blob: d157c1cb1ae661483675e18411c0bd57d6a6d449 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include "webrtc/modules/audio_device/audio_device_buffer.h"
#include "webrtc/base/arraysize.h"
#include "webrtc/base/bind.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/format_macros.h"
#include "webrtc/base/timeutils.h"
#include "webrtc/modules/audio_device/audio_device_config.h"
namespace webrtc {
static const char kTimerQueueName[] = "AudioDeviceBufferTimer";
// Time between two sucessive calls to LogStats().
static const size_t kTimerIntervalInSeconds = 10;
static const size_t kTimerIntervalInMilliseconds =
kTimerIntervalInSeconds * rtc::kNumMillisecsPerSec;
AudioDeviceBuffer::AudioDeviceBuffer()
: audio_transport_cb_(nullptr),
task_queue_(kTimerQueueName),
timer_has_started_(false),
rec_sample_rate_(0),
play_sample_rate_(0),
rec_channels_(0),
play_channels_(0),
rec_channel_(AudioDeviceModule::kChannelBoth),
rec_bytes_per_sample_(0),
play_bytes_per_sample_(0),
rec_samples_per_10ms_(0),
rec_bytes_per_10ms_(0),
play_samples_per_10ms_(0),
play_bytes_per_10ms_(0),
current_mic_level_(0),
new_mic_level_(0),
typing_status_(false),
play_delay_ms_(0),
rec_delay_ms_(0),
clock_drift_(0),
num_stat_reports_(0),
rec_callbacks_(0),
last_rec_callbacks_(0),
play_callbacks_(0),
last_play_callbacks_(0),
rec_samples_(0),
last_rec_samples_(0),
play_samples_(0),
last_play_samples_(0),
last_log_stat_time_(0) {
LOG(INFO) << "AudioDeviceBuffer::ctor";
}
AudioDeviceBuffer::~AudioDeviceBuffer() {
RTC_DCHECK(thread_checker_.CalledOnValidThread());
LOG(INFO) << "AudioDeviceBuffer::~dtor";
size_t total_diff_time = 0;
int num_measurements = 0;
LOG(INFO) << "[playout diff time => #measurements]";
for (size_t diff = 0; diff < arraysize(playout_diff_times_); ++diff) {
uint32_t num_elements = playout_diff_times_[diff];
if (num_elements > 0) {
total_diff_time += num_elements * diff;
num_measurements += num_elements;
LOG(INFO) << "[" << diff << " => " << num_elements << "]";
}
}
if (num_measurements > 0) {
LOG(INFO) << "total_diff_time: " << total_diff_time;
LOG(INFO) << "num_measurements: " << num_measurements;
LOG(INFO) << "average: "
<< static_cast<float>(total_diff_time) / num_measurements;
}
}
int32_t AudioDeviceBuffer::RegisterAudioCallback(
AudioTransport* audio_callback) {
LOG(INFO) << __FUNCTION__;
rtc::CritScope lock(&_critSectCb);
audio_transport_cb_ = audio_callback;
return 0;
}
int32_t AudioDeviceBuffer::InitPlayout() {
LOG(INFO) << __FUNCTION__;
RTC_DCHECK(thread_checker_.CalledOnValidThread());
last_playout_time_ = rtc::TimeMillis();
if (!timer_has_started_) {
StartTimer();
timer_has_started_ = true;
}
return 0;
}
int32_t AudioDeviceBuffer::InitRecording() {
LOG(INFO) << __FUNCTION__;
RTC_DCHECK(thread_checker_.CalledOnValidThread());
if (!timer_has_started_) {
StartTimer();
timer_has_started_ = true;
}
return 0;
}
int32_t AudioDeviceBuffer::SetRecordingSampleRate(uint32_t fsHz) {
LOG(INFO) << "SetRecordingSampleRate(" << fsHz << ")";
rtc::CritScope lock(&_critSect);
rec_sample_rate_ = fsHz;
return 0;
}
int32_t AudioDeviceBuffer::SetPlayoutSampleRate(uint32_t fsHz) {
LOG(INFO) << "SetPlayoutSampleRate(" << fsHz << ")";
rtc::CritScope lock(&_critSect);
play_sample_rate_ = fsHz;
return 0;
}
int32_t AudioDeviceBuffer::RecordingSampleRate() const {
return rec_sample_rate_;
}
int32_t AudioDeviceBuffer::PlayoutSampleRate() const {
return play_sample_rate_;
}
int32_t AudioDeviceBuffer::SetRecordingChannels(size_t channels) {
LOG(INFO) << "SetRecordingChannels(" << channels << ")";
rtc::CritScope lock(&_critSect);
rec_channels_ = channels;
rec_bytes_per_sample_ =
2 * channels; // 16 bits per sample in mono, 32 bits in stereo
return 0;
}
int32_t AudioDeviceBuffer::SetPlayoutChannels(size_t channels) {
LOG(INFO) << "SetPlayoutChannels(" << channels << ")";
rtc::CritScope lock(&_critSect);
play_channels_ = channels;
// 16 bits per sample in mono, 32 bits in stereo
play_bytes_per_sample_ = 2 * channels;
return 0;
}
int32_t AudioDeviceBuffer::SetRecordingChannel(
const AudioDeviceModule::ChannelType channel) {
rtc::CritScope lock(&_critSect);
if (rec_channels_ == 1) {
return -1;
}
if (channel == AudioDeviceModule::kChannelBoth) {
// two bytes per channel
rec_bytes_per_sample_ = 4;
} else {
// only utilize one out of two possible channels (left or right)
rec_bytes_per_sample_ = 2;
}
rec_channel_ = channel;
return 0;
}
int32_t AudioDeviceBuffer::RecordingChannel(
AudioDeviceModule::ChannelType& channel) const {
channel = rec_channel_;
return 0;
}
size_t AudioDeviceBuffer::RecordingChannels() const {
return rec_channels_;
}
size_t AudioDeviceBuffer::PlayoutChannels() const {
return play_channels_;
}
int32_t AudioDeviceBuffer::SetCurrentMicLevel(uint32_t level) {
current_mic_level_ = level;
return 0;
}
int32_t AudioDeviceBuffer::SetTypingStatus(bool typing_status) {
typing_status_ = typing_status;
return 0;
}
uint32_t AudioDeviceBuffer::NewMicLevel() const {
return new_mic_level_;
}
void AudioDeviceBuffer::SetVQEData(int play_delay_ms,
int rec_delay_ms,
int clock_drift) {
play_delay_ms_ = play_delay_ms;
rec_delay_ms_ = rec_delay_ms;
clock_drift_ = clock_drift;
}
int32_t AudioDeviceBuffer::StartInputFileRecording(
const char fileName[kAdmMaxFileNameSize]) {
LOG(LS_WARNING) << "Not implemented";
return 0;
}
int32_t AudioDeviceBuffer::StopInputFileRecording() {
LOG(LS_WARNING) << "Not implemented";
return 0;
}
int32_t AudioDeviceBuffer::StartOutputFileRecording(
const char fileName[kAdmMaxFileNameSize]) {
LOG(LS_WARNING) << "Not implemented";
return 0;
}
int32_t AudioDeviceBuffer::StopOutputFileRecording() {
LOG(LS_WARNING) << "Not implemented";
return 0;
}
int32_t AudioDeviceBuffer::SetRecordedBuffer(const void* audio_buffer,
size_t num_samples) {
AllocateRecordingBufferIfNeeded();
RTC_CHECK(rec_buffer_);
// WebRTC can only receive audio in 10ms chunks, hence we fail if the native
// audio layer tries to deliver something else.
RTC_CHECK_EQ(num_samples, rec_samples_per_10ms_);
rtc::CritScope lock(&_critSect);
if (rec_channel_ == AudioDeviceModule::kChannelBoth) {
// Copy the complete input buffer to the local buffer.
memcpy(&rec_buffer_[0], audio_buffer, rec_bytes_per_10ms_);
} else {
int16_t* ptr16In = (int16_t*)audio_buffer;
int16_t* ptr16Out = (int16_t*)&rec_buffer_[0];
if (AudioDeviceModule::kChannelRight == rec_channel_) {
ptr16In++;
}
// Exctract left or right channel from input buffer to the local buffer.
for (size_t i = 0; i < rec_samples_per_10ms_; i++) {
*ptr16Out = *ptr16In;
ptr16Out++;
ptr16In++;
ptr16In++;
}
}
// Update some stats but do it on the task queue to ensure that the members
// are modified and read on the same thread.
task_queue_.PostTask(
rtc::Bind(&AudioDeviceBuffer::UpdateRecStats, this, num_samples));
return 0;
}
int32_t AudioDeviceBuffer::DeliverRecordedData() {
RTC_CHECK(rec_buffer_);
RTC_DCHECK(audio_transport_cb_);
rtc::CritScope lock(&_critSectCb);
if (!audio_transport_cb_) {
LOG(LS_WARNING) << "Invalid audio transport";
return 0;
}
int32_t res(0);
uint32_t newMicLevel(0);
uint32_t totalDelayMS = play_delay_ms_ + rec_delay_ms_;
res = audio_transport_cb_->RecordedDataIsAvailable(
&rec_buffer_[0], rec_samples_per_10ms_, rec_bytes_per_sample_,
rec_channels_, rec_sample_rate_, totalDelayMS, clock_drift_,
current_mic_level_, typing_status_, newMicLevel);
if (res != -1) {
new_mic_level_ = newMicLevel;
} else {
LOG(LS_ERROR) << "RecordedDataIsAvailable() failed";
}
return 0;
}
int32_t AudioDeviceBuffer::RequestPlayoutData(size_t num_samples) {
// Measure time since last function call and update an array where the
// position/index corresponds to time differences (in milliseconds) between
// two successive playout callbacks, and the stored value is the number of
// times a given time difference was found.
int64_t now_time = rtc::TimeMillis();
size_t diff_time = rtc::TimeDiff(now_time, last_playout_time_);
// Truncate at 500ms to limit the size of the array.
diff_time = std::min(kMaxDeltaTimeInMs, diff_time);
last_playout_time_ = now_time;
playout_diff_times_[diff_time]++;
AllocatePlayoutBufferIfNeeded();
RTC_CHECK(play_buffer_);
// WebRTC can only provide audio in 10ms chunks, hence we fail if the native
// audio layer asks for something else.
RTC_CHECK_EQ(num_samples, play_samples_per_10ms_);
rtc::CritScope lock(&_critSectCb);
// It is currently supported to start playout without a valid audio
// transport object. Leads to warning and silence.
if (!audio_transport_cb_) {
LOG(LS_WARNING) << "Invalid audio transport";
return 0;
}
uint32_t res(0);
int64_t elapsed_time_ms = -1;
int64_t ntp_time_ms = -1;
size_t num_samples_out(0);
res = audio_transport_cb_->NeedMorePlayData(
play_samples_per_10ms_, play_bytes_per_sample_, play_channels_,
play_sample_rate_, &play_buffer_[0], num_samples_out, &elapsed_time_ms,
&ntp_time_ms);
if (res != 0) {
LOG(LS_ERROR) << "NeedMorePlayData() failed";
}
// Update some stats but do it on the task queue to ensure that access of
// members is serialized hence avoiding usage of locks.
task_queue_.PostTask(
rtc::Bind(&AudioDeviceBuffer::UpdatePlayStats, this, num_samples_out));
return static_cast<int32_t>(num_samples_out);
}
int32_t AudioDeviceBuffer::GetPlayoutData(void* audio_buffer) {
rtc::CritScope lock(&_critSect);
memcpy(audio_buffer, &play_buffer_[0], play_bytes_per_10ms_);
return static_cast<int32_t>(play_samples_per_10ms_);
}
void AudioDeviceBuffer::AllocatePlayoutBufferIfNeeded() {
RTC_CHECK(play_bytes_per_sample_);
if (play_buffer_)
return;
LOG(INFO) << __FUNCTION__;
rtc::CritScope lock(&_critSect);
// Derive the required buffer size given sample rate and number of channels.
play_samples_per_10ms_ = static_cast<size_t>(play_sample_rate_ * 10 / 1000);
play_bytes_per_10ms_ = play_bytes_per_sample_ * play_samples_per_10ms_;
LOG(INFO) << "playout samples per 10ms: " << play_samples_per_10ms_;
LOG(INFO) << "playout bytes per 10ms: " << play_bytes_per_10ms_;
// Allocate memory for the playout audio buffer. It will always contain audio
// samples corresponding to 10ms of audio to be played out.
play_buffer_.reset(new int8_t[play_bytes_per_10ms_]);
}
void AudioDeviceBuffer::AllocateRecordingBufferIfNeeded() {
RTC_CHECK(rec_bytes_per_sample_);
if (rec_buffer_)
return;
LOG(INFO) << __FUNCTION__;
rtc::CritScope lock(&_critSect);
// Derive the required buffer size given sample rate and number of channels.
rec_samples_per_10ms_ = static_cast<size_t>(rec_sample_rate_ * 10 / 1000);
rec_bytes_per_10ms_ = rec_bytes_per_sample_ * rec_samples_per_10ms_;
LOG(INFO) << "recorded samples per 10ms: " << rec_samples_per_10ms_;
LOG(INFO) << "recorded bytes per 10ms: " << rec_bytes_per_10ms_;
// Allocate memory for the recording audio buffer. It will always contain
// audio samples corresponding to 10ms of audio.
rec_buffer_.reset(new int8_t[rec_bytes_per_10ms_]);
}
void AudioDeviceBuffer::StartTimer() {
last_log_stat_time_ = rtc::TimeMillis();
task_queue_.PostDelayedTask(rtc::Bind(&AudioDeviceBuffer::LogStats, this),
kTimerIntervalInMilliseconds);
}
void AudioDeviceBuffer::LogStats() {
RTC_DCHECK(task_queue_.IsCurrent());
int64_t now_time = rtc::TimeMillis();
int64_t next_callback_time = now_time + kTimerIntervalInMilliseconds;
int64_t time_since_last = rtc::TimeDiff(now_time, last_log_stat_time_);
last_log_stat_time_ = now_time;
// Log the latest statistics but skip the first 10 seconds since we are not
// sure of the exact starting point. I.e., the first log printout will be
// after ~20 seconds.
if (++num_stat_reports_ > 1) {
uint32_t diff_samples = rec_samples_ - last_rec_samples_;
uint32_t rate = diff_samples / kTimerIntervalInSeconds;
LOG(INFO) << "[REC : " << time_since_last << "msec, "
<< rec_sample_rate_ / 1000
<< "kHz] callbacks: " << rec_callbacks_ - last_rec_callbacks_
<< ", "
<< "samples: " << diff_samples << ", "
<< "rate: " << rate;
diff_samples = play_samples_ - last_play_samples_;
rate = diff_samples / kTimerIntervalInSeconds;
LOG(INFO) << "[PLAY: " << time_since_last << "msec, "
<< play_sample_rate_ / 1000
<< "kHz] callbacks: " << play_callbacks_ - last_play_callbacks_
<< ", "
<< "samples: " << diff_samples << ", "
<< "rate: " << rate;
}
last_rec_callbacks_ = rec_callbacks_;
last_play_callbacks_ = play_callbacks_;
last_rec_samples_ = rec_samples_;
last_play_samples_ = play_samples_;
int64_t time_to_wait_ms = next_callback_time - rtc::TimeMillis();
RTC_DCHECK_GT(time_to_wait_ms, 0) << "Invalid timer interval";
// Update some stats but do it on the task queue to ensure that access of
// members is serialized hence avoiding usage of locks.
task_queue_.PostDelayedTask(rtc::Bind(&AudioDeviceBuffer::LogStats, this),
time_to_wait_ms);
}
void AudioDeviceBuffer::UpdateRecStats(size_t num_samples) {
RTC_DCHECK(task_queue_.IsCurrent());
++rec_callbacks_;
rec_samples_ += num_samples;
}
void AudioDeviceBuffer::UpdatePlayStats(size_t num_samples) {
RTC_DCHECK(task_queue_.IsCurrent());
++play_callbacks_;
play_samples_ += num_samples;
}
} // namespace webrtc