| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/agc2/noise_level_estimator.h" |
| |
| #include <stddef.h> |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <numeric> |
| |
| #include "api/array_view.h" |
| #include "common_audio/include/audio_util.h" |
| #include "modules/audio_processing/agc2/signal_classifier.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| constexpr int kFramesPerSecond = 100; |
| |
| float FrameEnergy(const AudioFrameView<const float>& audio) { |
| float energy = 0.0f; |
| for (size_t k = 0; k < audio.num_channels(); ++k) { |
| float channel_energy = |
| std::accumulate(audio.channel(k).begin(), audio.channel(k).end(), 0.0f, |
| [](float a, float b) -> float { return a + b * b; }); |
| energy = std::max(channel_energy, energy); |
| } |
| return energy; |
| } |
| |
| float EnergyToDbfs(float signal_energy, size_t num_samples) { |
| const float rms = std::sqrt(signal_energy / num_samples); |
| return FloatS16ToDbfs(rms); |
| } |
| |
| class NoiseLevelEstimatorImpl : public NoiseLevelEstimator { |
| public: |
| NoiseLevelEstimatorImpl(ApmDataDumper* data_dumper) |
| : data_dumper_(data_dumper), signal_classifier_(data_dumper) { |
| // Initially assume that 48 kHz will be used. `Analyze()` will detect the |
| // used sample rate and call `Initialize()` again if needed. |
| Initialize(/*sample_rate_hz=*/48000); |
| } |
| NoiseLevelEstimatorImpl(const NoiseLevelEstimatorImpl&) = delete; |
| NoiseLevelEstimatorImpl& operator=(const NoiseLevelEstimatorImpl&) = delete; |
| ~NoiseLevelEstimatorImpl() = default; |
| |
| float Analyze(const AudioFrameView<const float>& frame) override { |
| data_dumper_->DumpRaw("agc2_noise_level_estimator_hold_counter", |
| noise_energy_hold_counter_); |
| const int sample_rate_hz = |
| static_cast<int>(frame.samples_per_channel() * kFramesPerSecond); |
| if (sample_rate_hz != sample_rate_hz_) { |
| Initialize(sample_rate_hz); |
| } |
| const float frame_energy = FrameEnergy(frame); |
| if (frame_energy <= 0.f) { |
| RTC_DCHECK_GE(frame_energy, 0.f); |
| data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", -1); |
| return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); |
| } |
| |
| if (first_update_) { |
| // Initialize the noise energy to the frame energy. |
| first_update_ = false; |
| data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", -1); |
| noise_energy_ = std::max(frame_energy, min_noise_energy_); |
| return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); |
| } |
| |
| const SignalClassifier::SignalType signal_type = |
| signal_classifier_.Analyze(frame.channel(0)); |
| data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", |
| static_cast<int>(signal_type)); |
| |
| // Update the noise estimate in a minimum statistics-type manner. |
| if (signal_type == SignalClassifier::SignalType::kStationary) { |
| if (frame_energy > noise_energy_) { |
| // Leak the estimate upwards towards the frame energy if no recent |
| // downward update. |
| noise_energy_hold_counter_ = |
| std::max(noise_energy_hold_counter_ - 1, 0); |
| |
| if (noise_energy_hold_counter_ == 0) { |
| constexpr float kMaxNoiseEnergyFactor = 1.01f; |
| noise_energy_ = |
| std::min(noise_energy_ * kMaxNoiseEnergyFactor, frame_energy); |
| } |
| } else { |
| // Update smoothly downwards with a limited maximum update magnitude. |
| constexpr float kMinNoiseEnergyFactor = 0.9f; |
| constexpr float kNoiseEnergyDeltaFactor = 0.05f; |
| noise_energy_ = |
| std::max(noise_energy_ * kMinNoiseEnergyFactor, |
| noise_energy_ - kNoiseEnergyDeltaFactor * |
| (noise_energy_ - frame_energy)); |
| // Prevent an energy increase for the next 10 seconds. |
| constexpr int kNumFramesToEnergyIncreaseAllowed = 1000; |
| noise_energy_hold_counter_ = kNumFramesToEnergyIncreaseAllowed; |
| } |
| } else { |
| // TODO(bugs.webrtc.org/7494): Remove to not forget the estimated level. |
| // For a non-stationary signal, leak the estimate downwards in order to |
| // avoid estimate locking due to incorrect signal classification. |
| noise_energy_ = noise_energy_ * 0.99f; |
| } |
| |
| // Ensure a minimum of the estimate. |
| noise_energy_ = std::max(noise_energy_, min_noise_energy_); |
| return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); |
| } |
| |
| private: |
| void Initialize(int sample_rate_hz) { |
| sample_rate_hz_ = sample_rate_hz; |
| noise_energy_ = 1.0f; |
| first_update_ = true; |
| // Initialize the minimum noise energy to -84 dBFS. |
| min_noise_energy_ = sample_rate_hz * 2.0f * 2.0f / kFramesPerSecond; |
| noise_energy_hold_counter_ = 0; |
| signal_classifier_.Initialize(sample_rate_hz); |
| } |
| |
| ApmDataDumper* const data_dumper_; |
| int sample_rate_hz_; |
| float min_noise_energy_; |
| bool first_update_; |
| float noise_energy_; |
| int noise_energy_hold_counter_; |
| SignalClassifier signal_classifier_; |
| }; |
| |
| // Updates the noise floor with instant decay and slow attack. This tuning is |
| // specific for AGC2, so that (i) it can promptly increase the gain if the noise |
| // floor drops (instant decay) and (ii) in case of music or fast speech, due to |
| // which the noise floor can be overestimated, the gain reduction is slowed |
| // down. |
| float SmoothNoiseFloorEstimate(float current_estimate, float new_estimate) { |
| constexpr float kAttack = 0.5f; |
| if (current_estimate < new_estimate) { |
| // Attack phase. |
| return kAttack * new_estimate + (1.0f - kAttack) * current_estimate; |
| } |
| // Instant attack. |
| return new_estimate; |
| } |
| |
| class NoiseFloorEstimator : public NoiseLevelEstimator { |
| public: |
| // Update the noise floor every 5 seconds. |
| static constexpr int kUpdatePeriodNumFrames = 500; |
| static_assert(kUpdatePeriodNumFrames >= 200, |
| "A too small value may cause noise level overestimation."); |
| static_assert(kUpdatePeriodNumFrames <= 1500, |
| "A too large value may make AGC2 slow at reacting to increased " |
| "noise levels."); |
| |
| NoiseFloorEstimator(ApmDataDumper* data_dumper) : data_dumper_(data_dumper) { |
| // Initially assume that 48 kHz will be used. `Analyze()` will detect the |
| // used sample rate and call `Initialize()` again if needed. |
| Initialize(/*sample_rate_hz=*/48000); |
| } |
| NoiseFloorEstimator(const NoiseFloorEstimator&) = delete; |
| NoiseFloorEstimator& operator=(const NoiseFloorEstimator&) = delete; |
| ~NoiseFloorEstimator() = default; |
| |
| float Analyze(const AudioFrameView<const float>& frame) override { |
| // Detect sample rate changes. |
| const int sample_rate_hz = |
| static_cast<int>(frame.samples_per_channel() * kFramesPerSecond); |
| if (sample_rate_hz != sample_rate_hz_) { |
| Initialize(sample_rate_hz); |
| } |
| |
| const float frame_energy = FrameEnergy(frame); |
| if (frame_energy <= min_noise_energy_) { |
| // Ignore frames when muted or below the minimum measurable energy. |
| data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level", |
| noise_energy_); |
| return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); |
| } |
| |
| if (preliminary_noise_energy_set_) { |
| preliminary_noise_energy_ = |
| std::min(preliminary_noise_energy_, frame_energy); |
| } else { |
| preliminary_noise_energy_ = frame_energy; |
| preliminary_noise_energy_set_ = true; |
| } |
| data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level", |
| preliminary_noise_energy_); |
| |
| if (counter_ == 0) { |
| // Full period observed. |
| first_period_ = false; |
| // Update the estimated noise floor energy with the preliminary |
| // estimation. |
| noise_energy_ = SmoothNoiseFloorEstimate( |
| /*current_estimate=*/noise_energy_, |
| /*new_estimate=*/preliminary_noise_energy_); |
| // Reset for a new observation period. |
| counter_ = kUpdatePeriodNumFrames; |
| preliminary_noise_energy_set_ = false; |
| } else if (first_period_) { |
| // While analyzing the signal during the initial period, continuously |
| // update the estimated noise energy, which is monotonic. |
| noise_energy_ = preliminary_noise_energy_; |
| counter_--; |
| } else { |
| // During the observation period it's only allowed to lower the energy. |
| noise_energy_ = std::min(noise_energy_, preliminary_noise_energy_); |
| counter_--; |
| } |
| return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); |
| } |
| |
| private: |
| void Initialize(int sample_rate_hz) { |
| sample_rate_hz_ = sample_rate_hz; |
| first_period_ = true; |
| preliminary_noise_energy_set_ = false; |
| // Initialize the minimum noise energy to -84 dBFS. |
| min_noise_energy_ = sample_rate_hz * 2.0f * 2.0f / kFramesPerSecond; |
| preliminary_noise_energy_ = min_noise_energy_; |
| noise_energy_ = min_noise_energy_; |
| counter_ = kUpdatePeriodNumFrames; |
| } |
| |
| ApmDataDumper* const data_dumper_; |
| int sample_rate_hz_; |
| float min_noise_energy_; |
| bool first_period_; |
| bool preliminary_noise_energy_set_; |
| float preliminary_noise_energy_; |
| float noise_energy_; |
| int counter_; |
| }; |
| |
| } // namespace |
| |
| std::unique_ptr<NoiseLevelEstimator> CreateStationaryNoiseEstimator( |
| ApmDataDumper* data_dumper) { |
| return std::make_unique<NoiseLevelEstimatorImpl>(data_dumper); |
| } |
| |
| std::unique_ptr<NoiseLevelEstimator> CreateNoiseFloorEstimator( |
| ApmDataDumper* data_dumper) { |
| return std::make_unique<NoiseFloorEstimator>(data_dumper); |
| } |
| |
| } // namespace webrtc |