blob: ba93d05bb71a4cfd3d97cdd976ce2e63b170ea28 [file] [log] [blame]
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/pacing_controller.h"
#include <algorithm>
#include <cstddef>
#include <memory>
#include <utility>
#include <vector>
#include "api/transport/network_types.h"
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "system_wrappers/include/clock.h"
#include "test/explicit_key_value_config.h"
#include "test/gmock.h"
#include "test/gtest.h"
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::Field;
using ::testing::NiceMock;
using ::testing::Pointee;
using ::testing::Property;
using ::testing::Return;
using ::testing::WithoutArgs;
using ::webrtc::test::ExplicitKeyValueConfig;
namespace webrtc {
namespace {
constexpr DataRate kFirstClusterRate = DataRate::KilobitsPerSec(900);
constexpr DataRate kSecondClusterRate = DataRate::KilobitsPerSec(1800);
// The error stems from truncating the time interval of probe packets to integer
// values. This results in probing slightly higher than the target bitrate.
// For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets.
constexpr DataRate kProbingErrorMargin = DataRate::KilobitsPerSec(150);
const float kPaceMultiplier = 2.5f;
constexpr uint32_t kAudioSsrc = 12345;
constexpr uint32_t kVideoSsrc = 234565;
constexpr DataRate kTargetRate = DataRate::KilobitsPerSec(800);
std::unique_ptr<RtpPacketToSend> BuildPacket(RtpPacketMediaType type,
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
size_t size) {
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
packet->set_packet_type(type);
packet->SetSsrc(ssrc);
packet->SetSequenceNumber(sequence_number);
packet->set_capture_time(Timestamp::Millis(capture_time_ms));
packet->SetPayloadSize(size);
return packet;
}
class MediaStream {
public:
MediaStream(SimulatedClock& clock,
RtpPacketMediaType type,
uint32_t ssrc,
size_t packet_size)
: clock_(clock), type_(type), ssrc_(ssrc), packet_size_(packet_size) {}
std::unique_ptr<RtpPacketToSend> BuildNextPacket() {
return BuildPacket(type_, ssrc_, seq_num_++, clock_.TimeInMilliseconds(),
packet_size_);
}
std::unique_ptr<RtpPacketToSend> BuildNextPacket(size_t size) {
return BuildPacket(type_, ssrc_, seq_num_++, clock_.TimeInMilliseconds(),
size);
}
private:
SimulatedClock& clock_;
const RtpPacketMediaType type_;
const uint32_t ssrc_;
const size_t packet_size_;
uint16_t seq_num_ = 1000;
};
// Mock callback proxy, where both new and old api redirects to common mock
// methods that focus on core aspects.
class MockPacingControllerCallback : public PacingController::PacketSender {
public:
void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info) override {
SendPacket(packet->Ssrc(), packet->SequenceNumber(),
packet->capture_time().ms(),
packet->packet_type() == RtpPacketMediaType::kRetransmission,
packet->packet_type() == RtpPacketMediaType::kPadding);
}
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
DataSize target_size) override {
std::vector<std::unique_ptr<RtpPacketToSend>> ret;
size_t padding_size = SendPadding(target_size.bytes());
if (padding_size > 0) {
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
packet->SetPayloadSize(padding_size);
packet->set_packet_type(RtpPacketMediaType::kPadding);
ret.emplace_back(std::move(packet));
}
return ret;
}
MOCK_METHOD(void,
SendPacket,
(uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_timestamp,
bool retransmission,
bool padding));
MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>,
FetchFec,
(),
(override));
MOCK_METHOD(size_t, SendPadding, (size_t target_size));
MOCK_METHOD(void,
OnAbortedRetransmissions,
(uint32_t, rtc::ArrayView<const uint16_t>),
(override));
MOCK_METHOD(absl::optional<uint32_t>,
GetRtxSsrcForMedia,
(uint32_t),
(const, override));
MOCK_METHOD(void, OnBatchComplete, (), (override));
};
// Mock callback implementing the raw api.
class MockPacketSender : public PacingController::PacketSender {
public:
MOCK_METHOD(void,
SendPacket,
(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info),
(override));
MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>,
FetchFec,
(),
(override));
MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>,
GeneratePadding,
(DataSize target_size),
(override));
MOCK_METHOD(void,
OnAbortedRetransmissions,
(uint32_t, rtc::ArrayView<const uint16_t>),
(override));
MOCK_METHOD(absl::optional<uint32_t>,
GetRtxSsrcForMedia,
(uint32_t),
(const, override));
MOCK_METHOD(void, OnBatchComplete, (), (override));
};
class PacingControllerPadding : public PacingController::PacketSender {
public:
static const size_t kPaddingPacketSize = 224;
PacingControllerPadding() : padding_sent_(0), total_bytes_sent_(0) {}
void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& pacing_info) override {
total_bytes_sent_ += packet->payload_size();
}
std::vector<std::unique_ptr<RtpPacketToSend>> FetchFec() override {
return {};
}
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
DataSize target_size) override {
size_t num_packets =
(target_size.bytes() + kPaddingPacketSize - 1) / kPaddingPacketSize;
std::vector<std::unique_ptr<RtpPacketToSend>> packets;
for (size_t i = 0; i < num_packets; ++i) {
packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr));
packets.back()->SetPadding(kPaddingPacketSize);
packets.back()->set_packet_type(RtpPacketMediaType::kPadding);
padding_sent_ += kPaddingPacketSize;
}
return packets;
}
void OnAbortedRetransmissions(uint32_t,
rtc::ArrayView<const uint16_t>) override {}
absl::optional<uint32_t> GetRtxSsrcForMedia(uint32_t) const override {
return absl::nullopt;
}
void OnBatchComplete() override {}
size_t padding_sent() { return padding_sent_; }
size_t total_bytes_sent() { return total_bytes_sent_; }
private:
size_t padding_sent_;
size_t total_bytes_sent_;
};
class PacingControllerProbing : public PacingController::PacketSender {
public:
PacingControllerProbing() = default;
// Controls if padding can be generated or not.
// In real implementation, padding can only be generated after a sent
// media packet, or if the sender support RTX.
void SetCanGeneratePadding(bool can_generate) {
can_generate_padding_ = can_generate;
}
void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& pacing_info) override {
if (packet->packet_type() != RtpPacketMediaType::kPadding) {
++packets_sent_;
} else {
++padding_packets_sent_;
}
last_pacing_info_ = pacing_info;
}
std::vector<std::unique_ptr<RtpPacketToSend>> FetchFec() override {
return {};
}
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
DataSize target_size) override {
if (!can_generate_padding_) {
return {};
}
// From RTPSender:
// Max in the RFC 3550 is 255 bytes, we limit it to be modulus 32 for SRTP.
const DataSize kMaxPadding = DataSize::Bytes(224);
std::vector<std::unique_ptr<RtpPacketToSend>> packets;
while (target_size > DataSize::Zero()) {
DataSize padding_size = std::min(kMaxPadding, target_size);
packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr));
packets.back()->SetPadding(padding_size.bytes());
packets.back()->set_packet_type(RtpPacketMediaType::kPadding);
padding_sent_ += padding_size.bytes();
target_size -= padding_size;
}
return packets;
}
void OnAbortedRetransmissions(uint32_t,
rtc::ArrayView<const uint16_t>) override {}
absl::optional<uint32_t> GetRtxSsrcForMedia(uint32_t) const override {
return absl::nullopt;
}
void OnBatchComplete() override {}
int packets_sent() const { return packets_sent_; }
int padding_packets_sent() const { return padding_packets_sent_; }
int padding_sent() const { return padding_sent_; }
int total_packets_sent() const { return packets_sent_ + padding_sent_; }
PacedPacketInfo last_pacing_info() const { return last_pacing_info_; }
private:
bool can_generate_padding_ = true;
int packets_sent_ = 0;
int padding_packets_sent_ = 0;
int padding_sent_ = 0;
PacedPacketInfo last_pacing_info_;
};
class PacingControllerTest : public ::testing::Test {
protected:
PacingControllerTest() : clock_(123456), trials_("") {}
void SendAndExpectPacket(PacingController* pacer,
RtpPacketMediaType type,
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
size_t size) {
pacer->EnqueuePacket(
BuildPacket(type, ssrc, sequence_number, capture_time_ms, size));
EXPECT_CALL(callback_,
SendPacket(ssrc, sequence_number, capture_time_ms,
type == RtpPacketMediaType::kRetransmission, false));
}
void AdvanceTimeUntil(webrtc::Timestamp time) {
Timestamp now = clock_.CurrentTime();
clock_.AdvanceTime(std::max(TimeDelta::Zero(), time - now));
}
void ConsumeInitialBudget(PacingController* pacer) {
const uint32_t kSsrc = 54321;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = clock_.TimeInMilliseconds();
const size_t kPacketSize = 250;
EXPECT_TRUE(pacer->OldestPacketEnqueueTime().IsInfinite());
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(pacer, RtpPacketMediaType::kVideo, kSsrc,
sequence_number++, capture_time_ms, kPacketSize);
}
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
}
SimulatedClock clock_;
MediaStream audio_ = MediaStream(clock_,
/*type*/ RtpPacketMediaType::kAudio,
/*ssrc*/ kAudioSsrc,
/*packet_size*/ 100);
MediaStream video_ = MediaStream(clock_,
/*type*/ RtpPacketMediaType::kVideo,
/*ssrc*/ kVideoSsrc,
/*packet_size*/ 1000);
::testing::NiceMock<MockPacingControllerCallback> callback_;
ExplicitKeyValueConfig trials_;
};
TEST_F(PacingControllerTest, DefaultNoPaddingInSilence) {
const test::ExplicitKeyValueConfig trials("");
PacingController pacer(&clock_, &callback_, trials);
pacer.SetPacingRates(kTargetRate, DataRate::Zero());
// Video packet to reset last send time and provide padding data.
pacer.EnqueuePacket(video_.BuildNextPacket());
EXPECT_CALL(callback_, SendPacket).Times(1);
clock_.AdvanceTimeMilliseconds(5);
pacer.ProcessPackets();
EXPECT_CALL(callback_, SendPadding).Times(0);
// Waiting 500 ms should not trigger sending of padding.
clock_.AdvanceTimeMilliseconds(500);
pacer.ProcessPackets();
}
TEST_F(PacingControllerTest, PaddingInSilenceWithTrial) {
const test::ExplicitKeyValueConfig trials(
"WebRTC-Pacer-PadInSilence/Enabled/");
PacingController pacer(&clock_, &callback_, trials);
pacer.SetPacingRates(kTargetRate, DataRate::Zero());
// Video packet to reset last send time and provide padding data.
pacer.EnqueuePacket(video_.BuildNextPacket());
EXPECT_CALL(callback_, SendPacket).Times(2);
clock_.AdvanceTimeMilliseconds(5);
pacer.ProcessPackets();
EXPECT_CALL(callback_, SendPadding).WillOnce(Return(1000));
// Waiting 500 ms should trigger sending of padding.
clock_.AdvanceTimeMilliseconds(500);
pacer.ProcessPackets();
}
TEST_F(PacingControllerTest, CongestionWindowAffectsAudioInTrial) {
const test::ExplicitKeyValueConfig trials("WebRTC-Pacer-BlockAudio/Enabled/");
EXPECT_CALL(callback_, SendPadding).Times(0);
PacingController pacer(&clock_, &callback_, trials);
pacer.SetPacingRates(DataRate::KilobitsPerSec(10000), DataRate::Zero());
// Video packet fills congestion window.
pacer.EnqueuePacket(video_.BuildNextPacket());
EXPECT_CALL(callback_, SendPacket).Times(1);
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
pacer.SetCongested(true);
// Audio packet blocked due to congestion.
pacer.EnqueuePacket(audio_.BuildNextPacket());
EXPECT_CALL(callback_, SendPacket).Times(0);
// Forward time to where we send keep-alive.
EXPECT_CALL(callback_, SendPadding(1)).Times(2);
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
// Audio packet unblocked when congestion window clear.
::testing::Mock::VerifyAndClearExpectations(&callback_);
pacer.SetCongested(false);
EXPECT_CALL(callback_, SendPacket).Times(1);
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
}
TEST_F(PacingControllerTest, DefaultCongestionWindowDoesNotAffectAudio) {
EXPECT_CALL(callback_, SendPadding).Times(0);
const test::ExplicitKeyValueConfig trials("");
PacingController pacer(&clock_, &callback_, trials);
pacer.SetPacingRates(DataRate::BitsPerSec(10000000), DataRate::Zero());
// Video packet fills congestion window.
pacer.EnqueuePacket(video_.BuildNextPacket());
EXPECT_CALL(callback_, SendPacket).Times(1);
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
pacer.SetCongested(true);
// Audio not blocked due to congestion.
pacer.EnqueuePacket(audio_.BuildNextPacket());
EXPECT_CALL(callback_, SendPacket).Times(1);
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
}
TEST_F(PacingControllerTest, BudgetAffectsAudioInTrial) {
ExplicitKeyValueConfig trials("WebRTC-Pacer-BlockAudio/Enabled/");
PacingController pacer(&clock_, &callback_, trials);
const size_t kPacketSize = 1000;
const int kProcessIntervalsPerSecond = 1000 / 5;
DataRate pacing_rate =
DataRate::BitsPerSec(kPacketSize / 3 * 8 * kProcessIntervalsPerSecond);
pacer.SetPacingRates(pacing_rate, DataRate::Zero());
// Video fills budget for following process periods.
pacer.EnqueuePacket(video_.BuildNextPacket(kPacketSize));
EXPECT_CALL(callback_, SendPacket).Times(1);
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
// Audio packet blocked due to budget limit.
pacer.EnqueuePacket(audio_.BuildNextPacket());
Timestamp wait_start_time = clock_.CurrentTime();
Timestamp wait_end_time = Timestamp::MinusInfinity();
EXPECT_CALL(callback_, SendPacket).WillOnce(WithoutArgs([&]() {
wait_end_time = clock_.CurrentTime();
}));
while (!wait_end_time.IsFinite()) {
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
}
const TimeDelta expected_wait_time =
DataSize::Bytes(kPacketSize) / pacing_rate;
// Verify delay is near expectation, within timing margin.
EXPECT_LT(((wait_end_time - wait_start_time) - expected_wait_time).Abs(),
PacingController::kMinSleepTime);
}
TEST_F(PacingControllerTest, DefaultBudgetDoesNotAffectAudio) {
const size_t kPacketSize = 1000;
EXPECT_CALL(callback_, SendPadding).Times(0);
const test::ExplicitKeyValueConfig trials("");
PacingController pacer(&clock_, &callback_, trials);
const int kProcessIntervalsPerSecond = 1000 / 5;
pacer.SetPacingRates(
DataRate::BitsPerSec(kPacketSize / 3 * 8 * kProcessIntervalsPerSecond),
DataRate::Zero());
// Video fills budget for following process periods.
pacer.EnqueuePacket(video_.BuildNextPacket(kPacketSize));
EXPECT_CALL(callback_, SendPacket).Times(1);
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
// Audio packet not blocked due to budget limit.
EXPECT_CALL(callback_, SendPacket).Times(1);
pacer.EnqueuePacket(audio_.BuildNextPacket());
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
}
TEST_F(PacingControllerTest, FirstSentPacketTimeIsSet) {
const Timestamp kStartTime = clock_.CurrentTime();
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
// No packet sent.
EXPECT_FALSE(pacer->FirstSentPacketTime().has_value());
pacer->EnqueuePacket(video_.BuildNextPacket());
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
EXPECT_EQ(kStartTime, pacer->FirstSentPacketTime());
}
TEST_F(PacingControllerTest, QueueAndPacePackets) {
const uint32_t kSsrc = 12345;
uint16_t sequence_number = 1234;
const DataSize kPackeSize = DataSize::Bytes(250);
const TimeDelta kSendInterval = TimeDelta::Millis(5);
// Due to the multiplicative factor we can send 5 packets during a 5ms send
// interval. (send interval * network capacity * multiplier / packet size)
const size_t kPacketsToSend = (kSendInterval * kTargetRate).bytes() *
kPaceMultiplier / kPackeSize.bytes();
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
for (size_t i = 0; i < kPacketsToSend; ++i) {
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPackeSize.bytes());
}
EXPECT_CALL(callback_, SendPadding).Times(0);
// Enqueue one extra packet.
int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, kSsrc,
sequence_number, queued_packet_timestamp,
kPackeSize.bytes()));
EXPECT_EQ(kPacketsToSend + 1, pacer->QueueSizePackets());
// Send packets until the initial kPacketsToSend packets are done.
Timestamp start_time = clock_.CurrentTime();
while (pacer->QueueSizePackets() > 1) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
EXPECT_LT(clock_.CurrentTime() - start_time, kSendInterval);
// Proceed till last packet can be sent.
EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number,
queued_packet_timestamp, false, false))
.Times(1);
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
EXPECT_GE(clock_.CurrentTime() - start_time, kSendInterval);
EXPECT_EQ(pacer->QueueSizePackets(), 0u);
}
TEST_F(PacingControllerTest, PaceQueuedPackets) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 250;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
}
for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize));
}
EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
pacer->QueueSizePackets());
while (pacer->QueueSizePackets() > packets_to_send_per_interval * 10) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
EXPECT_EQ(pacer->QueueSizePackets(), packets_to_send_per_interval * 10);
EXPECT_CALL(callback_, SendPadding).Times(0);
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, false))
.Times(pacer->QueueSizePackets());
const TimeDelta expected_pace_time =
DataSize::Bytes(pacer->QueueSizePackets() * kPacketSize) /
(kPaceMultiplier * kTargetRate);
Timestamp start_time = clock_.CurrentTime();
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time;
EXPECT_LT((actual_pace_time - expected_pace_time).Abs(),
PacingController::kMinSleepTime);
EXPECT_EQ(0u, pacer->QueueSizePackets());
AdvanceTimeUntil(pacer->NextSendTime());
EXPECT_EQ(0u, pacer->QueueSizePackets());
pacer->ProcessPackets();
// Send some more packet, just show that we can..?
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(), 250);
}
EXPECT_EQ(packets_to_send_per_interval, pacer->QueueSizePackets());
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
EXPECT_EQ(0u, pacer->QueueSizePackets());
}
TEST_F(PacingControllerTest, RepeatedRetransmissionsAllowed) {
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
// Send one packet, then two retransmissions of that packet.
for (size_t i = 0; i < 3; i++) {
constexpr uint32_t ssrc = 333;
constexpr uint16_t sequence_number = 444;
constexpr size_t bytes = 250;
bool is_retransmission = (i != 0); // Original followed by retransmissions.
SendAndExpectPacket(pacer.get(),
is_retransmission ? RtpPacketMediaType::kRetransmission
: RtpPacketMediaType::kVideo,
ssrc, sequence_number, clock_.TimeInMilliseconds(),
bytes);
clock_.AdvanceTimeMilliseconds(5);
}
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
}
TEST_F(PacingControllerTest,
CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number, clock_.TimeInMilliseconds(), 250);
// Expect packet on second ssrc to be queued and sent as well.
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc + 1,
sequence_number, clock_.TimeInMilliseconds(), 250);
clock_.AdvanceTimeMilliseconds(1000);
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
}
TEST_F(PacingControllerTest, Padding) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 250;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
const size_t kPacketsToSend = 20;
for (size_t i = 0; i < kPacketsToSend; ++i) {
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
}
const TimeDelta expected_pace_time =
DataSize::Bytes(pacer->QueueSizePackets() * kPacketSize) /
(kPaceMultiplier * kTargetRate);
EXPECT_CALL(callback_, SendPadding).Times(0);
// Only the media packets should be sent.
Timestamp start_time = clock_.CurrentTime();
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time;
EXPECT_LE((actual_pace_time - expected_pace_time).Abs(),
PacingController::kMinSleepTime);
// Pacing media happens at 2.5x, but padding was configured with 1.0x
// factor. We have to wait until the padding debt is gone before we start
// sending padding.
const TimeDelta time_to_padding_debt_free =
(expected_pace_time * kPaceMultiplier) - actual_pace_time;
clock_.AdvanceTime(time_to_padding_debt_free -
PacingController::kMinSleepTime);
pacer->ProcessPackets();
// Send 10 padding packets.
const size_t kPaddingPacketsToSend = 10;
DataSize padding_sent = DataSize::Zero();
size_t packets_sent = 0;
Timestamp first_send_time = Timestamp::MinusInfinity();
Timestamp last_send_time = Timestamp::MinusInfinity();
EXPECT_CALL(callback_, SendPadding)
.Times(kPaddingPacketsToSend)
.WillRepeatedly([&](size_t target_size) {
++packets_sent;
if (packets_sent < kPaddingPacketsToSend) {
// Don't count bytes of last packet, instead just
// use this as the time the last packet finished
// sending.
padding_sent += DataSize::Bytes(target_size);
}
if (first_send_time.IsInfinite()) {
first_send_time = clock_.CurrentTime();
} else {
last_send_time = clock_.CurrentTime();
}
return target_size;
});
EXPECT_CALL(callback_, SendPacket(_, _, _, false, true))
.Times(kPaddingPacketsToSend);
while (packets_sent < kPaddingPacketsToSend) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
// Verify rate of sent padding.
TimeDelta padding_duration = last_send_time - first_send_time;
DataRate padding_rate = padding_sent / padding_duration;
EXPECT_EQ(padding_rate, kTargetRate);
}
TEST_F(PacingControllerTest, NoPaddingBeforeNormalPacket) {
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
EXPECT_CALL(callback_, SendPadding).Times(0);
pacer->ProcessPackets();
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
AdvanceTimeUntil(pacer->NextSendTime());
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, capture_time_ms, 250);
bool padding_sent = false;
EXPECT_CALL(callback_, SendPadding).WillOnce([&](size_t padding) {
padding_sent = true;
return padding;
});
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
while (!padding_sent) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
}
TEST_F(PacingControllerTest, VerifyAverageBitrateVaryingMediaPayload) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
const TimeDelta kAveragingWindowLength = TimeDelta::Seconds(10);
PacingControllerPadding callback;
auto pacer = std::make_unique<PacingController>(&clock_, &callback, trials_);
pacer->SetProbingEnabled(false);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
Timestamp start_time = clock_.CurrentTime();
size_t media_bytes = 0;
while (clock_.CurrentTime() - start_time < kAveragingWindowLength) {
// Maybe add some new media packets corresponding to expected send rate.
int rand_value = rand(); // NOLINT (rand_r instead of rand)
while (
media_bytes <
(kTargetRate * (clock_.CurrentTime() - start_time)).bytes<size_t>()) {
size_t media_payload = rand_value % 400 + 800; // [400, 1200] bytes.
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++, capture_time_ms,
media_payload));
media_bytes += media_payload;
}
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
EXPECT_NEAR(
kTargetRate.bps(),
(DataSize::Bytes(callback.total_bytes_sent()) / kAveragingWindowLength)
.bps(),
(kTargetRate * 0.01 /* 1% error marging */).bps());
}
TEST_F(PacingControllerTest, Priority) {
uint32_t ssrc_low_priority = 12345;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
int64_t capture_time_ms_low_priority = 1234567;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
ConsumeInitialBudget(pacer.get());
// Expect normal and low priority to be queued and high to pass through.
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo,
ssrc_low_priority, sequence_number++,
capture_time_ms_low_priority, 250));
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission, ssrc,
sequence_number++, capture_time_ms, 250));
}
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kAudio, ssrc,
sequence_number++, capture_time_ms, 250));
// Expect all high and normal priority to be sent out first.
EXPECT_CALL(callback_, SendPadding).Times(0);
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
.Times(packets_to_send_per_interval + 1);
while (pacer->QueueSizePackets() > 1) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
EXPECT_EQ(1u, pacer->QueueSizePackets());
EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
capture_time_ms_low_priority, _, _));
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
TEST_F(PacingControllerTest, RetransmissionPriority) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 45678;
int64_t capture_time_ms_retransmission = 56789;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
pacer->ProcessPackets();
EXPECT_EQ(0u, pacer->QueueSizePackets());
// Alternate retransmissions and normal packets.
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++, capture_time_ms, 250));
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission, ssrc,
sequence_number++,
capture_time_ms_retransmission, 250));
}
EXPECT_EQ(2 * packets_to_send_per_interval, pacer->QueueSizePackets());
// Expect all retransmissions to be sent out first despite having a later
// capture time.
EXPECT_CALL(callback_, SendPadding).Times(0);
EXPECT_CALL(callback_, SendPacket(_, _, _, false, _)).Times(0);
EXPECT_CALL(callback_,
SendPacket(ssrc, _, capture_time_ms_retransmission, true, _))
.Times(packets_to_send_per_interval);
while (pacer->QueueSizePackets() > packets_to_send_per_interval) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
EXPECT_EQ(packets_to_send_per_interval, pacer->QueueSizePackets());
// Expect the remaining (non-retransmission) packets to be sent.
EXPECT_CALL(callback_, SendPadding).Times(0);
EXPECT_CALL(callback_, SendPacket(_, _, _, true, _)).Times(0);
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, false, _))
.Times(packets_to_send_per_interval);
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
EXPECT_EQ(0u, pacer->QueueSizePackets());
}
TEST_F(PacingControllerTest, HighPrioDoesntAffectBudget) {
const size_t kPacketSize = 250;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
// As high prio packets doesn't affect the budget, we should be able to send
// a high number of them at once.
const size_t kNumAudioPackets = 25;
for (size_t i = 0; i < kNumAudioPackets; ++i) {
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kAudio, ssrc,
sequence_number++, capture_time_ms, kPacketSize);
}
pacer->ProcessPackets();
// Low prio packets does affect the budget.
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t kPacketsToSendPerInterval =
kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
for (size_t i = 0; i < kPacketsToSendPerInterval; ++i) {
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
}
// Send all packets and measure pace time.
Timestamp start_time = clock_.CurrentTime();
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
// Measure pacing time. Expect only low-prio packets to affect this.
TimeDelta pacing_time = clock_.CurrentTime() - start_time;
TimeDelta expected_pacing_time =
DataSize::Bytes(kPacketsToSendPerInterval * kPacketSize) /
(kTargetRate * kPaceMultiplier);
EXPECT_NEAR(pacing_time.us<double>(), expected_pacing_time.us<double>(),
PacingController::kMinSleepTime.us<double>());
}
TEST_F(PacingControllerTest, SendsOnlyPaddingWhenCongested) {
uint32_t ssrc = 202020;
uint16_t sequence_number = 1000;
int kPacketSize = 250;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
// Send an initial packet so we have a last send time.
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Set congested state, we should not send anything until the 500ms since
// last send time limit for keep-alives is triggered.
EXPECT_CALL(callback_, SendPacket).Times(0);
EXPECT_CALL(callback_, SendPadding).Times(0);
pacer->SetCongested(true);
size_t blocked_packets = 0;
int64_t expected_time_until_padding = 500;
while (expected_time_until_padding > 5) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize));
blocked_packets++;
clock_.AdvanceTimeMilliseconds(5);
pacer->ProcessPackets();
expected_time_until_padding -= 5;
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1));
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
clock_.AdvanceTimeMilliseconds(5);
pacer->ProcessPackets();
EXPECT_EQ(blocked_packets, pacer->QueueSizePackets());
}
TEST_F(PacingControllerTest, DoesNotAllowOveruseAfterCongestion) {
uint32_t ssrc = 202020;
uint16_t seq_num = 1000;
int size = 1000;
auto now_ms = [this] { return clock_.TimeInMilliseconds(); };
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
EXPECT_CALL(callback_, SendPadding).Times(0);
// The pacing rate is low enough that the budget should not allow two packets
// to be sent in a row.
pacer->SetPacingRates(DataRate::BitsPerSec(400 * 8 * 1000 / 5),
DataRate::Zero());
// Not yet budget limited or congested, packet is sent.
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size));
EXPECT_CALL(callback_, SendPacket).Times(1);
clock_.AdvanceTimeMilliseconds(5);
pacer->ProcessPackets();
// Packet blocked due to congestion.
pacer->SetCongested(true);
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size));
EXPECT_CALL(callback_, SendPacket).Times(0);
clock_.AdvanceTimeMilliseconds(5);
pacer->ProcessPackets();
// Packet blocked due to congestion.
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size));
EXPECT_CALL(callback_, SendPacket).Times(0);
clock_.AdvanceTimeMilliseconds(5);
pacer->ProcessPackets();
// Congestion removed and budget has recovered, packet is sent.
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size));
EXPECT_CALL(callback_, SendPacket).Times(1);
clock_.AdvanceTimeMilliseconds(5);
pacer->SetCongested(false);
pacer->ProcessPackets();
// Should be blocked due to budget limitation as congestion has be removed.
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size));
EXPECT_CALL(callback_, SendPacket).Times(0);
clock_.AdvanceTimeMilliseconds(5);
pacer->ProcessPackets();
}
TEST_F(PacingControllerTest, Pause) {
uint32_t ssrc_low_priority = 12345;
uint32_t ssrc = 12346;
uint32_t ssrc_high_priority = 12347;
uint16_t sequence_number = 1234;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
EXPECT_TRUE(pacer->OldestPacketEnqueueTime().IsInfinite());
ConsumeInitialBudget(pacer.get());
pacer->Pause();
int64_t capture_time_ms = clock_.TimeInMilliseconds();
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo,
ssrc_low_priority, sequence_number++,
capture_time_ms, 250));
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission, ssrc,
sequence_number++, capture_time_ms, 250));
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kAudio,
ssrc_high_priority, sequence_number++,
capture_time_ms, 250));
}
clock_.AdvanceTimeMilliseconds(10000);
int64_t second_capture_time_ms = clock_.TimeInMilliseconds();
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo,
ssrc_low_priority, sequence_number++,
second_capture_time_ms, 250));
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission, ssrc,
sequence_number++, second_capture_time_ms,
250));
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kAudio,
ssrc_high_priority, sequence_number++,
second_capture_time_ms, 250));
}
// Expect everything to be queued.
EXPECT_EQ(capture_time_ms, pacer->OldestPacketEnqueueTime().ms());
// Process triggers keep-alive packet.
EXPECT_CALL(callback_, SendPadding).WillOnce([](size_t padding) {
return padding;
});
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
pacer->ProcessPackets();
// Verify no packets sent for the rest of the paused process interval.
const TimeDelta kProcessInterval = TimeDelta::Millis(5);
TimeDelta expected_time_until_send = PacingController::kPausedProcessInterval;
EXPECT_CALL(callback_, SendPadding).Times(0);
while (expected_time_until_send >= kProcessInterval) {
pacer->ProcessPackets();
clock_.AdvanceTime(kProcessInterval);
expected_time_until_send -= kProcessInterval;
}
// New keep-alive packet.
::testing::Mock::VerifyAndClearExpectations(&callback_);
EXPECT_CALL(callback_, SendPadding).WillOnce([](size_t padding) {
return padding;
});
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
clock_.AdvanceTime(kProcessInterval);
pacer->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Expect high prio packets to come out first followed by normal
// prio packets and low prio packets (all in capture order).
{
::testing::InSequence sequence;
EXPECT_CALL(callback_,
SendPacket(ssrc_high_priority, _, capture_time_ms, _, _))
.Times(packets_to_send_per_interval);
EXPECT_CALL(callback_,
SendPacket(ssrc_high_priority, _, second_capture_time_ms, _, _))
.Times(packets_to_send_per_interval);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
.Times(1);
}
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_, SendPacket(ssrc, _, second_capture_time_ms, _, _))
.Times(1);
}
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_,
SendPacket(ssrc_low_priority, _, capture_time_ms, _, _))
.Times(1);
}
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
second_capture_time_ms, _, _))
.Times(1);
}
}
pacer->Resume();
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
EXPECT_TRUE(pacer->OldestPacketEnqueueTime().IsInfinite());
}
TEST_F(PacingControllerTest, InactiveFromStart) {
// Recreate the pacer without the inital time forwarding.
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetProbingEnabled(false);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
// No packets sent, there should be no keep-alives sent either.
EXPECT_CALL(callback_, SendPadding).Times(0);
EXPECT_CALL(callback_, SendPacket).Times(0);
pacer->ProcessPackets();
const Timestamp start_time = clock_.CurrentTime();
// Determine the margin need so we can advance to the last possible moment
// that will not cause a process event.
const TimeDelta time_margin =
PacingController::kMinSleepTime + TimeDelta::Micros(1);
EXPECT_EQ(pacer->NextSendTime() - start_time,
PacingController::kPausedProcessInterval);
clock_.AdvanceTime(PacingController::kPausedProcessInterval - time_margin);
pacer->ProcessPackets();
EXPECT_EQ(pacer->NextSendTime() - start_time,
PacingController::kPausedProcessInterval);
clock_.AdvanceTime(time_margin);
pacer->ProcessPackets();
EXPECT_EQ(pacer->NextSendTime() - start_time,
2 * PacingController::kPausedProcessInterval);
}
TEST_F(PacingControllerTest, QueueTimeGrowsOverTime) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
EXPECT_TRUE(pacer->OldestPacketEnqueueTime().IsInfinite());
pacer->SetPacingRates(DataRate::BitsPerSec(30000 * kPaceMultiplier),
DataRate::Zero());
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number, clock_.TimeInMilliseconds(), 1200);
clock_.AdvanceTimeMilliseconds(500);
EXPECT_EQ(clock_.TimeInMilliseconds() - 500,
pacer->OldestPacketEnqueueTime().ms());
pacer->ProcessPackets();
EXPECT_TRUE(pacer->OldestPacketEnqueueTime().IsInfinite());
}
TEST_F(PacingControllerTest, ProbingWithInsertedPackets) {
const size_t kPacketSize = 1200;
const int kInitialBitrateBps = 300000;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
PacingControllerProbing packet_sender;
auto pacer =
std::make_unique<PacingController>(&clock_, &packet_sender, trials_);
std::vector<ProbeClusterConfig> probe_clusters = {
{.at_time = clock_.CurrentTime(),
.target_data_rate = kFirstClusterRate,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 0},
{.at_time = clock_.CurrentTime(),
.target_data_rate = kSecondClusterRate,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 1}};
pacer->CreateProbeClusters(probe_clusters);
pacer->SetPacingRates(
DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
DataRate::Zero());
for (int i = 0; i < 10; ++i) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize));
}
int64_t start = clock_.TimeInMilliseconds();
while (packet_sender.packets_sent() < 5) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
int packets_sent = packet_sender.packets_sent();
// Validate first cluster bitrate. Note that we have to account for number
// of intervals and hence (packets_sent - 1) on the first cluster.
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
(clock_.TimeInMilliseconds() - start),
kFirstClusterRate.bps(), kProbingErrorMargin.bps());
// Probing always starts with a small padding packet.
EXPECT_EQ(1, packet_sender.padding_sent());
AdvanceTimeUntil(pacer->NextSendTime());
start = clock_.TimeInMilliseconds();
while (packet_sender.packets_sent() < 10) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
packets_sent = packet_sender.packets_sent() - packets_sent;
// Validate second cluster bitrate.
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
(clock_.TimeInMilliseconds() - start),
kSecondClusterRate.bps(), kProbingErrorMargin.bps());
}
TEST_F(PacingControllerTest, SkipsProbesWhenProcessIntervalTooLarge) {
const size_t kPacketSize = 1200;
const int kInitialBitrateBps = 300000;
const uint32_t ssrc = 12346;
const int kProbeClusterId = 3;
uint16_t sequence_number = 1234;
PacingControllerProbing packet_sender;
const test::ExplicitKeyValueConfig trials(
"WebRTC-Bwe-ProbingBehavior/max_probe_delay:2ms/");
auto pacer =
std::make_unique<PacingController>(&clock_, &packet_sender, trials);
pacer->SetPacingRates(
DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
DataRate::BitsPerSec(kInitialBitrateBps));
for (int i = 0; i < 10; ++i) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize));
}
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
// Probe at a very high rate.
std::vector<ProbeClusterConfig> probe_clusters = {
{.at_time = clock_.CurrentTime(),
.target_data_rate = DataRate::KilobitsPerSec(10000), // 10 Mbps,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = kProbeClusterId}};
pacer->CreateProbeClusters(probe_clusters);
// We need one packet to start the probe.
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize));
const int packets_sent_before_probe = packet_sender.packets_sent();
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
EXPECT_EQ(packet_sender.packets_sent(), packets_sent_before_probe + 1);
// Figure out how long between probe packets.
Timestamp start_time = clock_.CurrentTime();
AdvanceTimeUntil(pacer->NextSendTime());
TimeDelta time_between_probes = clock_.CurrentTime() - start_time;
// Advance that distance again + 1ms.
clock_.AdvanceTime(time_between_probes);
// Send second probe packet.
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize));
pacer->ProcessPackets();
EXPECT_EQ(packet_sender.packets_sent(), packets_sent_before_probe + 2);
PacedPacketInfo last_pacing_info = packet_sender.last_pacing_info();
EXPECT_EQ(last_pacing_info.probe_cluster_id, kProbeClusterId);
// We're exactly where we should be for the next probe.
const Timestamp probe_time = clock_.CurrentTime();
EXPECT_EQ(pacer->NextSendTime(), clock_.CurrentTime());
BitrateProberConfig probing_config(&trials);
EXPECT_GT(probing_config.max_probe_delay.Get(), TimeDelta::Zero());
// Advance to within max probe delay, should still return same target.
clock_.AdvanceTime(probing_config.max_probe_delay.Get());
EXPECT_EQ(pacer->NextSendTime(), probe_time);
// Too high probe delay, drop it!
clock_.AdvanceTime(TimeDelta::Micros(1));
int packets_sent_before_timeout = packet_sender.total_packets_sent();
// Expected next process time is unchanged, but calling should not
// generate new packets.
EXPECT_EQ(pacer->NextSendTime(), probe_time);
pacer->ProcessPackets();
EXPECT_EQ(packet_sender.total_packets_sent(), packets_sent_before_timeout);
// Next packet sent is not part of probe.
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
const int expected_probe_id = PacedPacketInfo::kNotAProbe;
EXPECT_EQ(packet_sender.last_pacing_info().probe_cluster_id,
expected_probe_id);
}
TEST_F(PacingControllerTest, ProbingWithPaddingSupport) {
const size_t kPacketSize = 1200;
const int kInitialBitrateBps = 300000;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
PacingControllerProbing packet_sender;
auto pacer =
std::make_unique<PacingController>(&clock_, &packet_sender, trials_);
std::vector<ProbeClusterConfig> probe_clusters = {
{.at_time = clock_.CurrentTime(),
.target_data_rate = kFirstClusterRate,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 0}};
pacer->CreateProbeClusters(probe_clusters);
pacer->SetPacingRates(
DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
DataRate::Zero());
for (int i = 0; i < 3; ++i) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize));
}
int64_t start = clock_.TimeInMilliseconds();
int process_count = 0;
while (process_count < 5) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
++process_count;
}
int packets_sent = packet_sender.packets_sent();
int padding_sent = packet_sender.padding_sent();
EXPECT_GT(packets_sent, 0);
EXPECT_GT(padding_sent, 0);
// Note that the number of intervals here for kPacketSize is
// packets_sent due to padding in the same cluster.
EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) /
(clock_.TimeInMilliseconds() - start),
kFirstClusterRate.bps(), kProbingErrorMargin.bps());
}
TEST_F(PacingControllerTest, CanProbeWithPaddingBeforeFirstMediaPacket) {
// const size_t kPacketSize = 1200;
const int kInitialBitrateBps = 300000;
PacingControllerProbing packet_sender;
const test::ExplicitKeyValueConfig trials(
"WebRTC-Bwe-ProbingBehavior/min_packet_size:0/");
auto pacer =
std::make_unique<PacingController>(&clock_, &packet_sender, trials);
std::vector<ProbeClusterConfig> probe_clusters = {
{.at_time = clock_.CurrentTime(),
.target_data_rate = kFirstClusterRate,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 0}};
pacer->CreateProbeClusters(probe_clusters);
pacer->SetPacingRates(
DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
DataRate::Zero());
Timestamp start = clock_.CurrentTime();
Timestamp next_process = pacer->NextSendTime();
while (clock_.CurrentTime() < start + TimeDelta::Millis(100) &&
next_process.IsFinite()) {
AdvanceTimeUntil(next_process);
pacer->ProcessPackets();
next_process = pacer->NextSendTime();
}
EXPECT_GT(packet_sender.padding_packets_sent(), 5);
}
TEST_F(PacingControllerTest, CanNotProbeWithPaddingIfGeneratePaddingFails) {
// const size_t kPacketSize = 1200;
const int kInitialBitrateBps = 300000;
PacingControllerProbing packet_sender;
packet_sender.SetCanGeneratePadding(false);
const test::ExplicitKeyValueConfig trials(
"WebRTC-Bwe-ProbingBehavior/min_packet_size:0/");
auto pacer =
std::make_unique<PacingController>(&clock_, &packet_sender, trials);
std::vector<ProbeClusterConfig> probe_clusters = {
{.at_time = clock_.CurrentTime(),
.target_data_rate = kFirstClusterRate,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 0}};
pacer->CreateProbeClusters(probe_clusters);
pacer->SetPacingRates(
DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
DataRate::Zero());
Timestamp start = clock_.CurrentTime();
int process_count = 0;
Timestamp next_process = pacer->NextSendTime();
while (clock_.CurrentTime() < start + TimeDelta::Millis(100) &&
next_process.IsFinite()) {
AdvanceTimeUntil(next_process);
pacer->ProcessPackets();
++process_count;
next_process = pacer->NextSendTime();
}
EXPECT_LT(process_count, 10);
EXPECT_EQ(packet_sender.padding_packets_sent(), 0);
}
TEST_F(PacingControllerTest, PaddingOveruse) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 1200;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
// Initially no padding rate.
pacer->ProcessPackets();
pacer->SetPacingRates(DataRate::BitsPerSec(60000 * kPaceMultiplier),
DataRate::Zero());
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
pacer->ProcessPackets();
// Add 30kbit padding. When increasing budget, media budget will increase from
// negative (overuse) while padding budget will increase from 0.
clock_.AdvanceTimeMilliseconds(5);
pacer->SetPacingRates(DataRate::BitsPerSec(60000 * kPaceMultiplier),
DataRate::BitsPerSec(30000));
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
EXPECT_LT(TimeDelta::Millis(5), pacer->ExpectedQueueTime());
// Don't send padding if queue is non-empty, even if padding budget > 0.
EXPECT_CALL(callback_, SendPadding).Times(0);
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
TEST_F(PacingControllerTest, ProvidesOnBatchCompleteToPacketSender) {
MockPacketSender callback;
auto pacer = std::make_unique<PacingController>(&clock_, &callback, trials_);
EXPECT_CALL(callback, OnBatchComplete);
pacer->ProcessPackets();
}
TEST_F(PacingControllerTest, ProbeClusterId) {
MockPacketSender callback;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 1200;
auto pacer = std::make_unique<PacingController>(&clock_, &callback, trials_);
pacer->CreateProbeClusters(std::vector<ProbeClusterConfig>(
{{.at_time = clock_.CurrentTime(),
.target_data_rate = kFirstClusterRate,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 0},
{.at_time = clock_.CurrentTime(),
.target_data_rate = kSecondClusterRate,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 1}}));
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
pacer->SetProbingEnabled(true);
for (int i = 0; i < 10; ++i) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize));
}
// First probing cluster.
EXPECT_CALL(callback,
SendPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 0)))
.Times(5);
for (int i = 0; i < 5; ++i) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
// Second probing cluster.
EXPECT_CALL(callback,
SendPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 1)))
.Times(5);
for (int i = 0; i < 5; ++i) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
// Needed for the Field comparer below.
const int kNotAProbe = PacedPacketInfo::kNotAProbe;
// No more probing packets.
EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) {
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
padding_packets.emplace_back(
BuildPacket(RtpPacketMediaType::kPadding, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), padding_size.bytes()));
return padding_packets;
});
bool non_probe_packet_seen = false;
EXPECT_CALL(callback, SendPacket)
.WillOnce([&](std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info) {
EXPECT_EQ(cluster_info.probe_cluster_id, kNotAProbe);
non_probe_packet_seen = true;
});
while (!non_probe_packet_seen) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
}
TEST_F(PacingControllerTest, OwnedPacketPrioritizedOnType) {
MockPacketSender callback;
uint32_t ssrc = 123;
auto pacer = std::make_unique<PacingController>(&clock_, &callback, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
// Insert a packet of each type, from low to high priority. Since priority
// is weighted higher than insert order, these should come out of the pacer
// in backwards order with the exception of FEC and Video.
for (RtpPacketMediaType type :
{RtpPacketMediaType::kPadding,
RtpPacketMediaType::kForwardErrorCorrection, RtpPacketMediaType::kVideo,
RtpPacketMediaType::kRetransmission, RtpPacketMediaType::kAudio}) {
pacer->EnqueuePacket(BuildPacket(type, ++ssrc, /*sequence_number=*/123,
clock_.TimeInMilliseconds(),
/*size=*/150));
}
::testing::InSequence seq;
EXPECT_CALL(callback,
SendPacket(Pointee(Property(&RtpPacketToSend::packet_type,
RtpPacketMediaType::kAudio)),
_));
EXPECT_CALL(callback,
SendPacket(Pointee(Property(&RtpPacketToSend::packet_type,
RtpPacketMediaType::kRetransmission)),
_));
// FEC and video actually have the same priority, so will come out in
// insertion order.
EXPECT_CALL(
callback,
SendPacket(Pointee(Property(&RtpPacketToSend::packet_type,
RtpPacketMediaType::kForwardErrorCorrection)),
_));
EXPECT_CALL(callback,
SendPacket(Pointee(Property(&RtpPacketToSend::packet_type,
RtpPacketMediaType::kVideo)),
_));
EXPECT_CALL(callback,
SendPacket(Pointee(Property(&RtpPacketToSend::packet_type,
RtpPacketMediaType::kPadding)),
_));
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
}
TEST_F(PacingControllerTest, SmallFirstProbePacket) {
MockPacketSender callback;
auto pacer = std::make_unique<PacingController>(&clock_, &callback, trials_);
std::vector<ProbeClusterConfig> probe_clusters = {
{.at_time = clock_.CurrentTime(),
.target_data_rate = kFirstClusterRate,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 0}};
pacer->CreateProbeClusters(probe_clusters);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
// Add high prio media.
pacer->EnqueuePacket(audio_.BuildNextPacket(234));
// Expect small padding packet to be requested.
EXPECT_CALL(callback, GeneratePadding(DataSize::Bytes(1)))
.WillOnce([&](DataSize padding_size) {
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
padding_packets.emplace_back(
BuildPacket(RtpPacketMediaType::kPadding, kAudioSsrc, 1,
clock_.TimeInMilliseconds(), 1));
return padding_packets;
});
size_t packets_sent = 0;
bool media_seen = false;
EXPECT_CALL(callback, SendPacket)
.Times(AnyNumber())
.WillRepeatedly([&](std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info) {
if (packets_sent == 0) {
EXPECT_EQ(packet->packet_type(), RtpPacketMediaType::kPadding);
} else {
if (packet->packet_type() == RtpPacketMediaType::kAudio) {
media_seen = true;
}
}
packets_sent++;
});
while (!media_seen) {
pacer->ProcessPackets();
clock_.AdvanceTimeMilliseconds(5);
}
}
TEST_F(PacingControllerTest, TaskLate) {
// Set a low send rate to more easily test timing issues.
DataRate kSendRate = DataRate::KilobitsPerSec(30);
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kSendRate, DataRate::Zero());
// Add four packets of equal size and priority.
pacer->EnqueuePacket(video_.BuildNextPacket(1000));
pacer->EnqueuePacket(video_.BuildNextPacket(1000));
pacer->EnqueuePacket(video_.BuildNextPacket(1000));
pacer->EnqueuePacket(video_.BuildNextPacket(1000));
// Process packets, only first should be sent.
EXPECT_CALL(callback_, SendPacket).Times(1);
pacer->ProcessPackets();
Timestamp next_send_time = pacer->NextSendTime();
// Determine time between packets (ca 62ms)
const TimeDelta time_between_packets = next_send_time - clock_.CurrentTime();
// Simulate a late process call, executed just before we allow sending the
// fourth packet.
const TimeDelta kOffset = TimeDelta::Millis(1);
clock_.AdvanceTime((time_between_packets * 3) - kOffset);
EXPECT_CALL(callback_, SendPacket).Times(2);
pacer->ProcessPackets();
// Check that next scheduled send time is in ca 1ms.
next_send_time = pacer->NextSendTime();
const TimeDelta time_left = next_send_time - clock_.CurrentTime();
EXPECT_EQ(time_left.RoundTo(TimeDelta::Millis(1)), kOffset);
clock_.AdvanceTime(time_left);
EXPECT_CALL(callback_, SendPacket);
pacer->ProcessPackets();
}
TEST_F(PacingControllerTest, NoProbingWhilePaused) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetProbingEnabled(true);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
pacer->CreateProbeClusters(std::vector<ProbeClusterConfig>(
{{.at_time = clock_.CurrentTime(),
.target_data_rate = kFirstClusterRate,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 0},
{.at_time = clock_.CurrentTime(),
.target_data_rate = kSecondClusterRate,
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 1}}));
// Send at least one packet so probing can initate.
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number, clock_.TimeInMilliseconds(), 250);
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
// Trigger probing.
std::vector<ProbeClusterConfig> probe_clusters = {
{.at_time = clock_.CurrentTime(),
.target_data_rate = DataRate::KilobitsPerSec(10000), // 10 Mbps.
.target_duration = TimeDelta::Millis(15),
.target_probe_count = 5,
.id = 3}};
pacer->CreateProbeClusters(probe_clusters);
// Time to next send time should be small.
EXPECT_LT(pacer->NextSendTime() - clock_.CurrentTime(),
PacingController::kPausedProcessInterval);
// Pause pacer, time to next send time should now be the pause process
// interval.
pacer->Pause();
EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(),
PacingController::kPausedProcessInterval);
}
TEST_F(PacingControllerTest, AudioNotPacedEvenWhenAccountedFor) {
const uint32_t kSsrc = 12345;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 123;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
// Account for audio - so that audio packets can cause pushback on other
// types such as video. Audio packet should still be immediated passed
// through though ("WebRTC-Pacer-BlockAudio" needs to be enabled in order
// to pace audio packets).
pacer->SetAccountForAudioPackets(true);
// Set pacing rate to 1 packet/s, no padding.
pacer->SetPacingRates(DataSize::Bytes(kPacketSize) / TimeDelta::Seconds(1),
DataRate::Zero());
// Add and send an audio packet.
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kAudio, kSsrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
pacer->ProcessPackets();
// Advance time, add another audio packet and process. It should be sent
// immediately.
clock_.AdvanceTimeMilliseconds(5);
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kAudio, kSsrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
pacer->ProcessPackets();
}
TEST_F(PacingControllerTest,
PaddingResumesAfterSaturationEvenWithConcurrentAudio) {
const uint32_t kSsrc = 12345;
const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
const DataRate kPaddingDataRate = DataRate::KilobitsPerSec(100);
const TimeDelta kMaxBufferInTime = TimeDelta::Millis(500);
const DataSize kPacketSize = DataSize::Bytes(130);
const TimeDelta kAudioPacketInterval = TimeDelta::Millis(20);
// In this test, we fist send a burst of video in order to saturate the
// padding debt level.
// We then proceed to send audio at a bitrate that is slightly lower than
// the padding rate, meaning there will be a period with audio but no
// padding sent while the debt is draining, then audio and padding will
// be interlieved.
// Verify both with and without accounting for audio.
for (bool account_for_audio : {false, true}) {
uint16_t sequence_number = 1234;
MockPacketSender callback;
EXPECT_CALL(callback, SendPacket).Times(AnyNumber());
auto pacer =
std::make_unique<PacingController>(&clock_, &callback, trials_);
pacer->SetAccountForAudioPackets(account_for_audio);
// First, saturate the padding budget.
pacer->SetPacingRates(kPacingDataRate, kPaddingDataRate);
const TimeDelta kPaddingSaturationTime =
kMaxBufferInTime * kPaddingDataRate /
(kPacingDataRate - kPaddingDataRate);
const DataSize kVideoToSend = kPaddingSaturationTime * kPacingDataRate;
const DataSize kVideoPacketSize = DataSize::Bytes(1200);
DataSize video_sent = DataSize::Zero();
while (video_sent < kVideoToSend) {
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++,
clock_.TimeInMilliseconds(), kVideoPacketSize.bytes()));
video_sent += kVideoPacketSize;
}
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
// Add a stream of audio packets at a rate slightly lower than the padding
// rate, once the padding debt is paid off we expect padding to be
// generated.
pacer->SetPacingRates(kPacingDataRate, kPaddingDataRate);
bool padding_seen = false;
EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) {
padding_seen = true;
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
padding_packets.emplace_back(
BuildPacket(RtpPacketMediaType::kPadding, kSsrc, sequence_number++,
clock_.TimeInMilliseconds(), padding_size.bytes()));
return padding_packets;
});
Timestamp start_time = clock_.CurrentTime();
Timestamp last_audio_time = start_time;
while (!padding_seen) {
Timestamp now = clock_.CurrentTime();
Timestamp next_send_time = pacer->NextSendTime();
TimeDelta sleep_time =
std::min(next_send_time, last_audio_time + kAudioPacketInterval) -
now;
clock_.AdvanceTime(sleep_time);
while (clock_.CurrentTime() >= last_audio_time + kAudioPacketInterval) {
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kAudio, kSsrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize.bytes()));
last_audio_time += kAudioPacketInterval;
}
pacer->ProcessPackets();
}
// Verify how long it took to drain the padding debt. Allow 2% error margin.
const DataRate kAudioDataRate = kPacketSize / kAudioPacketInterval;
const TimeDelta expected_drain_time =
account_for_audio ? (kMaxBufferInTime * kPaddingDataRate /
(kPaddingDataRate - kAudioDataRate))
: kMaxBufferInTime;
const TimeDelta actual_drain_time = clock_.CurrentTime() - start_time;
EXPECT_NEAR(actual_drain_time.ms(), expected_drain_time.ms(),
expected_drain_time.ms() * 0.02)
<< " where account_for_audio = "
<< (account_for_audio ? "true" : "false");
}
}
TEST_F(PacingControllerTest, AccountsForAudioEnqueueTime) {
const uint32_t kSsrc = 12345;
const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
const DataRate kPaddingDataRate = DataRate::Zero();
const DataSize kPacketSize = DataSize::Bytes(130);
const TimeDelta kPacketPacingTime = kPacketSize / kPacingDataRate;
uint32_t sequnce_number = 1;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
// Audio not paced, but still accounted for in budget.
pacer->SetAccountForAudioPackets(true);
pacer->SetPacingRates(kPacingDataRate, kPaddingDataRate);
// Enqueue two audio packets, advance clock to where one packet
// should have drained the buffer already, has they been sent
// immediately.
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kAudio, kSsrc,
sequnce_number++, clock_.TimeInMilliseconds(),
kPacketSize.bytes());
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kAudio, kSsrc,
sequnce_number++, clock_.TimeInMilliseconds(),
kPacketSize.bytes());
clock_.AdvanceTime(kPacketPacingTime);
// Now process and make sure both packets were sent.
pacer->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Add a video packet. I can't be sent until debt from audio
// packets have been drained.
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, kSsrc + 1, sequnce_number++,
clock_.TimeInMilliseconds(), kPacketSize.bytes()));
EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
}
TEST_F(PacingControllerTest, NextSendTimeAccountsForPadding) {
const uint32_t kSsrc = 12345;
const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
const DataSize kPacketSize = DataSize::Bytes(130);
const TimeDelta kPacketPacingTime = kPacketSize / kPacingDataRate;
uint32_t sequnce_number = 1;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
// Start with no padding.
pacer->SetPacingRates(kPacingDataRate, DataRate::Zero());
// Send a single packet.
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc,
sequnce_number++, clock_.TimeInMilliseconds(),
kPacketSize.bytes());
pacer->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
// With current conditions, no need to wake until next keep-alive.
EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(),
PacingController::kPausedProcessInterval);
// Enqueue a new packet, that can't be sent until previous buffer has
// drained.
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc,
sequnce_number++, clock_.TimeInMilliseconds(),
kPacketSize.bytes());
EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
clock_.AdvanceTime(kPacketPacingTime);
pacer->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
// With current conditions, again no need to wake until next keep-alive.
EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(),
PacingController::kPausedProcessInterval);
// Set a non-zero padding rate. Padding also can't be sent until
// previous debt has cleared. Since padding was disabled before, there
// currently is no padding debt.
pacer->SetPacingRates(kPacingDataRate, kPacingDataRate / 2);
EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
// Advance time, expect padding.
EXPECT_CALL(callback_, SendPadding).WillOnce(Return(kPacketSize.bytes()));
clock_.AdvanceTime(kPacketPacingTime);
pacer->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Since padding rate is half of pacing rate, next time we can send
// padding is double the packet pacing time.
EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(),
kPacketPacingTime * 2);
// Insert a packet to be sent, this take precedence again.
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++,
clock_.TimeInMilliseconds(), kPacketSize.bytes()));
EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
}
TEST_F(PacingControllerTest, PaddingTargetAccountsForPaddingRate) {
// Target size for a padding packet is 5ms * padding rate.
const TimeDelta kPaddingTarget = TimeDelta::Millis(5);
srand(0);
// Need to initialize PacingController after we initialize clock.
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
const uint32_t kSsrc = 12345;
const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
const DataSize kPacketSize = DataSize::Bytes(130);
uint32_t sequnce_number = 1;
// Start with pacing and padding rate equal.
pacer->SetPacingRates(kPacingDataRate, kPacingDataRate);
// Send a single packet.
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc,
sequnce_number++, clock_.TimeInMilliseconds(),
kPacketSize.bytes());
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
size_t expected_padding_target_bytes =
(kPaddingTarget * kPacingDataRate).bytes();
EXPECT_CALL(callback_, SendPadding(expected_padding_target_bytes))
.WillOnce(Return(expected_padding_target_bytes));
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
// Half the padding rate - expect half the padding target.
pacer->SetPacingRates(kPacingDataRate, kPacingDataRate / 2);
EXPECT_CALL(callback_, SendPadding(expected_padding_target_bytes / 2))
.WillOnce(Return(expected_padding_target_bytes / 2));
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
TEST_F(PacingControllerTest, SendsFecPackets) {
const uint32_t kSsrc = 12345;
const uint32_t kFlexSsrc = 54321;
uint16_t sequence_number = 1234;
uint16_t flexfec_sequence_number = 4321;
const size_t kPacketSize = 123;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
// Set pacing rate to 1000 packet/s, no padding.
pacer->SetPacingRates(
DataSize::Bytes(1000 * kPacketSize) / TimeDelta::Seconds(1),
DataRate::Zero());
int64_t now = clock_.TimeInMilliseconds();
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, kSsrc,
sequence_number, now, kPacketSize));
EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number, now, false, false));
EXPECT_CALL(callback_, FetchFec).WillOnce([&]() {
EXPECT_CALL(callback_, SendPacket(kFlexSsrc, flexfec_sequence_number, now,
false, false));
EXPECT_CALL(callback_, FetchFec);
std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets;
fec_packets.push_back(
BuildPacket(RtpPacketMediaType::kForwardErrorCorrection, kFlexSsrc,
flexfec_sequence_number, now, kPacketSize));
return fec_packets;
});
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
TEST_F(PacingControllerTest, GapInPacingDoesntAccumulateBudget) {
const uint32_t kSsrc = 12345;
uint16_t sequence_number = 1234;
const DataSize kPackeSize = DataSize::Bytes(250);
const TimeDelta kPacketSendTime = TimeDelta::Millis(15);
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kPackeSize / kPacketSendTime,
/*padding_rate=*/DataRate::Zero());
// Send an initial packet.
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPackeSize.bytes());
pacer->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Advance time kPacketSendTime past where the media debt should be 0.
clock_.AdvanceTime(2 * kPacketSendTime);
// Enqueue two new packets. Expect only one to be sent one ProcessPackets().
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number + 1,
clock_.TimeInMilliseconds(), kPackeSize.bytes()));
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number + 2,
clock_.TimeInMilliseconds(), kPackeSize.bytes()));
EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number + 1,
clock_.TimeInMilliseconds(), false, false));
pacer->ProcessPackets();
}
TEST_F(PacingControllerTest, HandlesSubMicrosecondSendIntervals) {
static constexpr DataSize kPacketSize = DataSize::Bytes(1);
static constexpr TimeDelta kPacketSendTime = TimeDelta::Micros(1);
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
// Set pacing rate such that a packet is sent in 0.5us.
pacer->SetPacingRates(/*pacing_rate=*/2 * kPacketSize / kPacketSendTime,
/*padding_rate=*/DataRate::Zero());
// Enqueue three packets, the first two should be sent immediately - the third
// should cause a non-zero delta to the next process time.
EXPECT_CALL(callback_, SendPacket).Times(2);
for (int i = 0; i < 3; ++i) {
pacer->EnqueuePacket(BuildPacket(
RtpPacketMediaType::kVideo, /*ssrc=*/12345, /*sequence_number=*/i,
clock_.TimeInMilliseconds(), kPacketSize.bytes()));
}
pacer->ProcessPackets();
EXPECT_GT(pacer->NextSendTime(), clock_.CurrentTime());
}
TEST_F(PacingControllerTest, HandlesSubMicrosecondPaddingInterval) {
static constexpr DataSize kPacketSize = DataSize::Bytes(1);
static constexpr TimeDelta kPacketSendTime = TimeDelta::Micros(1);
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
// Set both pacing and padding rates to 1 byte per 0.5us.
pacer->SetPacingRates(/*pacing_rate=*/2 * kPacketSize / kPacketSendTime,
/*padding_rate=*/2 * kPacketSize / kPacketSendTime);
// Enqueue and send one packet.
EXPECT_CALL(callback_, SendPacket);
pacer->EnqueuePacket(BuildPacket(
RtpPacketMediaType::kVideo, /*ssrc=*/12345, /*sequence_number=*/1234,
clock_.TimeInMilliseconds(), kPacketSize.bytes()));
pacer->ProcessPackets();
// The padding debt is now 1 byte, and the pacing time for that is lower than
// the precision of a TimeStamp tick. Make sure the pacer still indicates a
// non-zero sleep time is needed until the next process.
EXPECT_GT(pacer->NextSendTime(), clock_.CurrentTime());
}
TEST_F(PacingControllerTest, SendsPacketsInBurstImmediately) {
constexpr TimeDelta kMaxDelay = TimeDelta::Millis(20);
PacingController pacer(&clock_, &callback_, trials_);
pacer.SetSendBurstInterval(kMaxDelay);
pacer.SetPacingRates(DataRate::BytesPerSec(10000), DataRate::Zero());
// Max allowed send burst size is 100000*20/1000) = 200byte
pacer.EnqueuePacket(video_.BuildNextPacket(100));
pacer.EnqueuePacket(video_.BuildNextPacket(100));
pacer.EnqueuePacket(video_.BuildNextPacket(100));
pacer.ProcessPackets();
EXPECT_EQ(pacer.QueueSizePackets(), 1u);
EXPECT_EQ(pacer.NextSendTime(), clock_.CurrentTime() + kMaxDelay);
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
EXPECT_EQ(pacer.QueueSizePackets(), 0u);
}
TEST_F(PacingControllerTest, SendsPacketsInBurstEvenIfNotEnqueedAtSameTime) {
constexpr TimeDelta kMaxDelay = TimeDelta::Millis(20);
PacingController pacer(&clock_, &callback_, trials_);
pacer.SetSendBurstInterval(kMaxDelay);
pacer.SetPacingRates(DataRate::BytesPerSec(10000), DataRate::Zero());
pacer.EnqueuePacket(video_.BuildNextPacket(200));
EXPECT_EQ(pacer.NextSendTime(), clock_.CurrentTime());
pacer.ProcessPackets();
clock_.AdvanceTime(TimeDelta::Millis(1));
pacer.EnqueuePacket(video_.BuildNextPacket(200));
EXPECT_EQ(pacer.NextSendTime(), clock_.CurrentTime());
pacer.ProcessPackets();
EXPECT_EQ(pacer.QueueSizePackets(), 0u);
}
TEST_F(PacingControllerTest, RespectsTargetRateWhenSendingPacketsInBursts) {
PacingController pacer(&clock_, &callback_, trials_);
pacer.SetSendBurstInterval(TimeDelta::Millis(20));
pacer.SetAccountForAudioPackets(true);
pacer.SetPacingRates(DataRate::KilobitsPerSec(1000), DataRate::Zero());
Timestamp start_time = clock_.CurrentTime();
// Inject 100 packets, with size 1000bytes over 100ms.
// Expect only 1Mbps / (8*1000) / 10 = 12 packets to be sent.
// Packets are sent in burst. Each burst is then 3 packets * 1000bytes at
// 1Mbits = 24ms long. Thus, expect 4 bursts.
EXPECT_CALL(callback_, SendPacket).Times(12);
int number_of_bursts = 0;
while (clock_.CurrentTime() < start_time + TimeDelta::Millis(100)) {
pacer.EnqueuePacket(video_.BuildNextPacket(1000));
pacer.EnqueuePacket(video_.BuildNextPacket(1000));
pacer.EnqueuePacket(video_.BuildNextPacket(1000));
pacer.EnqueuePacket(video_.BuildNextPacket(1000));
pacer.EnqueuePacket(video_.BuildNextPacket(1000));
if (pacer.NextSendTime() <= clock_.CurrentTime()) {
pacer.ProcessPackets();
++number_of_bursts;
}
clock_.AdvanceTime(TimeDelta::Millis(5));
}
EXPECT_EQ(pacer.QueueSizePackets(), 88u);
EXPECT_EQ(number_of_bursts, 4);
}
TEST_F(PacingControllerTest,
MaxBurstSizeLimitedAtHighPacingRateWhenSendingPacketsInBursts) {
NiceMock<MockPacketSender> callback;
PacingController pacer(&clock_, &callback, trials_);
pacer.SetSendBurstInterval(TimeDelta::Millis(100));
pacer.SetPacingRates(DataRate::KilobitsPerSec(10'000), DataRate::Zero());
size_t sent_size_in_burst = 0;
EXPECT_CALL(callback, SendPacket)
.WillRepeatedly([&](std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info) {
sent_size_in_burst += packet->size();
});
// Enqueue 200 packets from a 200Kb encoded frame.
for (int i = 0; i < 200; ++i) {
pacer.EnqueuePacket(video_.BuildNextPacket(1000));
}
while (pacer.QueueSizePackets() > 70) {
pacer.ProcessPackets();
EXPECT_NEAR(sent_size_in_burst, PacingController::kMaxBurstSize.bytes(),
1000);
sent_size_in_burst = 0;
TimeDelta time_to_next = pacer.NextSendTime() - clock_.CurrentTime();
EXPECT_NEAR(time_to_next.ms(), 50, 2);
clock_.AdvanceTime(time_to_next);
}
}
TEST_F(PacingControllerTest, RespectsQueueTimeLimit) {
static constexpr DataSize kPacketSize = DataSize::Bytes(100);
static constexpr DataRate kNominalPacingRate = DataRate::KilobitsPerSec(200);
static constexpr TimeDelta kPacketPacingTime =
kPacketSize / kNominalPacingRate;
static constexpr TimeDelta kQueueTimeLimit = TimeDelta::Millis(1000);
PacingController pacer(&clock_, &callback_, trials_);
pacer.SetPacingRates(kNominalPacingRate, /*padding_rate=*/DataRate::Zero());
pacer.SetQueueTimeLimit(kQueueTimeLimit);
// Fill pacer up to queue time limit.
static constexpr int kNumPackets = kQueueTimeLimit / kPacketPacingTime;
for (int i = 0; i < kNumPackets; ++i) {
pacer.EnqueuePacket(video_.BuildNextPacket(kPacketSize.bytes()));
}
EXPECT_EQ(pacer.ExpectedQueueTime(), kQueueTimeLimit);
EXPECT_EQ(pacer.pacing_rate(), kNominalPacingRate);
// Double the amount of packets in the queue, the queue time limit should
// effectively double the pacing rate in response.
for (int i = 0; i < kNumPackets; ++i) {
pacer.EnqueuePacket(video_.BuildNextPacket(kPacketSize.bytes()));
}
EXPECT_EQ(pacer.ExpectedQueueTime(), kQueueTimeLimit);
EXPECT_EQ(pacer.pacing_rate(), 2 * kNominalPacingRate);
// Send all the packets, should take as long as the queue time limit.
Timestamp start_time = clock_.CurrentTime();
while (pacer.QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer.NextSendTime());
pacer.ProcessPackets();
}
EXPECT_EQ(clock_.CurrentTime() - start_time, kQueueTimeLimit);
// We're back in a normal state - pacing rate should be back to previous
// levels.
EXPECT_EQ(pacer.pacing_rate(), kNominalPacingRate);
}
TEST_F(PacingControllerTest, BudgetDoesNotAffectRetransmissionInsTrial) {
const DataSize kPacketSize = DataSize::Bytes(1000);
EXPECT_CALL(callback_, SendPadding).Times(0);
const test::ExplicitKeyValueConfig trials(
"WebRTC-Pacer-FastRetransmissions/Enabled/");
PacingController pacer(&clock_, &callback_, trials);
pacer.SetPacingRates(kTargetRate, /*padding_rate=*/DataRate::Zero());
// Send a video packet so that we have a bit debt.
pacer.EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, kVideoSsrc,
/*sequence_number=*/1,
/*capture_time=*/1, kPacketSize.bytes()));
EXPECT_CALL(callback_, SendPacket);
pacer.ProcessPackets();
EXPECT_GT(pacer.NextSendTime(), clock_.CurrentTime());
// A retransmission packet should still be immediately processed.
EXPECT_CALL(callback_, SendPacket);
pacer.EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission,
kVideoSsrc,
/*sequence_number=*/1,
/*capture_time=*/1, kPacketSize.bytes()));
pacer.ProcessPackets();
}
TEST_F(PacingControllerTest, AbortsAfterReachingCircuitBreakLimit) {
const DataSize kPacketSize = DataSize::Bytes(1000);
EXPECT_CALL(callback_, SendPadding).Times(0);
PacingController pacer(&clock_, &callback_, trials_);
pacer.SetPacingRates(kTargetRate, /*padding_rate=*/DataRate::Zero());
// Set the circuit breaker to abort after one iteration of the main
// sending loop.
pacer.SetCircuitBreakerThreshold(1);
EXPECT_CALL(callback_, SendPacket).Times(1);
// Send two packets.
pacer.EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, kVideoSsrc,
/*sequence_number=*/1,
/*capture_time=*/1, kPacketSize.bytes()));
pacer.EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, kVideoSsrc,
/*sequence_number=*/2,
/*capture_time=*/2, kPacketSize.bytes()));
// Advance time to way past where both should be eligible for sending.
clock_.AdvanceTime(TimeDelta::Seconds(1));
pacer.ProcessPackets();
}
TEST_F(PacingControllerTest, DoesNotPadIfProcessThreadIsBorked) {
PacingControllerPadding callback;
PacingController pacer(&clock_, &callback, trials_);
// Set both pacing and padding rate to be non-zero.
pacer.SetPacingRates(kTargetRate, /*padding_rate=*/kTargetRate);
// Add one packet to the queue, but do not send it yet.
pacer.EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, kVideoSsrc,
/*sequence_number=*/1,
/*capture_time=*/1,
/*size=*/1000));
// Advance time to waaay after the packet should have been sent.
clock_.AdvanceTime(TimeDelta::Seconds(42));
// `ProcessPackets()` should send the delayed packet, followed by a small
// amount of missed padding.
pacer.ProcessPackets();
// The max padding window is the max replay duration + the target padding
// duration.
const DataSize kMaxPadding = (PacingController::kMaxPaddingReplayDuration +
PacingController::kTargetPaddingDuration) *
kTargetRate;
EXPECT_LE(callback.padding_sent(), kMaxPadding.bytes<size_t>());
}
TEST_F(PacingControllerTest, FlushesPacketsOnKeyFrames) {
const uint32_t kSsrc = 12345;
const uint32_t kRtxSsrc = 12346;
const test::ExplicitKeyValueConfig trials(
"WebRTC-Pacer-KeyframeFlushing/Enabled/");
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials);
EXPECT_CALL(callback_, GetRtxSsrcForMedia(kSsrc))
.WillRepeatedly(Return(kRtxSsrc));
pacer->SetPacingRates(kTargetRate, DataRate::Zero());
// Enqueue a video packet and a retransmission of that video stream.
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, kSsrc,
/*sequence_number=*/1, /*capture_time=*/1,
/*size_bytes=*/100));
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission,
kRtxSsrc,
/*sequence_number=*/10, /*capture_time=*/1,
/*size_bytes=*/100));
EXPECT_EQ(pacer->QueueSizePackets(), 2u);
// Enqueue the first packet of a keyframe for said stream.
auto packet = BuildPacket(RtpPacketMediaType::kVideo, kSsrc,
/*sequence_number=*/2, /*capture_time=*/2,
/*size_bytes=*/1000);
packet->set_is_key_frame(true);
packet->set_first_packet_of_frame(true);
pacer->EnqueuePacket(std::move(packet));
// Only they new keyframe packet should be left in the queue.
EXPECT_EQ(pacer->QueueSizePackets(), 1u);
EXPECT_CALL(callback_, SendPacket(kSsrc, /*sequence_number=*/2,
/*timestamp=*/2, /*is_retrnamission=*/false,
/*is_padding=*/false));
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
} // namespace
} // namespace webrtc