| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_coding/neteq/delay_manager.h" |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include <algorithm> |
| #include <memory> |
| #include <numeric> |
| #include <string> |
| |
| #include "modules/audio_coding/neteq/histogram.h" |
| #include "modules/include/module_common_types_public.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/experiments/struct_parameters_parser.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "rtc_base/numerics/safe_minmax.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| constexpr int kMinBaseMinimumDelayMs = 0; |
| constexpr int kMaxBaseMinimumDelayMs = 10000; |
| constexpr int kDelayBuckets = 100; |
| constexpr int kBucketSizeMs = 20; |
| constexpr int kStartDelayMs = 80; |
| constexpr int kMaxNumReorderedPackets = 5; |
| |
| struct DelayManagerConfig { |
| double quantile = 0.97; |
| double forget_factor = 0.9993; |
| absl::optional<double> start_forget_weight = 2; |
| absl::optional<int> resample_interval_ms; |
| int max_history_ms = 2000; |
| |
| std::unique_ptr<webrtc::StructParametersParser> Parser() { |
| return webrtc::StructParametersParser::Create( // |
| "quantile", &quantile, // |
| "forget_factor", &forget_factor, // |
| "start_forget_weight", &start_forget_weight, // |
| "resample_interval_ms", &resample_interval_ms, // |
| "max_history_ms", &max_history_ms); |
| } |
| |
| // TODO(jakobi): remove legacy field trial. |
| void MaybeUpdateFromLegacyFieldTrial() { |
| constexpr char kDelayHistogramFieldTrial[] = |
| "WebRTC-Audio-NetEqDelayHistogram"; |
| if (!webrtc::field_trial::IsEnabled(kDelayHistogramFieldTrial)) { |
| return; |
| } |
| const auto field_trial_string = |
| webrtc::field_trial::FindFullName(kDelayHistogramFieldTrial); |
| double percentile = -1.0; |
| double forget_factor = -1.0; |
| double start_forget_weight = -1.0; |
| if (sscanf(field_trial_string.c_str(), "Enabled-%lf-%lf-%lf", &percentile, |
| &forget_factor, &start_forget_weight) >= 2 && |
| percentile >= 0.0 && percentile <= 100.0 && forget_factor >= 0.0 && |
| forget_factor <= 1.0) { |
| this->quantile = percentile / 100; |
| this->forget_factor = forget_factor; |
| this->start_forget_weight = start_forget_weight >= 1 |
| ? absl::make_optional(start_forget_weight) |
| : absl::nullopt; |
| } |
| } |
| |
| explicit DelayManagerConfig() { |
| Parser()->Parse(webrtc::field_trial::FindFullName( |
| "WebRTC-Audio-NetEqDelayManagerConfig")); |
| MaybeUpdateFromLegacyFieldTrial(); |
| RTC_LOG(LS_INFO) << "Delay manager config:" |
| " quantile=" |
| << quantile << " forget_factor=" << forget_factor |
| << " start_forget_weight=" |
| << start_forget_weight.value_or(0) |
| << " resample_interval_ms=" |
| << resample_interval_ms.value_or(0) |
| << " max_history_ms=" << max_history_ms; |
| } |
| }; |
| |
| } // namespace |
| |
| DelayManager::DelayManager(int max_packets_in_buffer, |
| int base_minimum_delay_ms, |
| int histogram_quantile, |
| absl::optional<int> resample_interval_ms, |
| int max_history_ms, |
| const TickTimer* tick_timer, |
| std::unique_ptr<Histogram> histogram) |
| : first_packet_received_(false), |
| max_packets_in_buffer_(max_packets_in_buffer), |
| histogram_(std::move(histogram)), |
| histogram_quantile_(histogram_quantile), |
| tick_timer_(tick_timer), |
| resample_interval_ms_(resample_interval_ms), |
| max_history_ms_(max_history_ms), |
| base_minimum_delay_ms_(base_minimum_delay_ms), |
| effective_minimum_delay_ms_(base_minimum_delay_ms), |
| minimum_delay_ms_(0), |
| maximum_delay_ms_(0), |
| target_level_ms_(kStartDelayMs), |
| last_timestamp_(0) { |
| RTC_CHECK(histogram_); |
| RTC_DCHECK_GE(base_minimum_delay_ms_, 0); |
| |
| Reset(); |
| } |
| |
| std::unique_ptr<DelayManager> DelayManager::Create( |
| int max_packets_in_buffer, |
| int base_minimum_delay_ms, |
| const TickTimer* tick_timer) { |
| DelayManagerConfig config; |
| int forget_factor_q15 = (1 << 15) * config.forget_factor; |
| int quantile_q30 = (1 << 30) * config.quantile; |
| std::unique_ptr<Histogram> histogram = std::make_unique<Histogram>( |
| kDelayBuckets, forget_factor_q15, config.start_forget_weight); |
| return std::make_unique<DelayManager>( |
| max_packets_in_buffer, base_minimum_delay_ms, quantile_q30, |
| config.resample_interval_ms, config.max_history_ms, tick_timer, |
| std::move(histogram)); |
| } |
| |
| DelayManager::~DelayManager() {} |
| |
| absl::optional<int> DelayManager::Update(uint32_t timestamp, |
| int sample_rate_hz, |
| bool reset) { |
| if (sample_rate_hz <= 0) { |
| return absl::nullopt; |
| } |
| |
| if (!first_packet_received_ || reset) { |
| // Restart relative delay esimation from this packet. |
| delay_history_.clear(); |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| last_timestamp_ = timestamp; |
| first_packet_received_ = true; |
| num_reordered_packets_ = 0; |
| resample_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| max_delay_in_interval_ms_ = 0; |
| return absl::nullopt; |
| } |
| |
| const int expected_iat_ms = |
| 1000ll * static_cast<int32_t>(timestamp - last_timestamp_) / |
| sample_rate_hz; |
| const int iat_ms = packet_iat_stopwatch_->ElapsedMs(); |
| const int iat_delay_ms = iat_ms - expected_iat_ms; |
| int relative_delay; |
| bool reordered = !IsNewerTimestamp(timestamp, last_timestamp_); |
| if (reordered) { |
| relative_delay = std::max(iat_delay_ms, 0); |
| } else { |
| UpdateDelayHistory(iat_delay_ms, timestamp, sample_rate_hz); |
| relative_delay = CalculateRelativePacketArrivalDelay(); |
| } |
| |
| absl::optional<int> histogram_update; |
| if (resample_interval_ms_) { |
| if (static_cast<int>(resample_stopwatch_->ElapsedMs()) > |
| *resample_interval_ms_) { |
| histogram_update = max_delay_in_interval_ms_; |
| resample_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| max_delay_in_interval_ms_ = 0; |
| } |
| max_delay_in_interval_ms_ = |
| std::max(max_delay_in_interval_ms_, relative_delay); |
| } else { |
| histogram_update = relative_delay; |
| } |
| if (histogram_update) { |
| const int index = *histogram_update / kBucketSizeMs; |
| if (index < histogram_->NumBuckets()) { |
| // Maximum delay to register is 2000 ms. |
| histogram_->Add(index); |
| } |
| } |
| |
| // Calculate new |target_level_ms_| based on updated statistics. |
| int bucket_index = histogram_->Quantile(histogram_quantile_); |
| target_level_ms_ = (1 + bucket_index) * kBucketSizeMs; |
| target_level_ms_ = std::max(target_level_ms_, effective_minimum_delay_ms_); |
| if (maximum_delay_ms_ > 0) { |
| target_level_ms_ = std::min(target_level_ms_, maximum_delay_ms_); |
| } |
| if (packet_len_ms_ > 0) { |
| // Target level should be at least one packet. |
| target_level_ms_ = std::max(target_level_ms_, packet_len_ms_); |
| // Limit to 75% of maximum buffer size. |
| target_level_ms_ = std::min( |
| target_level_ms_, 3 * max_packets_in_buffer_ * packet_len_ms_ / 4); |
| } |
| |
| // Prepare for next packet arrival. |
| if (reordered) { |
| // Allow a small number of reordered packets before resetting the delay |
| // estimation. |
| if (num_reordered_packets_ < kMaxNumReorderedPackets) { |
| ++num_reordered_packets_; |
| return relative_delay; |
| } |
| delay_history_.clear(); |
| } |
| num_reordered_packets_ = 0; |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| last_timestamp_ = timestamp; |
| return relative_delay; |
| } |
| |
| void DelayManager::UpdateDelayHistory(int iat_delay_ms, |
| uint32_t timestamp, |
| int sample_rate_hz) { |
| PacketDelay delay; |
| delay.iat_delay_ms = iat_delay_ms; |
| delay.timestamp = timestamp; |
| delay_history_.push_back(delay); |
| while (timestamp - delay_history_.front().timestamp > |
| static_cast<uint32_t>(max_history_ms_ * sample_rate_hz / 1000)) { |
| delay_history_.pop_front(); |
| } |
| } |
| |
| int DelayManager::CalculateRelativePacketArrivalDelay() const { |
| // This effectively calculates arrival delay of a packet relative to the |
| // packet preceding the history window. If the arrival delay ever becomes |
| // smaller than zero, it means the reference packet is invalid, and we |
| // move the reference. |
| int relative_delay = 0; |
| for (const PacketDelay& delay : delay_history_) { |
| relative_delay += delay.iat_delay_ms; |
| relative_delay = std::max(relative_delay, 0); |
| } |
| return relative_delay; |
| } |
| |
| int DelayManager::SetPacketAudioLength(int length_ms) { |
| if (length_ms <= 0) { |
| RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms; |
| return -1; |
| } |
| packet_len_ms_ = length_ms; |
| return 0; |
| } |
| |
| void DelayManager::Reset() { |
| packet_len_ms_ = 0; |
| histogram_->Reset(); |
| delay_history_.clear(); |
| target_level_ms_ = kStartDelayMs; |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| first_packet_received_ = false; |
| num_reordered_packets_ = 0; |
| resample_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| max_delay_in_interval_ms_ = 0; |
| } |
| |
| int DelayManager::TargetDelayMs() const { |
| return target_level_ms_; |
| } |
| |
| bool DelayManager::IsValidMinimumDelay(int delay_ms) const { |
| return 0 <= delay_ms && delay_ms <= MinimumDelayUpperBound(); |
| } |
| |
| bool DelayManager::IsValidBaseMinimumDelay(int delay_ms) const { |
| return kMinBaseMinimumDelayMs <= delay_ms && |
| delay_ms <= kMaxBaseMinimumDelayMs; |
| } |
| |
| bool DelayManager::SetMinimumDelay(int delay_ms) { |
| if (!IsValidMinimumDelay(delay_ms)) { |
| return false; |
| } |
| |
| minimum_delay_ms_ = delay_ms; |
| UpdateEffectiveMinimumDelay(); |
| return true; |
| } |
| |
| bool DelayManager::SetMaximumDelay(int delay_ms) { |
| // If |delay_ms| is zero then it unsets the maximum delay and target level is |
| // unconstrained by maximum delay. |
| if (delay_ms != 0 && |
| (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_)) { |
| // Maximum delay shouldn't be less than minimum delay or less than a packet. |
| return false; |
| } |
| |
| maximum_delay_ms_ = delay_ms; |
| UpdateEffectiveMinimumDelay(); |
| return true; |
| } |
| |
| bool DelayManager::SetBaseMinimumDelay(int delay_ms) { |
| if (!IsValidBaseMinimumDelay(delay_ms)) { |
| return false; |
| } |
| |
| base_minimum_delay_ms_ = delay_ms; |
| UpdateEffectiveMinimumDelay(); |
| return true; |
| } |
| |
| int DelayManager::GetBaseMinimumDelay() const { |
| return base_minimum_delay_ms_; |
| } |
| |
| void DelayManager::UpdateEffectiveMinimumDelay() { |
| // Clamp |base_minimum_delay_ms_| into the range which can be effectively |
| // used. |
| const int base_minimum_delay_ms = |
| rtc::SafeClamp(base_minimum_delay_ms_, 0, MinimumDelayUpperBound()); |
| effective_minimum_delay_ms_ = |
| std::max(minimum_delay_ms_, base_minimum_delay_ms); |
| } |
| |
| int DelayManager::MinimumDelayUpperBound() const { |
| // Choose the lowest possible bound discarding 0 cases which mean the value |
| // is not set and unconstrained. |
| int q75 = max_packets_in_buffer_ * packet_len_ms_ * 3 / 4; |
| q75 = q75 > 0 ? q75 : kMaxBaseMinimumDelayMs; |
| const int maximum_delay_ms = |
| maximum_delay_ms_ > 0 ? maximum_delay_ms_ : kMaxBaseMinimumDelayMs; |
| return std::min(maximum_delay_ms, q75); |
| } |
| |
| } // namespace webrtc |