kPrivateAddr2); |
| ResetWithStunServerAndNat(kStunAddr); |
| AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); |
| |
| // Enable IPv6 here. Since the network_manager doesn't have IPv6 default |
| // address set and we have no IPv6 STUN server, there should be no IPv6 |
| // candidates. |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->set_flags(PORTALLOCATOR_ENABLE_IPV6); |
| |
| // Expect to see 3 ports for IPv4: HOST/STUN, TURN/UDP and TCP ports, 2 ports |
| // for IPv6: HOST, and TCP. Only IPv4 candidates: a default private, STUN and |
| // TURN/UDP candidates. |
| CheckDisableAdapterEnumeration(5U, kPrivateAddr.ipaddr(), |
| kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(), |
| rtc::IPAddress()); |
| } |
| |
| // Test that we should get a default private, STUN, TURN/UDP and TURN/TCP |
| // candidates when both TURN/UDP and TURN/TCP servers are specified. |
| TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationBehindNatWithTcp) { |
| turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); |
| AddInterface(kPrivateAddr); |
| ResetWithStunServerAndNat(kStunAddr); |
| AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); |
| // Expect to see 4 ports - STUN, TURN/UDP, TURN/TCP and TCP port. A default |
| // private, STUN, TURN/UDP, and TURN/TCP candidates. |
| CheckDisableAdapterEnumeration(4U, kPrivateAddr.ipaddr(), |
| kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(), |
| kTurnUdpExtAddr.ipaddr()); |
| } |
| |
| // Test that when adapter enumeration is disabled, for endpoints without |
| // STUN/TURN specified, a default private candidate is still generated. |
| TEST_F(BasicPortAllocatorTest, |
| TestDisableAdapterEnumerationWithoutNatOrServers) { |
| ResetWithNoServersOrNat(); |
| // Expect to see 2 ports: STUN and TCP ports, one default private candidate. |
| CheckDisableAdapterEnumeration(2U, kPrivateAddr.ipaddr(), rtc::IPAddress(), |
| rtc::IPAddress(), rtc::IPAddress()); |
| } |
| |
| // Test that when adapter enumeration is disabled, with |
| // PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind |
| // a NAT, there is no local candidate. |
| TEST_F(BasicPortAllocatorTest, |
| TestDisableAdapterEnumerationWithoutNatLocalhostCandidateDisabled) { |
| ResetWithStunServerNoNat(kStunAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE); |
| // Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN |
| // candidate. |
| CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), rtc::IPAddress(), |
| rtc::IPAddress(), rtc::IPAddress()); |
| } |
| |
| // Test that when adapter enumeration is disabled, with |
| // PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind |
| // a NAT, there is no local candidate. However, this specified default route |
| // (kClientAddr) which was discovered when sending STUN requests, will become |
| // the srflx addresses. |
| TEST_F(BasicPortAllocatorTest, |
| TestDisableAdapterEnumerationWithoutNatLocalhostCandDisabledDiffRoute) { |
| ResetWithStunServerNoNat(kStunAddr); |
| AddInterfaceAsDefaultSourceAddresss(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE); |
| // Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN |
| // candidate. |
| CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kClientAddr.ipaddr(), |
| rtc::IPAddress(), rtc::IPAddress()); |
| } |
| |
| // Test that when adapter enumeration is disabled, with |
| // PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints behind a |
| // NAT, there is only one STUN candidate. |
| TEST_F(BasicPortAllocatorTest, |
| TestDisableAdapterEnumerationWithNatLocalhostCandidateDisabled) { |
| ResetWithStunServerAndNat(kStunAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE); |
| // Expect to see 2 ports: STUN and TCP ports, and single STUN candidate. |
| CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kNatUdpAddr.ipaddr(), |
| rtc::IPAddress(), rtc::IPAddress()); |
| } |
| |
| // Test that we disable relay over UDP, and only TCP is used when connecting to |
| // the relay server. |
| TEST_F(BasicPortAllocatorTest, TestDisableUdpTurn) { |
| turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); |
| AddInterface(kClientAddr); |
| ResetWithStunServerAndNat(kStunAddr); |
| AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->set_flags(PORTALLOCATOR_DISABLE_UDP_RELAY | |
| PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| |
| // Expect to see 2 ports and 2 candidates - TURN/TCP and TCP ports, TCP and |
| // TURN/TCP candidates. |
| EXPECT_EQ(2U, ports_.size()); |
| EXPECT_EQ(2U, candidates_.size()); |
| Candidate turn_candidate; |
| EXPECT_TRUE(FindCandidate(candidates_, "relay", "udp", kTurnUdpExtAddr, |
| &turn_candidate)); |
| // The TURN candidate should use TCP to contact the TURN server. |
| EXPECT_EQ(TCP_PROTOCOL_NAME, turn_candidate.relay_protocol()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); |
| } |
| |
| // Test that we can get OnCandidatesAllocationDone callback when all the ports |
| // are disabled. |
| TEST_F(BasicPortAllocatorTest, TestDisableAllPorts) { |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->set_flags(PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN | |
| PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock); |
| EXPECT_EQ(0U, candidates_.size()); |
| } |
| |
| // Test that we don't crash or malfunction if we can't create UDP sockets. |
| TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSockets) { |
| AddInterface(kClientAddr); |
| fss_->set_udp_sockets_enabled(false); |
| ASSERT_TRUE(CreateSession(1)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(1U, candidates_.size()); |
| EXPECT_EQ(1U, ports_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); |
| } |
| |
| // Test that we don't crash or malfunction if we can't create UDP sockets or |
| // listen on TCP sockets. We still give out a local TCP address, since |
| // apparently this is needed for the remote side to accept our connection. |
| TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSocketsNoTcpListen) { |
| AddInterface(kClientAddr); |
| fss_->set_udp_sockets_enabled(false); |
| fss_->set_tcp_listen_enabled(false); |
| ASSERT_TRUE(CreateSession(1)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(1U, candidates_.size()); |
| EXPECT_EQ(1U, ports_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); |
| } |
| |
| // Test that we don't crash or malfunction if we can't create any sockets. |
| // TODO(deadbeef): Find a way to exit early here. |
| TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoSockets) { |
| AddInterface(kClientAddr); |
| fss_->set_tcp_sockets_enabled(false); |
| fss_->set_udp_sockets_enabled(false); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| SIMULATED_WAIT(candidates_.size() > 0, 2000, fake_clock); |
| // TODO(deadbeef): Check candidate_allocation_done signal. |
| // In case of Relay, ports creation will succeed but sockets will fail. |
| // There is no error reporting from RelayEntry to handle this failure. |
| } |
| |
| // Testing STUN timeout. |
| TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpAllowed) { |
| fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr); |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(2U, ports_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); |
| // We wait at least for a full STUN timeout, which |
| // cricket::STUN_TOTAL_TIMEOUT seconds. |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| cricket::STUN_TOTAL_TIMEOUT, fake_clock); |
| // No additional (STUN) candidates. |
| EXPECT_EQ(2U, candidates_.size()); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, TestCandidatePriorityOfMultipleInterfaces) { |
| AddInterface(kClientAddr); |
| AddInterface(kClientAddr2); |
| // Allocating only host UDP ports. This is done purely for testing |
| // convenience. |
| allocator().set_flags(PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | |
| PORTALLOCATOR_DISABLE_RELAY); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| ASSERT_EQ(2U, candidates_.size()); |
| EXPECT_EQ(2U, ports_.size()); |
| // Candidates priorities should be different. |
| EXPECT_NE(candidates_[0].priority(), candidates_[1].priority()); |
| } |
| |
| // Test to verify ICE restart process. |
| TEST_F(BasicPortAllocatorTest, TestGetAllPortsRestarts) { |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| EXPECT_EQ(3U, ports_.size()); |
| // TODO(deadbeef): Extend this to verify ICE restart. |
| } |
| |
| // Test that the allocator session uses the candidate filter it's created with, |
| // rather than the filter of its parent allocator. |
| // The filter of the allocator should only affect the next gathering phase, |
| // according to JSEP, which means the *next* allocator session returned. |
| TEST_F(BasicPortAllocatorTest, TestSessionUsesOwnCandidateFilter) { |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| // Set candidate filter *after* creating the session. Should have no effect. |
| allocator().SetCandidateFilter(CF_RELAY); |
| session_->StartGettingPorts(); |
| // 7 candidates and 4 ports is what we would normally get (see the |
| // TestGetAllPorts* tests). |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| EXPECT_EQ(3U, ports_.size()); |
| } |
| |
| // Test ICE candidate filter mechanism with options Relay/Host/Reflexive. |
| // This test also verifies that when the allocator is only allowed to use |
| // relay (i.e. IceTransportsType is relay), the raddr is an empty |
| // address with the correct family. This is to prevent any local |
| // reflective address leakage in the sdp line. |
| TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithRelayOnly) { |
| AddInterface(kClientAddr); |
| // GTURN is not configured here. |
| ResetWithTurnServersNoNat(kTurnUdpIntAddr, rtc::SocketAddress()); |
| allocator().SetCandidateFilter(CF_RELAY); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); |
| |
| EXPECT_EQ(1U, candidates_.size()); |
| EXPECT_EQ(1U, ports_.size()); // Only Relay port will be in ready state. |
| EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidates_[0].type()); |
| EXPECT_EQ( |
| candidates_[0].related_address(), |
| rtc::EmptySocketAddressWithFamily(candidates_[0].address().family())); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithHostOnly) { |
| AddInterface(kClientAddr); |
| allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| allocator().SetCandidateFilter(CF_HOST); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(2U, candidates_.size()); // Host UDP/TCP candidates only. |
| EXPECT_EQ(2U, ports_.size()); // UDP/TCP ports only. |
| for (const Candidate& candidate : candidates_) { |
| EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type()); |
| } |
| } |
| |
| // Host is behind the NAT. |
| TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnly) { |
| AddInterface(kPrivateAddr); |
| ResetWithStunServerAndNat(kStunAddr); |
| |
| allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| allocator().SetCandidateFilter(CF_REFLEXIVE); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Host is behind NAT, no private address will be exposed. Hence only UDP |
| // port with STUN candidate will be sent outside. |
| EXPECT_EQ(1U, candidates_.size()); // Only STUN candidate. |
| EXPECT_EQ(1U, ports_.size()); // Only UDP port will be in ready state. |
| EXPECT_EQ(std::string(STUN_PORT_TYPE), candidates_[0].type()); |
| EXPECT_EQ( |
| candidates_[0].related_address(), |
| rtc::EmptySocketAddressWithFamily(candidates_[0].address().family())); |
| } |
| |
| // Host is not behind the NAT. |
| TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnlyAndNoNAT) { |
| AddInterface(kClientAddr); |
| allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| allocator().SetCandidateFilter(CF_REFLEXIVE); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Host has a public address, both UDP and TCP candidates will be exposed. |
| EXPECT_EQ(2U, candidates_.size()); // Local UDP + TCP candidate. |
| EXPECT_EQ(2U, ports_.size()); // UDP and TCP ports will be in ready state. |
| for (const Candidate& candidate : candidates_) { |
| EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type()); |
| } |
| } |
| |
| // Test that we get the same ufrag and pwd for all candidates. |
| TEST_F(BasicPortAllocatorTest, TestEnableSharedUfrag) { |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); |
| EXPECT_EQ(3U, ports_.size()); |
| for (const Candidate& candidate : candidates_) { |
| EXPECT_EQ(kIceUfrag0, candidate.username()); |
| EXPECT_EQ(kIcePwd0, candidate.password()); |
| } |
| } |
| |
| // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port |
| // is allocated for udp and stun. Also verify there is only one candidate |
| // (local) if stun candidate is same as local candidate, which will be the case |
| // in a public network like the below test. |
| TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNat) { |
| AddInterface(kClientAddr); |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(2U, ports_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| } |
| |
| // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port |
| // is allocated for udp and stun. In this test we should expect both stun and |
| // local candidates as client behind a nat. |
| TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNat) { |
| AddInterface(kClientAddr); |
| ResetWithStunServerAndNat(kStunAddr); |
| |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| ASSERT_EQ(2U, ports_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", |
| rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0))); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| } |
| |
| // Test TURN port in shared socket mode with UDP and TCP TURN server addresses. |
| TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNatUsingTurn) { |
| turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); |
| AddInterface(kClientAddr); |
| allocator_.reset(new BasicPortAllocator(&network_manager_, &socket_factory_)); |
| allocator_->Initialize(); |
| |
| AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); |
| |
| allocator_->set_step_delay(kMinimumStepDelay); |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_DISABLE_TCP); |
| |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| ASSERT_EQ(3U, candidates_.size()); |
| ASSERT_EQ(3U, ports_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); |
| EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); |
| } |
| |
| // Test that if the turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN |
| // port will not be used if UDP TurnPort is used, given that TCP TURN port |
| // becomes ready first. |
| TEST_F(BasicPortAllocatorTest, |
| TestUdpTurnPortPrunesTcpTurnPortWithTcpPortReadyFirst) { |
| // UDP has longer delay than TCP so that TCP TURN port becomes ready first. |
| virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200); |
| virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100); |
| |
| TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY, |
| true /* tcp_pruned */); |
| } |
| |
| // Test that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN port |
| // will not be used if UDP TurnPort is used, given that UDP TURN port becomes |
| // ready first. |
| TEST_F(BasicPortAllocatorTest, |
| TestUdpTurnPortPrunesTcpTurnPortsWithUdpPortReadyFirst) { |
| // UDP has shorter delay than TCP so that UDP TURN port becomes ready first. |
| virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100); |
| virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200); |
| |
| TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY, |
| true /* tcp_pruned */); |
| } |
| |
| // Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port |
| // will be kept regardless of the priority. |
| TEST_F(BasicPortAllocatorTest, |
| TestUdpTurnPortPrunesTcpTurnPortIfUdpReadyFirst) { |
| // UDP has shorter delay than TCP so that UDP TURN port becomes ready first. |
| virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100); |
| virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200); |
| |
| TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY, |
| true /* tcp_pruned */); |
| } |
| |
| // Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port |
| // will be kept regardless of the priority. |
| TEST_F(BasicPortAllocatorTest, |
| TestTcpTurnPortPrunesUdpTurnPortIfTcpReadyFirst) { |
| // UDP has longer delay than TCP so that TCP TURN port becomes ready first. |
| virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200); |
| virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100); |
| |
| TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY, |
| false /* tcp_pruned */); |
| } |
| |
| // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4 |
| // TurnPort will not be used if IPv6 TurnPort is used, given that IPv4 TURN port |
| // becomes ready first. |
| TEST_F(BasicPortAllocatorTest, |
| TestIPv6TurnPortPrunesIPv4TurnPortWithIPv4PortReadyFirst) { |
| // IPv6 has longer delay than IPv4, so that IPv4 TURN port becomes ready |
| // first. |
| virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100); |
| virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 200); |
| |
| TestIPv6TurnPortPrunesIPv4TurnPort(); |
| } |
| |
| // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4 |
| // TurnPort will not be used if IPv6 TurnPort is used, given that IPv6 TURN port |
| // becomes ready first. |
| TEST_F(BasicPortAllocatorTest, |
| TestIPv6TurnPortPrunesIPv4TurnPortWithIPv6PortReadyFirst) { |
| // IPv6 has longer delay than IPv4, so that IPv6 TURN port becomes ready |
| // first. |
| virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200); |
| virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 100); |
| |
| TestIPv6TurnPortPrunesIPv4TurnPort(); |
| } |
| |
| // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network |
| // interface will has its own set of TurnPorts based on their priorities, in the |
| // default case where no transit delay is set. |
| TEST_F(BasicPortAllocatorTest, TestEachInterfaceHasItsOwnTurnPortsNoDelay) { |
| TestEachInterfaceHasItsOwnTurnPorts(); |
| } |
| |
| // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network |
| // interface will has its own set of TurnPorts based on their priorities, given |
| // that IPv4/TCP TURN port becomes ready first. |
| TEST_F(BasicPortAllocatorTest, |
| TestEachInterfaceHasItsOwnTurnPortsWithTcpIPv4ReadyFirst) { |
| // IPv6/UDP have longer delay than IPv4/TCP, so that IPv4/TCP TURN port |
| // becomes ready last. |
| virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 10); |
| virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100); |
| virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntIPv6Addr, 20); |
| virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 300); |
| |
| TestEachInterfaceHasItsOwnTurnPorts(); |
| } |
| |
| // Testing DNS resolve for the TURN server, this will test AllocationSequence |
| // handling the unresolved address signal from TurnPort. |
| // TODO(pthatcher): Make this test work with SIMULATED_WAIT. It |
| // appears that it doesn't currently because of the DNS look up not |
| // using the fake clock. |
| TEST_F(BasicPortAllocatorTestWithRealClock, |
| TestSharedSocketWithServerAddressResolve) { |
| // This test relies on a real query for "localhost", so it won't work on an |
| // IPv6-only machine. |
| MAYBE_SKIP_IPV4; |
| turn_server_.AddInternalSocket(rtc::SocketAddress("127.0.0.1", 3478), |
| PROTO_UDP); |
| AddInterface(kClientAddr); |
| allocator_.reset(new BasicPortAllocator(&network_manager_, &socket_factory_)); |
| allocator_->Initialize(); |
| RelayServerConfig turn_server; |
| RelayCredentials credentials(kTurnUsername, kTurnPassword); |
| turn_server.credentials = credentials; |
| turn_server.ports.push_back( |
| ProtocolAddress(rtc::SocketAddress("localhost", 3478), PROTO_UDP)); |
| allocator_->AddTurnServerForTesting(turn_server); |
| |
| allocator_->set_step_delay(kMinimumStepDelay); |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_DISABLE_TCP); |
| |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| |
| EXPECT_EQ_WAIT(2U, ports_.size(), kDefaultAllocationTimeout); |
| } |
| |
| // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port |
| // is allocated for udp/stun/turn. In this test we should expect all local, |
| // stun and turn candidates. |
| TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurn) { |
| AddInterface(kClientAddr); |
| ResetWithStunServerAndNat(kStunAddr); |
| |
| AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); |
| |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_DISABLE_TCP); |
| |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| ASSERT_EQ(2U, ports_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", |
| rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0))); |
| EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| // Local port will be created first and then TURN port. |
| // TODO(deadbeef): This isn't something the BasicPortAllocator API contract |
| // guarantees... |
| EXPECT_EQ(2U, ports_[0]->Candidates().size()); |
| EXPECT_EQ(1U, ports_[1]->Candidates().size()); |
| } |
| |
| // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled and the TURN |
| // server is also used as the STUN server, we should get 'local', 'stun', and |
| // 'relay' candidates. |
| TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAsStun) { |
| AddInterface(kClientAddr); |
| // Use an empty SocketAddress to add a NAT without STUN server. |
| ResetWithStunServerAndNat(SocketAddress()); |
| AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); |
| |
| // Must set the step delay to 0 to make sure the relay allocation phase is |
| // started before the STUN candidates are obtained, so that the STUN binding |
| // response is processed when both StunPort and TurnPort exist to reproduce |
| // webrtc issue 3537. |
| allocator_->set_step_delay(0); |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_DISABLE_TCP); |
| |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| Candidate stun_candidate; |
| EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp", |
| rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0), |
| &stun_candidate)); |
| EXPECT_TRUE(HasCandidateWithRelatedAddr( |
| candidates_, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0), |
| stun_candidate.address())); |
| |
| // Local port will be created first and then TURN port. |
| // TODO(deadbeef): This isn't something the BasicPortAllocator API contract |
| // guarantees... |
| EXPECT_EQ(2U, ports_[0]->Candidates().size()); |
| EXPECT_EQ(1U, ports_[1]->Candidates().size()); |
| } |
| |
| // Test that when only a TCP TURN server is available, we do NOT use it as |
| // a UDP STUN server, as this could leak our IP address. Thus we should only |
| // expect two ports, a UDPPort and TurnPort. |
| TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnTcpOnly) { |
| turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); |
| AddInterface(kClientAddr); |
| ResetWithStunServerAndNat(rtc::SocketAddress()); |
| AddTurnServers(rtc::SocketAddress(), kTurnTcpIntAddr); |
| |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_DISABLE_TCP); |
| |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(2U, candidates_.size()); |
| ASSERT_EQ(2U, ports_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); |
| EXPECT_EQ(1U, ports_[0]->Candidates().size()); |
| EXPECT_EQ(1U, ports_[1]->Candidates().size()); |
| } |
| |
| // Test that even when PORTALLOCATOR_ENABLE_SHARED_SOCKET is NOT enabled, the |
| // TURN server is used as the STUN server and we get 'local', 'stun', and |
| // 'relay' candidates. |
| // TODO(deadbeef): Remove this test when support for non-shared socket mode |
| // is removed. |
| TEST_F(BasicPortAllocatorTest, TestNonSharedSocketWithNatUsingTurnAsStun) { |
| AddInterface(kClientAddr); |
| // Use an empty SocketAddress to add a NAT without STUN server. |
| ResetWithStunServerAndNat(SocketAddress()); |
| AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); |
| |
| allocator_->set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_TCP); |
| |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3U, candidates_.size()); |
| ASSERT_EQ(3U, ports_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| Candidate stun_candidate; |
| EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp", |
| rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0), |
| &stun_candidate)); |
| Candidate turn_candidate; |
| EXPECT_TRUE(FindCandidate(candidates_, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0), |
| &turn_candidate)); |
| // Not using shared socket, so the STUN request's server reflexive address |
| // should be different than the TURN request's server reflexive address. |
| EXPECT_NE(turn_candidate.related_address(), stun_candidate.address()); |
| |
| EXPECT_EQ(1U, ports_[0]->Candidates().size()); |
| EXPECT_EQ(1U, ports_[1]->Candidates().size()); |
| EXPECT_EQ(1U, ports_[2]->Candidates().size()); |
| } |
| |
| // Test that even when both a STUN and TURN server are configured, the TURN |
| // server is used as a STUN server and we get a 'stun' candidate. |
| TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAndStun) { |
| AddInterface(kClientAddr); |
| // Configure with STUN server but destroy it, so we can ensure that it's |
| // the TURN server actually being used as a STUN server. |
| ResetWithStunServerAndNat(kStunAddr); |
| stun_server_.reset(); |
| AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); |
| |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_DISABLE_TCP); |
| |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| |
| ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| Candidate stun_candidate; |
| EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp", |
| rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0), |
| &stun_candidate)); |
| EXPECT_TRUE(HasCandidateWithRelatedAddr( |
| candidates_, "relay", "udp", |
| rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0), |
| stun_candidate.address())); |
| |
| // Don't bother waiting for STUN timeout, since we already verified |
| // that we got a STUN candidate from the TURN server. |
| } |
| |
| // This test verifies when PORTALLOCATOR_ENABLE_SHARED_SOCKET flag is enabled |
| // and fail to generate STUN candidate, local UDP candidate is generated |
| // properly. |
| TEST_F(BasicPortAllocatorTest, TestSharedSocketNoUdpAllowed) { |
| allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY | |
| PORTALLOCATOR_DISABLE_TCP | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr); |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(1U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| // STUN timeout is 9.5sec. We need to wait to get candidate done signal. |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kStunTimeoutMs, |
| fake_clock); |
| EXPECT_EQ(1U, candidates_.size()); |
| } |
| |
| // Test that when the NetworkManager doesn't have permission to enumerate |
| // adapters, the PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION is specified |
| // automatically. |
| TEST_F(BasicPortAllocatorTest, TestNetworkPermissionBlocked) { |
| network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(), |
| rtc::IPAddress()); |
| network_manager_.set_enumeration_permission( |
| rtc::NetworkManager::ENUMERATION_BLOCKED); |
| allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY | |
| PORTALLOCATOR_DISABLE_TCP | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| EXPECT_EQ(0U, |
| allocator_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| EXPECT_EQ(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION); |
| session_->StartGettingPorts(); |
| EXPECT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(1U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kPrivateAddr)); |
| EXPECT_NE(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION); |
| } |
| |
| // This test verifies allocator can use IPv6 addresses along with IPv4. |
| TEST_F(BasicPortAllocatorTest, TestEnableIPv6Addresses) { |
| allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY | |
| PORTALLOCATOR_ENABLE_IPV6 | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| AddInterface(kClientIPv6Addr); |
| AddInterface(kClientAddr); |
| allocator_->set_step_delay(kMinimumStepDelay); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(4U, ports_.size()); |
| EXPECT_EQ(4U, candidates_.size()); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientIPv6Addr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, TestStopGettingPorts) { |
| AddInterface(kClientAddr); |
| allocator_->set_step_delay(kDefaultStepDelay); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock); |
| EXPECT_EQ(2U, ports_.size()); |
| session_->StopGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock); |
| |
| // After stopping getting ports, adding a new interface will not start |
| // getting ports again. |
| allocator_->set_step_delay(kMinimumStepDelay); |
| candidates_.clear(); |
| ports_.clear(); |
| candidate_allocation_done_ = false; |
| network_manager_.AddInterface(kClientAddr2); |
| SIMULATED_WAIT(false, 1000, fake_clock); |
| EXPECT_EQ(0U, candidates_.size()); |
| EXPECT_EQ(0U, ports_.size()); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, TestClearGettingPorts) { |
| AddInterface(kClientAddr); |
| allocator_->set_step_delay(kDefaultStepDelay); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock); |
| EXPECT_EQ(2U, ports_.size()); |
| session_->ClearGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock); |
| |
| // After clearing getting ports, adding a new interface will start getting |
| // ports again. |
| allocator_->set_step_delay(kMinimumStepDelay); |
| candidates_.clear(); |
| ports_.clear(); |
| candidate_allocation_done_ = false; |
| network_manager_.AddInterface(kClientAddr2); |
| ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock); |
| EXPECT_EQ(2U, ports_.size()); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| } |
| |
| // Test that the ports and candidates are updated with new ufrag/pwd/etc. when |
| // a pooled session is taken out of the pool. |
| TEST_F(BasicPortAllocatorTest, TestTransportInformationUpdated) { |
| AddInterface(kClientAddr); |
| int pool_size = 1; |
| allocator_->SetConfiguration(allocator_->stun_servers(), |
| allocator_->turn_servers(), pool_size, |
| webrtc::NO_PRUNE); |
| const PortAllocatorSession* peeked_session = allocator_->GetPooledSession(); |
| ASSERT_NE(nullptr, peeked_session); |
| EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(), |
| kDefaultAllocationTimeout, fake_clock); |
| // Expect that when TakePooledSession is called, |
| // UpdateTransportInformationInternal will be called and the |
| // BasicPortAllocatorSession will update the ufrag/pwd of ports and |
| // candidates. |
| session_ = |
| allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0); |
| ASSERT_NE(nullptr, session_.get()); |
| auto ready_ports = session_->ReadyPorts(); |
| auto candidates = session_->ReadyCandidates(); |
| EXPECT_FALSE(ready_ports.empty()); |
| EXPECT_FALSE(candidates.empty()); |
| for (const PortInterface* port_interface : ready_ports) { |
| const Port* port = static_cast<const Port*>(port_interface); |
| EXPECT_EQ(kContentName, port->content_name()); |
| EXPECT_EQ(1, port->component()); |
| EXPECT_EQ(kIceUfrag0, port->username_fragment()); |
| EXPECT_EQ(kIcePwd0, port->password()); |
| } |
| for (const Candidate& candidate : candidates) { |
| EXPECT_EQ(1, candidate.component()); |
| EXPECT_EQ(kIceUfrag0, candidate.username()); |
| EXPECT_EQ(kIcePwd0, candidate.password()); |
| } |
| } |
| |
| // Test that a new candidate filter takes effect even on already-gathered |
| // candidates. |
| TEST_F(BasicPortAllocatorTest, TestSetCandidateFilterAfterCandidatesGathered) { |
| AddInterface(kClientAddr); |
| int pool_size = 1; |
| allocator_->SetConfiguration(allocator_->stun_servers(), |
| allocator_->turn_servers(), pool_size, |
| webrtc::NO_PRUNE); |
| const PortAllocatorSession* peeked_session = allocator_->GetPooledSession(); |
| ASSERT_NE(nullptr, peeked_session); |
| EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(), |
| kDefaultAllocationTimeout, fake_clock); |
| size_t initial_candidates_size = peeked_session->ReadyCandidates().size(); |
| size_t initial_ports_size = peeked_session->ReadyPorts().size(); |
| allocator_->SetCandidateFilter(CF_RELAY); |
| // Assume that when TakePooledSession is called, the candidate filter will be |
| // applied to the pooled session. This is tested by PortAllocatorTest. |
| session_ = |
| allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0); |
| ASSERT_NE(nullptr, session_.get()); |
| auto candidates = session_->ReadyCandidates(); |
| auto ports = session_->ReadyPorts(); |
| // Sanity check that the number of candidates and ports decreased. |
| EXPECT_GT(initial_candidates_size, candidates.size()); |
| EXPECT_GT(initial_ports_size, ports.size()); |
| for (const PortInterface* port : ports) { |
| // Expect only relay ports. |
| EXPECT_EQ(RELAY_PORT_TYPE, port->Type()); |
| } |
| for (const Candidate& candidate : candidates) { |
| // Expect only relay candidates now that the filter is applied. |
| EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidate.type()); |
| // Expect that the raddr is emptied due to the CF_RELAY filter. |
| EXPECT_EQ(candidate.related_address(), |
| rtc::EmptySocketAddressWithFamily(candidate.address().family())); |
| } |
| } |
| |
| // Test that candidates that do not match a previous candidate filter can be |
| // surfaced if they match the new one after setting the filter value. |
| TEST_F(BasicPortAllocatorTest, |
| SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes) { |
| // We would still surface a host candidate if the IP is public, even though it |
| // is disabled by the candidate filter. See |
| // BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so |
| // that the srflx candidate is not equivalent to the host candidate. |
| AddInterface(kPrivateAddr); |
| ResetWithStunServerAndNat(kStunAddr); |
| |
| AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); |
| |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_DISABLE_TCP); |
| |
| allocator_->SetCandidateFilter(CF_NONE); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_TRUE(candidates_.empty()); |
| EXPECT_TRUE(ports_.empty()); |
| |
| // Surface the relay candidate previously gathered but not signaled. |
| session_->SetCandidateFilter(CF_RELAY); |
| ASSERT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(RELAY_PORT_TYPE, candidates_.back().type()); |
| EXPECT_EQ(1u, ports_.size()); |
| |
| // Surface the srflx candidate previously gathered but not signaled. |
| session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE); |
| ASSERT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(STUN_PORT_TYPE, candidates_.back().type()); |
| EXPECT_EQ(2u, ports_.size()); |
| |
| // Surface the srflx candidate previously gathered but not signaled. |
| session_->SetCandidateFilter(CF_ALL); |
| ASSERT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(LOCAL_PORT_TYPE, candidates_.back().type()); |
| EXPECT_EQ(2u, ports_.size()); |
| } |
| |
| // This is a similar test as |
| // SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes, and we |
| // test the transitions for which the new filter value is not a super set of the |
| // previous value. |
| TEST_F( |
| BasicPortAllocatorTest, |
| SurfaceNewCandidatesAfterSetCandidateFilterToAllowDifferentCandidateTypes) { |
| // We would still surface a host candidate if the IP is public, even though it |
| // is disabled by the candidate filter. See |
| // BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so |
| // that the srflx candidate is not equivalent to the host candidate. |
| AddInterface(kPrivateAddr); |
| ResetWithStunServerAndNat(kStunAddr); |
| |
| AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); |
| |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_DISABLE_TCP); |
| |
| allocator_->SetCandidateFilter(CF_NONE); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_TRUE(candidates_.empty()); |
| EXPECT_TRUE(ports_.empty()); |
| |
| // Surface the relay candidate previously gathered but not signaled. |
| session_->SetCandidateFilter(CF_RELAY); |
| EXPECT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(RELAY_PORT_TYPE, candidates_.back().type()); |
| EXPECT_EQ(1u, ports_.size()); |
| |
| // Surface the srflx candidate previously gathered but not signaled. |
| session_->SetCandidateFilter(CF_REFLEXIVE); |
| EXPECT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(STUN_PORT_TYPE, candidates_.back().type()); |
| EXPECT_EQ(2u, ports_.size()); |
| |
| // Surface the host candidate previously gathered but not signaled. |
| session_->SetCandidateFilter(CF_HOST); |
| EXPECT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout, |
| fake_clock); |
| EXPECT_EQ(LOCAL_PORT_TYPE, candidates_.back().type()); |
| // We use a shared socket and cricket::UDPPort handles the srflx candidate. |
| EXPECT_EQ(2u, ports_.size()); |
| } |
| |
| // Test that after an allocation session has stopped getting ports, changing the |
| // candidate filter to allow new types of gathered candidates does not surface |
| // any candidate. |
| TEST_F(BasicPortAllocatorTest, |
| NoCandidateSurfacedWhenUpdatingCandidateFilterIfSessionStopped) { |
| AddInterface(kPrivateAddr); |
| ResetWithStunServerAndNat(kStunAddr); |
| |
| AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); |
| |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET | |
| PORTALLOCATOR_DISABLE_TCP); |
| |
| allocator_->SetCandidateFilter(CF_NONE); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| auto test_invariants = [this]() { |
| EXPECT_TRUE(candidates_.empty()); |
| EXPECT_TRUE(ports_.empty()); |
| }; |
| |
| test_invariants(); |
| |
| session_->StopGettingPorts(); |
| |
| session_->SetCandidateFilter(CF_RELAY); |
| SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock); |
| test_invariants(); |
| |
| session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE); |
| SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock); |
| test_invariants(); |
| |
| session_->SetCandidateFilter(CF_ALL); |
| SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock); |
| test_invariants(); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, SetStunKeepaliveIntervalForPorts) { |
| const int pool_size = 1; |
| const int expected_stun_keepalive_interval = 123; |
| AddInterface(kClientAddr); |
| allocator_->SetConfiguration( |
| allocator_->stun_servers(), allocator_->turn_servers(), pool_size, |
| webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval); |
| auto* pooled_session = allocator_->GetPooledSession(); |
| ASSERT_NE(nullptr, pooled_session); |
| EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(), |
| kDefaultAllocationTimeout, fake_clock); |
| CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session, |
| expected_stun_keepalive_interval); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, |
| ChangeStunKeepaliveIntervalForPortsAfterInitialConfig) { |
| const int pool_size = 1; |
| AddInterface(kClientAddr); |
| allocator_->SetConfiguration( |
| allocator_->stun_servers(), allocator_->turn_servers(), pool_size, |
| webrtc::NO_PRUNE, nullptr, 123 /* stun keepalive interval */); |
| auto* pooled_session = allocator_->GetPooledSession(); |
| ASSERT_NE(nullptr, pooled_session); |
| EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(), |
| kDefaultAllocationTimeout, fake_clock); |
| const int expected_stun_keepalive_interval = 321; |
| allocator_->SetConfiguration( |
| allocator_->stun_servers(), allocator_->turn_servers(), pool_size, |
| webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval); |
| CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session, |
| expected_stun_keepalive_interval); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, |
| SetStunKeepaliveIntervalForPortsWithSharedSocket) { |
| const int pool_size = 1; |
| const int expected_stun_keepalive_interval = 123; |
| AddInterface(kClientAddr); |
| allocator_->set_flags(allocator().flags() | |
| PORTALLOCATOR_ENABLE_SHARED_SOCKET); |
| allocator_->SetConfiguration( |
| allocator_->stun_servers(), allocator_->turn_servers(), pool_size, |
| webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(), |
| expected_stun_keepalive_interval); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, |
| SetStunKeepaliveIntervalForPortsWithoutSharedSocket) { |
| const int pool_size = 1; |
| const int expected_stun_keepalive_interval = 123; |
| AddInterface(kClientAddr); |
| allocator_->set_flags(allocator().flags() & |
| ~(PORTALLOCATOR_ENABLE_SHARED_SOCKET)); |
| allocator_->SetConfiguration( |
| allocator_->stun_servers(), allocator_->turn_servers(), pool_size, |
| webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(), |
| expected_stun_keepalive_interval); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, IceRegatheringMetricsLoggedWhenNetworkChanges) { |
| // Only test local ports to simplify test. |
| ResetWithNoServersOrNat(); |
| AddInterface(kClientAddr, "test_net0"); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| candidate_allocation_done_ = false; |
| AddInterface(kClientAddr2, "test_net1"); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_METRIC_EQ(1, |
| webrtc::metrics::NumEvents( |
| "WebRTC.PeerConnection.IceRegatheringReason", |
| static_cast<int>(IceRegatheringReason::NETWORK_CHANGE))); |
| } |
| |
| // Test that when an mDNS responder is present, the local address of a host |
| // candidate is concealed by an mDNS hostname and the related address of a srflx |
| // candidate is set to 0.0.0.0 or ::0. |
| TEST_F(BasicPortAllocatorTest, HostCandidateAddressIsReplacedByHostname) { |
| // Default config uses GTURN and no NAT, so replace that with the |
| // desired setup (NAT, STUN server, TURN server, UDP/TCP). |
| ResetWithStunServerAndNat(kStunAddr); |
| turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); |
| AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); |
| AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr); |
| |
| ASSERT_EQ(&network_manager_, allocator().network_manager()); |
| network_manager_.set_mdns_responder( |
| std::make_unique<webrtc::FakeMdnsResponder>(rtc::Thread::Current())); |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(5u, candidates_.size()); |
| int num_host_udp_candidates = 0; |
| int num_host_tcp_candidates = 0; |
| int num_srflx_candidates = 0; |
| int num_relay_candidates = 0; |
| for (const auto& candidate : candidates_) { |
| const auto& raddr = candidate.related_address(); |
| |
| if (candidate.type() == LOCAL_PORT_TYPE) { |
| EXPECT_FALSE(candidate.address().hostname().empty()); |
| EXPECT_TRUE(raddr.IsNil()); |
| if (candidate.protocol() == UDP_PROTOCOL_NAME) { |
| ++num_host_udp_candidates; |
| } else { |
| ++num_host_tcp_candidates; |
| } |
| } else if (candidate.type() == STUN_PORT_TYPE) { |
| // For a srflx candidate, the related address should be set to 0.0.0.0 or |
| // ::0 |
| EXPECT_TRUE(IPIsAny(raddr.ipaddr())); |
| EXPECT_EQ(raddr.port(), 0); |
| ++num_srflx_candidates; |
| } else if (candidate.type() == RELAY_PORT_TYPE) { |
| EXPECT_EQ(kNatUdpAddr.ipaddr(), raddr.ipaddr()); |
| EXPECT_EQ(kNatUdpAddr.family(), raddr.family()); |
| ++num_relay_candidates; |
| } else { |
| // prflx candidates are not expected |
| FAIL(); |
| } |
| } |
| EXPECT_EQ(1, num_host_udp_candidates); |
| EXPECT_EQ(1, num_host_tcp_candidates); |
| EXPECT_EQ(1, num_srflx_candidates); |
| EXPECT_EQ(2, num_relay_candidates); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, TestUseTurnServerAsStunSever) { |
| ServerAddresses stun_servers; |
| stun_servers.insert(kStunAddr); |
| PortConfiguration port_config(stun_servers, "", ""); |
| RelayServerConfig turn_servers = |
| CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); |
| port_config.AddRelay(turn_servers); |
| |
| EXPECT_EQ(2U, port_config.StunServers().size()); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, TestDoNotUseTurnServerAsStunSever) { |
| webrtc::test::ScopedKeyValueConfig field_trials( |
| "WebRTC-UseTurnServerAsStunServer/Disabled/"); |
| ServerAddresses stun_servers; |
| stun_servers.insert(kStunAddr); |
| PortConfiguration port_config(stun_servers, "" /* user_name */, |
| "" /* password */, &field_trials); |
| RelayServerConfig turn_servers = |
| CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); |
| port_config.AddRelay(turn_servers); |
| |
| EXPECT_EQ(1U, port_config.StunServers().size()); |
| } |
| |
| // Test that candidates from different servers get assigned a unique local |
| // preference (the middle 16 bits of the priority) |
| TEST_F(BasicPortAllocatorTest, AssignsUniqueLocalPreferencetoRelayCandidates) { |
| allocator_->SetCandidateFilter(CF_RELAY); |
| allocator_->AddTurnServerForTesting( |
| CreateTurnServers(kTurnUdpIntAddr, SocketAddress())); |
| allocator_->AddTurnServerForTesting( |
| CreateTurnServers(kTurnUdpIntAddr, SocketAddress())); |
| allocator_->AddTurnServerForTesting( |
| CreateTurnServers(kTurnUdpIntAddr, SocketAddress())); |
| |
| AddInterface(kClientAddr); |
| ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| EXPECT_EQ(3u, candidates_.size()); |
| EXPECT_GT((candidates_[0].priority() >> 8) & 0xFFFF, |
| (candidates_[1].priority() >> 8) & 0xFFFF); |
| EXPECT_GT((candidates_[1].priority() >> 8) & 0xFFFF, |
| (candidates_[2].priority() >> 8) & 0xFFFF); |
| } |
| |
| // Test that no more than allocator.max_ipv6_networks() IPv6 networks are used |
| // to gather candidates. |
| TEST_F(BasicPortAllocatorTest, TwoIPv6AreSelectedBecauseOfMaxIpv6Limit) { |
| rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), |
| 64, rtc::ADAPTER_TYPE_WIFI); |
| rtc::Network ethe1("ethe1", "Test NetworkAdapter 2", |
| kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); |
| rtc::Network wifi2("wifi2", "Test NetworkAdapter 3", |
| kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI); |
| std::vector<const rtc::Network*> networks = {&wifi1, ðe1, &wifi2}; |
| |
| // Ensure that only 2 interfaces were selected. |
| EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks( |
| networks, /*max_ipv6_networks=*/2) |
| .size()); |
| } |
| |
| // Test that if the number of available IPv6 networks is less than |
| // allocator.max_ipv6_networks(), all IPv6 networks will be selected. |
| TEST_F(BasicPortAllocatorTest, AllIPv6AreSelected) { |
| rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), |
| 64, rtc::ADAPTER_TYPE_WIFI); |
| rtc::Network ethe1("ethe1", "Test NetworkAdapter 2", |
| kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); |
| std::vector<const rtc::Network*> networks = {&wifi1, ðe1}; |
| |
| // Ensure that all 2 interfaces were selected. |
| EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks( |
| networks, /*max_ipv6_networks=*/3) |
| .size()); |
| } |
| |
| // If there are some IPv6 networks with different types, diversify IPv6 |
| // networks. |
| TEST_F(BasicPortAllocatorTest, TwoIPv6WifiAreSelectedIfThereAreTwo) { |
| rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), |
| 64, rtc::ADAPTER_TYPE_WIFI); |
| rtc::Network ethe1("ethe1", "Test NetworkAdapter 2", |
| kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); |
| rtc::Network ethe2("ethe2", "Test NetworkAdapter 3", |
| kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); |
| rtc::Network unknown1("unknown1", "Test NetworkAdapter 4", |
| kClientIPv6Addr2.ipaddr(), 64, |
| rtc::ADAPTER_TYPE_UNKNOWN); |
| rtc::Network cell1("cell1", "Test NetworkAdapter 5", |
| kClientIPv6Addr3.ipaddr(), 64, |
| rtc::ADAPTER_TYPE_CELLULAR_4G); |
| std::vector<const rtc::Network*> networks = {&wifi1, ðe1, ðe2, |
| &unknown1, &cell1}; |
| |
| networks = BasicPortAllocatorSession::SelectIPv6Networks( |
| networks, /*max_ipv6_networks=*/4); |
| |
| EXPECT_EQ(4U, networks.size()); |
| // Ensure the expected 4 interfaces (wifi1, ethe1, cell1, unknown1) were |
| // selected. |
| EXPECT_TRUE(HasNetwork(networks, wifi1)); |
| EXPECT_TRUE(HasNetwork(networks, ethe1)); |
| EXPECT_TRUE(HasNetwork(networks, cell1)); |
| EXPECT_TRUE(HasNetwork(networks, unknown1)); |
| } |
| |
| // If there are some IPv6 networks with the same type, select them because there |
| // is no other option. |
| TEST_F(BasicPortAllocatorTest, IPv6WithSameTypeAreSelectedIfNoOtherOption) { |
| // Add 5 cellular interfaces |
| rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), |
| 64, rtc::ADAPTER_TYPE_CELLULAR_2G); |
| rtc::Network cell2("cell2", "Test NetworkAdapter 2", |
| kClientIPv6Addr2.ipaddr(), 64, |
| rtc::ADAPTER_TYPE_CELLULAR_3G); |
| rtc::Network cell3("cell3", "Test NetworkAdapter 3", |
| kClientIPv6Addr3.ipaddr(), 64, |
| rtc::ADAPTER_TYPE_CELLULAR_4G); |
| rtc::Network cell4("cell4", "Test NetworkAdapter 4", |
| kClientIPv6Addr2.ipaddr(), 64, |
| rtc::ADAPTER_TYPE_CELLULAR_5G); |
| rtc::Network cell5("cell5", "Test NetworkAdapter 5", |
| kClientIPv6Addr3.ipaddr(), 64, |
| rtc::ADAPTER_TYPE_CELLULAR_3G); |
| std::vector<const rtc::Network*> networks = {&cell1, &cell2, &cell3, &cell4, |
| &cell5}; |
| |
| // Ensure that 4 interfaces were selected. |
| EXPECT_EQ(4U, BasicPortAllocatorSession::SelectIPv6Networks( |
| networks, /*max_ipv6_networks=*/4) |
| .size()); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, IPv6EthernetHasHigherPriorityThanWifi) { |
| rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), |
| 64, rtc::ADAPTER_TYPE_WIFI); |
| rtc::Network ethe1("ethe1", "Test NetworkAdapter 2", |
| kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); |
| rtc::Network wifi2("wifi2", "Test NetworkAdapter 3", |
| kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI); |
| std::vector<const rtc::Network*> networks = {&wifi1, ðe1, &wifi2}; |
| |
| networks = BasicPortAllocatorSession::SelectIPv6Networks( |
| networks, /*max_ipv6_networks=*/1); |
| |
| EXPECT_EQ(1U, networks.size()); |
| // Ensure ethe1 was selected. |
| EXPECT_TRUE(HasNetwork(networks, ethe1)); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, IPv6EtherAndWifiHaveHigherPriorityThanOthers) { |
| rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), |
| 64, rtc::ADAPTER_TYPE_CELLULAR_3G); |
| rtc::Network ethe1("ethe1", "Test NetworkAdapter 2", |
| kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); |
| rtc::Network wifi1("wifi1", "Test NetworkAdapter 3", |
| kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI); |
| rtc::Network unknown("unknown", "Test NetworkAdapter 4", |
| kClientIPv6Addr2.ipaddr(), 64, |
| rtc::ADAPTER_TYPE_UNKNOWN); |
| rtc::Network vpn1("vpn1", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(), |
| 64, rtc::ADAPTER_TYPE_VPN); |
| std::vector<const rtc::Network*> networks = {&cell1, ðe1, &wifi1, &unknown, |
| &vpn1}; |
| |
| networks = BasicPortAllocatorSession::SelectIPv6Networks( |
| networks, /*max_ipv6_networks=*/2); |
| |
| EXPECT_EQ(2U, networks.size()); |
| // Ensure ethe1 and wifi1 were selected. |
| EXPECT_TRUE(HasNetwork(networks, wifi1)); |
| EXPECT_TRUE(HasNetwork(networks, ethe1)); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, Select2DifferentIntefaces) { |
| allocator().set_max_ipv6_networks(2); |
| AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G); |
| |
| // To simplify the test, only gather UDP host candidates. |
| allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | |
| PORTALLOCATOR_DISABLE_STUN | |
| PORTALLOCATOR_DISABLE_RELAY | |
| PORTALLOCATOR_ENABLE_IPV6_ON_WIFI); |
| |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| |
| EXPECT_EQ(2U, candidates_.size()); |
| // ethe1 and wifi1 were selected. |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3)); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, Select3DifferentIntefaces) { |
| allocator().set_max_ipv6_networks(3); |
| AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G); |
| |
| // To simplify the test, only gather UDP host candidates. |
| allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | |
| PORTALLOCATOR_DISABLE_STUN | |
| PORTALLOCATOR_DISABLE_RELAY | |
| PORTALLOCATOR_ENABLE_IPV6_ON_WIFI); |
| |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| |
| EXPECT_EQ(3U, candidates_.size()); |
| // ethe1, wifi1, and cell1 were selected. |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr5)); |
| } |
| |
| TEST_F(BasicPortAllocatorTest, Select4DifferentIntefaces) { |
| allocator().set_max_ipv6_networks(4); |
| AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET); |
| AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI); |
| AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G); |
| |
| // To simplify the test, only gather UDP host candidates. |
| allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | |
| PORTALLOCATOR_DISABLE_STUN | |
| PORTALLOCATOR_DISABLE_RELAY | |
| PORTALLOCATOR_ENABLE_IPV6_ON_WIFI); |
| |
| ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); |
| session_->StartGettingPorts(); |
| EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, |
| kDefaultAllocationTimeout, fake_clock); |
| |
| EXPECT_EQ(4U, candidates_.size()); |
| // ethe1, ethe2, wifi1, and cell1 were selected. |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr2)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3)); |
| EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr5)); |
| } |
| |
| } // namespace cricket |