|  | /* | 
|  | *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "common_audio/signal_processing/include/signal_processing_library.h" | 
|  |  | 
|  | #include <arm_neon.h> | 
|  |  | 
|  | // NEON intrinsics version of WebRtcSpl_DownsampleFast() | 
|  | // for ARM 32-bit/64-bit platforms. | 
|  | int WebRtcSpl_DownsampleFastNeon(const int16_t* data_in, | 
|  | size_t data_in_length, | 
|  | int16_t* data_out, | 
|  | size_t data_out_length, | 
|  | const int16_t* __restrict coefficients, | 
|  | size_t coefficients_length, | 
|  | int factor, | 
|  | size_t delay) { | 
|  | size_t i = 0; | 
|  | size_t j = 0; | 
|  | int32_t out_s32 = 0; | 
|  | size_t endpos = delay + factor * (data_out_length - 1) + 1; | 
|  | size_t res = data_out_length & 0x7; | 
|  | size_t endpos1 = endpos - factor * res; | 
|  |  | 
|  | // Return error if any of the running conditions doesn't meet. | 
|  | if (data_out_length == 0 || coefficients_length == 0 | 
|  | || data_in_length < endpos) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // First part, unroll the loop 8 times, with 3 subcases | 
|  | // (factor == 2, 4, others). | 
|  | switch (factor) { | 
|  | case 2: { | 
|  | for (i = delay; i < endpos1; i += 16) { | 
|  | // Round value, 0.5 in Q12. | 
|  | int32x4_t out32x4_0 = vdupq_n_s32(2048); | 
|  | int32x4_t out32x4_1 = vdupq_n_s32(2048); | 
|  |  | 
|  | #if defined(WEBRTC_ARCH_ARM64) | 
|  | // Unroll the loop 2 times. | 
|  | for (j = 0; j < coefficients_length - 1; j += 2) { | 
|  | int32x2_t coeff32 = vld1_dup_s32((int32_t*)&coefficients[j]); | 
|  | int16x4_t coeff16x4 = vreinterpret_s16_s32(coeff32); | 
|  | int16x8x2_t in16x8x2 = vld2q_s16(&data_in[i - j - 1]); | 
|  |  | 
|  | // Mul and accumulate low 64-bit data. | 
|  | int16x4_t in16x4_0 = vget_low_s16(in16x8x2.val[0]); | 
|  | int16x4_t in16x4_1 = vget_low_s16(in16x8x2.val[1]); | 
|  | out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 1); | 
|  | out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_1, coeff16x4, 0); | 
|  |  | 
|  | // Mul and accumulate high 64-bit data. | 
|  | // TODO: vget_high_s16 need extra cost on ARM64. This could be | 
|  | // replaced by vmlal_high_lane_s16. But for the interface of | 
|  | // vmlal_high_lane_s16, there is a bug in gcc 4.9. | 
|  | // This issue need to be tracked in the future. | 
|  | int16x4_t in16x4_2 = vget_high_s16(in16x8x2.val[0]); | 
|  | int16x4_t in16x4_3 = vget_high_s16(in16x8x2.val[1]); | 
|  | out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_2, coeff16x4, 1); | 
|  | out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_3, coeff16x4, 0); | 
|  | } | 
|  |  | 
|  | for (; j < coefficients_length; j++) { | 
|  | int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); | 
|  | int16x8x2_t in16x8x2 = vld2q_s16(&data_in[i - j]); | 
|  |  | 
|  | // Mul and accumulate low 64-bit data. | 
|  | int16x4_t in16x4_0 = vget_low_s16(in16x8x2.val[0]); | 
|  | out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0); | 
|  |  | 
|  | // Mul and accumulate high 64-bit data. | 
|  | // TODO: vget_high_s16 need extra cost on ARM64. This could be | 
|  | // replaced by vmlal_high_lane_s16. But for the interface of | 
|  | // vmlal_high_lane_s16, there is a bug in gcc 4.9. | 
|  | // This issue need to be tracked in the future. | 
|  | int16x4_t in16x4_1 = vget_high_s16(in16x8x2.val[0]); | 
|  | out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0); | 
|  | } | 
|  | #else | 
|  | // On ARMv7, the loop unrolling 2 times results in performance | 
|  | // regression. | 
|  | for (j = 0; j < coefficients_length; j++) { | 
|  | int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); | 
|  | int16x8x2_t in16x8x2 = vld2q_s16(&data_in[i - j]); | 
|  |  | 
|  | // Mul and accumulate. | 
|  | int16x4_t in16x4_0 = vget_low_s16(in16x8x2.val[0]); | 
|  | int16x4_t in16x4_1 = vget_high_s16(in16x8x2.val[0]); | 
|  | out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0); | 
|  | out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Saturate and store the output. | 
|  | int16x4_t out16x4_0 = vqshrn_n_s32(out32x4_0, 12); | 
|  | int16x4_t out16x4_1 = vqshrn_n_s32(out32x4_1, 12); | 
|  | vst1q_s16(data_out, vcombine_s16(out16x4_0, out16x4_1)); | 
|  | data_out += 8; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 4: { | 
|  | for (i = delay; i < endpos1; i += 32) { | 
|  | // Round value, 0.5 in Q12. | 
|  | int32x4_t out32x4_0 = vdupq_n_s32(2048); | 
|  | int32x4_t out32x4_1 = vdupq_n_s32(2048); | 
|  |  | 
|  | // Unroll the loop 4 times. | 
|  | for (j = 0; j < coefficients_length - 3; j += 4) { | 
|  | int16x4_t coeff16x4 = vld1_s16(&coefficients[j]); | 
|  | int16x8x4_t in16x8x4 = vld4q_s16(&data_in[i - j - 3]); | 
|  |  | 
|  | // Mul and accumulate low 64-bit data. | 
|  | int16x4_t in16x4_0 = vget_low_s16(in16x8x4.val[0]); | 
|  | int16x4_t in16x4_2 = vget_low_s16(in16x8x4.val[1]); | 
|  | int16x4_t in16x4_4 = vget_low_s16(in16x8x4.val[2]); | 
|  | int16x4_t in16x4_6 = vget_low_s16(in16x8x4.val[3]); | 
|  | out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 3); | 
|  | out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_2, coeff16x4, 2); | 
|  | out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_4, coeff16x4, 1); | 
|  | out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_6, coeff16x4, 0); | 
|  |  | 
|  | // Mul and accumulate high 64-bit data. | 
|  | // TODO: vget_high_s16 need extra cost on ARM64. This could be | 
|  | // replaced by vmlal_high_lane_s16. But for the interface of | 
|  | // vmlal_high_lane_s16, there is a bug in gcc 4.9. | 
|  | // This issue need to be tracked in the future. | 
|  | int16x4_t in16x4_1 = vget_high_s16(in16x8x4.val[0]); | 
|  | int16x4_t in16x4_3 = vget_high_s16(in16x8x4.val[1]); | 
|  | int16x4_t in16x4_5 = vget_high_s16(in16x8x4.val[2]); | 
|  | int16x4_t in16x4_7 = vget_high_s16(in16x8x4.val[3]); | 
|  | out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 3); | 
|  | out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_3, coeff16x4, 2); | 
|  | out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_5, coeff16x4, 1); | 
|  | out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_7, coeff16x4, 0); | 
|  | } | 
|  |  | 
|  | for (; j < coefficients_length; j++) { | 
|  | int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); | 
|  | int16x8x4_t in16x8x4 = vld4q_s16(&data_in[i - j]); | 
|  |  | 
|  | // Mul and accumulate low 64-bit data. | 
|  | int16x4_t in16x4_0 = vget_low_s16(in16x8x4.val[0]); | 
|  | out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0); | 
|  |  | 
|  | // Mul and accumulate high 64-bit data. | 
|  | // TODO: vget_high_s16 need extra cost on ARM64. This could be | 
|  | // replaced by vmlal_high_lane_s16. But for the interface of | 
|  | // vmlal_high_lane_s16, there is a bug in gcc 4.9. | 
|  | // This issue need to be tracked in the future. | 
|  | int16x4_t in16x4_1 = vget_high_s16(in16x8x4.val[0]); | 
|  | out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0); | 
|  | } | 
|  |  | 
|  | // Saturate and store the output. | 
|  | int16x4_t out16x4_0 = vqshrn_n_s32(out32x4_0, 12); | 
|  | int16x4_t out16x4_1 = vqshrn_n_s32(out32x4_1, 12); | 
|  | vst1q_s16(data_out, vcombine_s16(out16x4_0, out16x4_1)); | 
|  | data_out += 8; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | for (i = delay; i < endpos1; i += factor * 8) { | 
|  | // Round value, 0.5 in Q12. | 
|  | int32x4_t out32x4_0 = vdupq_n_s32(2048); | 
|  | int32x4_t out32x4_1 = vdupq_n_s32(2048); | 
|  |  | 
|  | for (j = 0; j < coefficients_length; j++) { | 
|  | int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); | 
|  | int16x4_t in16x4_0 = vld1_dup_s16(&data_in[i - j]); | 
|  | in16x4_0 = vld1_lane_s16(&data_in[i + factor - j], in16x4_0, 1); | 
|  | in16x4_0 = vld1_lane_s16(&data_in[i + factor * 2 - j], in16x4_0, 2); | 
|  | in16x4_0 = vld1_lane_s16(&data_in[i + factor * 3 - j], in16x4_0, 3); | 
|  | int16x4_t in16x4_1 = vld1_dup_s16(&data_in[i + factor * 4 - j]); | 
|  | in16x4_1 = vld1_lane_s16(&data_in[i + factor * 5 - j], in16x4_1, 1); | 
|  | in16x4_1 = vld1_lane_s16(&data_in[i + factor * 6 - j], in16x4_1, 2); | 
|  | in16x4_1 = vld1_lane_s16(&data_in[i + factor * 7 - j], in16x4_1, 3); | 
|  |  | 
|  | // Mul and accumulate. | 
|  | out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0); | 
|  | out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0); | 
|  | } | 
|  |  | 
|  | // Saturate and store the output. | 
|  | int16x4_t out16x4_0 = vqshrn_n_s32(out32x4_0, 12); | 
|  | int16x4_t out16x4_1 = vqshrn_n_s32(out32x4_1, 12); | 
|  | vst1q_s16(data_out, vcombine_s16(out16x4_0, out16x4_1)); | 
|  | data_out += 8; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Second part, do the rest iterations (if any). | 
|  | for (; i < endpos; i += factor) { | 
|  | out_s32 = 2048;  // Round value, 0.5 in Q12. | 
|  |  | 
|  | for (j = 0; j < coefficients_length; j++) { | 
|  | out_s32 = WebRtc_MulAccumW16(coefficients[j], data_in[i - j], out_s32); | 
|  | } | 
|  |  | 
|  | // Saturate and store the output. | 
|  | out_s32 >>= 12; | 
|  | *data_out++ = WebRtcSpl_SatW32ToW16(out_s32); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |