blob: 1eb83eae615daeef8b0f21fda9991d1df15a083d [file] [log] [blame]
/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc/clipping_predictor_evaluator.h"
#include <cstdint>
#include <memory>
#include <tuple>
#include <vector>
#include "absl/types/optional.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/random.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
using testing::Eq;
using testing::Optional;
constexpr bool kDetected = true;
constexpr bool kNotDetected = false;
constexpr bool kPredicted = true;
constexpr bool kNotPredicted = false;
int SumTrueFalsePositivesNegatives(
const ClippingPredictorEvaluator& evaluator) {
return evaluator.true_positives() + evaluator.true_negatives() +
evaluator.false_positives() + evaluator.false_negatives();
}
// Checks the metrics after init - i.e., no call to `Observe()`.
TEST(ClippingPredictorEvaluatorTest, Init) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
EXPECT_EQ(evaluator.true_positives(), 0);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
class ClippingPredictorEvaluatorParameterization
: public ::testing::TestWithParam<std::tuple<int, int>> {
protected:
uint64_t seed() const {
return rtc::checked_cast<uint64_t>(std::get<0>(GetParam()));
}
int history_size() const { return std::get<1>(GetParam()); }
};
// Checks that after each call to `Observe()` at most one metric changes.
TEST_P(ClippingPredictorEvaluatorParameterization, AtMostOneMetricChanges) {
constexpr int kNumCalls = 123;
Random random_generator(seed());
ClippingPredictorEvaluator evaluator(history_size());
for (int i = 0; i < kNumCalls; ++i) {
SCOPED_TRACE(i);
// Read metrics before `Observe()` is called.
const int last_tp = evaluator.true_positives();
const int last_tn = evaluator.true_negatives();
const int last_fp = evaluator.false_positives();
const int last_fn = evaluator.false_negatives();
// `Observe()` a random observation.
bool clipping_detected = random_generator.Rand<bool>();
bool clipping_predicted = random_generator.Rand<bool>();
evaluator.Observe(clipping_detected, clipping_predicted);
// Check that at most one metric has changed.
int num_changes = 0;
num_changes += last_tp == evaluator.true_positives() ? 0 : 1;
num_changes += last_tn == evaluator.true_negatives() ? 0 : 1;
num_changes += last_fp == evaluator.false_positives() ? 0 : 1;
num_changes += last_fn == evaluator.false_negatives() ? 0 : 1;
EXPECT_GE(num_changes, 0);
EXPECT_LE(num_changes, 1);
}
}
// Checks that after each call to `Observe()` each metric either remains
// unchanged or grows.
TEST_P(ClippingPredictorEvaluatorParameterization, MetricsAreWeaklyMonotonic) {
constexpr int kNumCalls = 123;
Random random_generator(seed());
ClippingPredictorEvaluator evaluator(history_size());
for (int i = 0; i < kNumCalls; ++i) {
SCOPED_TRACE(i);
// Read metrics before `Observe()` is called.
const int last_tp = evaluator.true_positives();
const int last_tn = evaluator.true_negatives();
const int last_fp = evaluator.false_positives();
const int last_fn = evaluator.false_negatives();
// `Observe()` a random observation.
bool clipping_detected = random_generator.Rand<bool>();
bool clipping_predicted = random_generator.Rand<bool>();
evaluator.Observe(clipping_detected, clipping_predicted);
// Check that metrics are weakly monotonic.
EXPECT_GE(evaluator.true_positives(), last_tp);
EXPECT_GE(evaluator.true_negatives(), last_tn);
EXPECT_GE(evaluator.false_positives(), last_fp);
EXPECT_GE(evaluator.false_negatives(), last_fn);
}
}
// Checks that after each call to `Observe()` the growth speed of each metrics
// is bounded.
TEST_P(ClippingPredictorEvaluatorParameterization, BoundedMetricsGrowth) {
constexpr int kNumCalls = 123;
Random random_generator(seed());
ClippingPredictorEvaluator evaluator(history_size());
for (int i = 0; i < kNumCalls; ++i) {
SCOPED_TRACE(i);
// Read metrics before `Observe()` is called.
const int last_tp = evaluator.true_positives();
const int last_tn = evaluator.true_negatives();
const int last_fp = evaluator.false_positives();
const int last_fn = evaluator.false_negatives();
// `Observe()` a random observation.
bool clipping_detected = random_generator.Rand<bool>();
bool clipping_predicted = random_generator.Rand<bool>();
evaluator.Observe(clipping_detected, clipping_predicted);
// Check that TPs grow by at most `history_size() + 1`. Such an upper bound
// is reached when multiple predictions are matched by a single detection.
EXPECT_LE(evaluator.true_positives() - last_tp, history_size() + 1);
// Check that TNs, FPs and FNs grow by at most one. `max_growth`.
EXPECT_LE(evaluator.true_negatives() - last_tn, 1);
EXPECT_LE(evaluator.false_positives() - last_fp, 1);
EXPECT_LE(evaluator.false_negatives() - last_fn, 1);
}
}
// Checks that `Observe()` returns a prediction interval if and only if one or
// more true positives are found.
TEST_P(ClippingPredictorEvaluatorParameterization,
PredictionIntervalIfAndOnlyIfTruePositives) {
constexpr int kNumCalls = 123;
Random random_generator(seed());
ClippingPredictorEvaluator evaluator(history_size());
for (int i = 0; i < kNumCalls; ++i) {
SCOPED_TRACE(i);
// Read true positives before `Observe()` is called.
const int last_tp = evaluator.true_positives();
// `Observe()` a random observation.
bool clipping_detected = random_generator.Rand<bool>();
bool clipping_predicted = random_generator.Rand<bool>();
absl::optional<int> prediction_interval =
evaluator.Observe(clipping_detected, clipping_predicted);
// Check that the prediction interval is returned when a true positive is
// found.
if (evaluator.true_positives() == last_tp) {
EXPECT_FALSE(prediction_interval.has_value());
} else {
EXPECT_TRUE(prediction_interval.has_value());
}
}
}
INSTANTIATE_TEST_SUITE_P(
ClippingPredictorEvaluatorTest,
ClippingPredictorEvaluatorParameterization,
::testing::Combine(::testing::Values(4, 8, 15, 16, 23, 42),
::testing::Values(1, 10, 21)));
// Checks that, observing a detection and a prediction after init, produces a
// true positive.
TEST(ClippingPredictorEvaluatorTest, OneTruePositiveAfterInit) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kDetected, kPredicted);
EXPECT_EQ(evaluator.true_positives(), 1);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that, observing a detection but no prediction after init, produces a
// false negative.
TEST(ClippingPredictorEvaluatorTest, OneFalseNegativeAfterInit) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_negatives(), 1);
EXPECT_EQ(evaluator.true_positives(), 0);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
}
// Checks that, observing no detection but a prediction after init, produces a
// false positive after expiration.
TEST(ClippingPredictorEvaluatorTest, OneFalsePositiveAfterInit) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted);
EXPECT_EQ(evaluator.false_positives(), 0);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_positives(), 1);
EXPECT_EQ(evaluator.true_positives(), 0);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that, observing no detection and no prediction after init, produces a
// true negative.
TEST(ClippingPredictorEvaluatorTest, OneTrueNegativeAfterInit) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.true_negatives(), 1);
EXPECT_EQ(evaluator.true_positives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that the evaluator detects true negatives when clipping is neither
// predicted nor detected.
TEST(ClippingPredictorEvaluatorTest, NeverDetectedAndNotPredicted) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.true_negatives(), 4);
EXPECT_EQ(evaluator.true_positives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that the evaluator detects a false negative when clipping is detected
// but not predicted.
TEST(ClippingPredictorEvaluatorTest, DetectedButNotPredicted) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_negatives(), 1);
EXPECT_EQ(evaluator.true_positives(), 0);
EXPECT_EQ(evaluator.true_negatives(), 3);
EXPECT_EQ(evaluator.false_positives(), 0);
}
// Checks that the evaluator does not detect a false positive when clipping is
// predicted but not detected until the observation period expires.
TEST(ClippingPredictorEvaluatorTest,
PredictedOnceAndNeverDetectedBeforeDeadline) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_positives(), 0);
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_positives(), 0);
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_positives(), 1);
EXPECT_EQ(evaluator.true_positives(), 0);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that the evaluator detects a false positive when clipping is predicted
// but detected after the observation period expires.
TEST(ClippingPredictorEvaluatorTest, PredictedOnceButDetectedAfterDeadline) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_positives(), 1);
EXPECT_EQ(evaluator.true_positives(), 0);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 1);
}
// Checks that a prediction followed by a detection counts as true positive.
TEST(ClippingPredictorEvaluatorTest, PredictedOnceAndThenImmediatelyDetected) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted);
EXPECT_EQ(evaluator.false_positives(), 0);
evaluator.Observe(kDetected, kNotPredicted);
EXPECT_EQ(evaluator.true_positives(), 1);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that a prediction followed by a delayed detection counts as true
// positive if the delay is within the observation period.
TEST(ClippingPredictorEvaluatorTest, PredictedOnceAndDetectedBeforeDeadline) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted);
EXPECT_EQ(evaluator.false_positives(), 0);
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_positives(), 0);
evaluator.Observe(kDetected, kNotPredicted);
EXPECT_EQ(evaluator.true_positives(), 1);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that a prediction followed by a delayed detection counts as true
// positive if the delay equals the observation period.
TEST(ClippingPredictorEvaluatorTest, PredictedOnceAndDetectedAtDeadline) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted);
EXPECT_EQ(evaluator.false_positives(), 0);
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_positives(), 0);
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_positives(), 0);
evaluator.Observe(kDetected, kNotPredicted);
EXPECT_EQ(evaluator.true_positives(), 1);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that a prediction followed by a multiple adjacent detections within
// the deadline counts as a single true positive and that, after the deadline,
// a detection counts as a false negative.
TEST(ClippingPredictorEvaluatorTest, PredictedOnceAndDetectedMultipleTimes) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
// Multiple detections.
evaluator.Observe(kDetected, kNotPredicted);
EXPECT_EQ(evaluator.true_positives(), 1);
evaluator.Observe(kDetected, kNotPredicted);
EXPECT_EQ(evaluator.true_positives(), 1);
// A detection outside of the observation period counts as false negative.
evaluator.Observe(kDetected, kNotPredicted);
EXPECT_EQ(evaluator.false_negatives(), 1);
EXPECT_EQ(SumTrueFalsePositivesNegatives(evaluator), 2);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
}
// Checks that a false positive is added when clipping is detected after a too
// early prediction.
TEST(ClippingPredictorEvaluatorTest,
PredictedMultipleTimesAndDetectedOnceAfterDeadline) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted); // ---+
evaluator.Observe(kNotDetected, kPredicted); // |
evaluator.Observe(kNotDetected, kPredicted); // |
evaluator.Observe(kNotDetected, kPredicted); // <--+ Not matched.
// The time to match a detection after the first prediction expired.
EXPECT_EQ(evaluator.false_positives(), 1);
evaluator.Observe(kDetected, kNotPredicted);
// The detection above does not match the first prediction because it happened
// after the deadline of the 1st prediction.
EXPECT_EQ(evaluator.false_positives(), 1);
EXPECT_EQ(evaluator.true_positives(), 3);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that multiple consecutive predictions match the first detection
// observed before the expected detection deadline expires.
TEST(ClippingPredictorEvaluatorTest, PredictedMultipleTimesAndDetectedOnce) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted); // --+
evaluator.Observe(kNotDetected, kPredicted); // | --+
evaluator.Observe(kNotDetected, kPredicted); // | | --+
evaluator.Observe(kDetected, kNotPredicted); // <-+ <-+ <-+
EXPECT_EQ(evaluator.true_positives(), 3);
// The following observations do not generate any true negatives as they
// belong to the observation period of the last prediction - for which a
// detection has already been matched.
const int true_negatives = evaluator.true_negatives();
evaluator.Observe(kNotDetected, kNotPredicted);
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.true_negatives(), true_negatives);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that multiple consecutive predictions match the multiple detections
// observed before the expected detection deadline expires.
TEST(ClippingPredictorEvaluatorTest,
PredictedMultipleTimesAndDetectedMultipleTimes) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted); // --+
evaluator.Observe(kNotDetected, kPredicted); // | --+
evaluator.Observe(kNotDetected, kPredicted); // | | --+
evaluator.Observe(kDetected, kNotPredicted); // <-+ <-+ <-+
evaluator.Observe(kDetected, kNotPredicted); // <-+ <-+
EXPECT_EQ(evaluator.true_positives(), 3);
// The following observation does not generate a true negative as it belongs
// to the observation period of the last prediction - for which two detections
// have already been matched.
const int true_negatives = evaluator.true_negatives();
evaluator.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(evaluator.true_negatives(), true_negatives);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that multiple consecutive predictions match all the detections
// observed before the expected detection deadline expires.
TEST(ClippingPredictorEvaluatorTest, PredictedMultipleTimesAndAllDetected) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted); // --+
evaluator.Observe(kNotDetected, kPredicted); // | --+
evaluator.Observe(kNotDetected, kPredicted); // | | --+
evaluator.Observe(kDetected, kNotPredicted); // <-+ <-+ <-+
evaluator.Observe(kDetected, kNotPredicted); // <-+ <-+
evaluator.Observe(kDetected, kNotPredicted); // <-+
EXPECT_EQ(evaluator.true_positives(), 3);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
// Checks that multiple non-consecutive predictions match all the detections
// observed before the expected detection deadline expires.
TEST(ClippingPredictorEvaluatorTest,
PredictedMultipleTimesWithGapAndAllDetected) {
ClippingPredictorEvaluator evaluator(/*history_size=*/3);
evaluator.Observe(kNotDetected, kPredicted); // --+
evaluator.Observe(kNotDetected, kNotPredicted); // |
evaluator.Observe(kNotDetected, kPredicted); // | --+
evaluator.Observe(kDetected, kNotPredicted); // <-+ <-+
evaluator.Observe(kDetected, kNotPredicted); // <-+
evaluator.Observe(kDetected, kNotPredicted); // <-+
EXPECT_EQ(evaluator.true_positives(), 2);
EXPECT_EQ(evaluator.true_negatives(), 0);
EXPECT_EQ(evaluator.false_positives(), 0);
EXPECT_EQ(evaluator.false_negatives(), 0);
}
class ClippingPredictorEvaluatorPredictionIntervalParameterization
: public ::testing::TestWithParam<std::tuple<int, int>> {
protected:
int num_extra_observe_calls() const { return std::get<0>(GetParam()); }
int history_size() const { return std::get<1>(GetParam()); }
};
// Checks that the minimum prediction interval is returned if clipping is
// correctly predicted as soon as detected - i.e., no anticipation.
TEST_P(ClippingPredictorEvaluatorPredictionIntervalParameterization,
MinimumPredictionInterval) {
ClippingPredictorEvaluator evaluator(history_size());
for (int i = 0; i < num_extra_observe_calls(); ++i) {
EXPECT_EQ(evaluator.Observe(kNotDetected, kNotPredicted), absl::nullopt);
}
absl::optional<int> prediction_interval =
evaluator.Observe(kDetected, kPredicted);
EXPECT_THAT(prediction_interval, Optional(Eq(0)));
}
// Checks that a prediction interval between the minimum and the maximum is
// returned if clipping is correctly predicted before it is detected but not as
// early as possible.
TEST_P(ClippingPredictorEvaluatorPredictionIntervalParameterization,
IntermediatePredictionInterval) {
ClippingPredictorEvaluator evaluator(history_size());
for (int i = 0; i < num_extra_observe_calls(); ++i) {
EXPECT_EQ(evaluator.Observe(kNotDetected, kNotPredicted), absl::nullopt);
}
EXPECT_EQ(evaluator.Observe(kNotDetected, kPredicted), absl::nullopt);
EXPECT_EQ(evaluator.Observe(kNotDetected, kPredicted), absl::nullopt);
EXPECT_EQ(evaluator.Observe(kNotDetected, kPredicted), absl::nullopt);
absl::optional<int> prediction_interval =
evaluator.Observe(kDetected, kPredicted);
EXPECT_THAT(prediction_interval, Optional(Eq(3)));
}
// Checks that the maximum prediction interval is returned if clipping is
// correctly predicted as early as possible.
TEST_P(ClippingPredictorEvaluatorPredictionIntervalParameterization,
MaximumPredictionInterval) {
ClippingPredictorEvaluator evaluator(history_size());
for (int i = 0; i < num_extra_observe_calls(); ++i) {
EXPECT_EQ(evaluator.Observe(kNotDetected, kNotPredicted), absl::nullopt);
}
for (int i = 0; i < history_size(); ++i) {
EXPECT_EQ(evaluator.Observe(kNotDetected, kPredicted), absl::nullopt);
}
absl::optional<int> prediction_interval =
evaluator.Observe(kDetected, kPredicted);
EXPECT_THAT(prediction_interval, Optional(Eq(history_size())));
}
// Checks that `Observe()` returns the prediction interval as soon as a true
// positive is found and never again while ongoing detections are matched to a
// previously observed prediction.
TEST_P(ClippingPredictorEvaluatorPredictionIntervalParameterization,
PredictionIntervalReturnedOnce) {
ASSERT_LT(num_extra_observe_calls(), history_size());
ClippingPredictorEvaluator evaluator(history_size());
// Observe predictions before detection.
for (int i = 0; i < num_extra_observe_calls(); ++i) {
EXPECT_EQ(evaluator.Observe(kNotDetected, kPredicted), absl::nullopt);
}
// Observe a detection.
absl::optional<int> prediction_interval =
evaluator.Observe(kDetected, kPredicted);
EXPECT_TRUE(prediction_interval.has_value());
// `Observe()` does not return a prediction interval anymore during ongoing
// detections observed while a detection is still expected.
for (int i = 0; i < history_size(); ++i) {
EXPECT_EQ(evaluator.Observe(kDetected, kNotPredicted), absl::nullopt);
}
}
INSTANTIATE_TEST_SUITE_P(
ClippingPredictorEvaluatorTest,
ClippingPredictorEvaluatorPredictionIntervalParameterization,
::testing::Combine(::testing::Values(0, 3, 5), ::testing::Values(7, 11)));
// Checks that, when a detection is expected, the expectation is removed if and
// only if `Reset()` is called after a prediction is observed.
TEST(ClippingPredictorEvaluatorTest, NoFalsePositivesAfterReset) {
constexpr int kHistorySize = 2;
ClippingPredictorEvaluator with_reset(kHistorySize);
with_reset.Observe(kNotDetected, kPredicted);
with_reset.Reset();
with_reset.Observe(kNotDetected, kNotPredicted);
with_reset.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(with_reset.true_positives(), 0);
EXPECT_EQ(with_reset.true_negatives(), 2);
EXPECT_EQ(with_reset.false_positives(), 0);
EXPECT_EQ(with_reset.false_negatives(), 0);
ClippingPredictorEvaluator no_reset(kHistorySize);
no_reset.Observe(kNotDetected, kPredicted);
no_reset.Observe(kNotDetected, kNotPredicted);
no_reset.Observe(kNotDetected, kNotPredicted);
EXPECT_EQ(no_reset.true_positives(), 0);
EXPECT_EQ(no_reset.true_negatives(), 0);
EXPECT_EQ(no_reset.false_positives(), 1);
EXPECT_EQ(no_reset.false_negatives(), 0);
}
} // namespace
} // namespace webrtc