| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <cstddef> |
| #include <vector> |
| |
| #include "api/video/video_timing.h" |
| #include "modules/video_coding/generic_encoder.h" |
| #include "modules/video_coding/include/video_coding_defines.h" |
| #include "rtc_base/fake_clock.h" |
| #include "rtc_base/time_utils.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace test { |
| namespace { |
| inline size_t FrameSize(const size_t& min_frame_size, |
| const size_t& max_frame_size, |
| const int& s, |
| const int& i) { |
| return min_frame_size + (s + 1) * i % (max_frame_size - min_frame_size); |
| } |
| |
| class FakeEncodedImageCallback : public EncodedImageCallback { |
| public: |
| FakeEncodedImageCallback() |
| : last_frame_was_timing_(false), |
| num_frames_dropped_(0), |
| last_capture_timestamp_(-1) {} |
| Result OnEncodedImage(const EncodedImage& encoded_image, |
| const CodecSpecificInfo* codec_specific_info, |
| const RTPFragmentationHeader* fragmentation) override { |
| last_frame_was_timing_ = |
| encoded_image.timing_.flags != VideoSendTiming::kInvalid && |
| encoded_image.timing_.flags != VideoSendTiming::kNotTriggered; |
| last_capture_timestamp_ = encoded_image.capture_time_ms_; |
| return Result(Result::OK); |
| }; |
| |
| void OnDroppedFrame(DropReason reason) override { ++num_frames_dropped_; } |
| |
| bool WasTimingFrame() { return last_frame_was_timing_; } |
| |
| size_t GetNumFramesDropped() { return num_frames_dropped_; } |
| |
| int64_t GetLastCaptureTimestamp() { return last_capture_timestamp_; } |
| |
| private: |
| bool last_frame_was_timing_; |
| size_t num_frames_dropped_; |
| int64_t last_capture_timestamp_; |
| }; |
| |
| enum class FrameType { |
| kNormal, |
| kTiming, |
| kDropped, |
| }; |
| |
| // Emulates |num_frames| on |num_streams| frames with capture timestamps |
| // increased by 1 from 0. Size of each frame is between |
| // |min_frame_size| and |max_frame_size|, outliers are counted relatevely to |
| // |average_frame_sizes[]| for each stream. |
| std::vector<std::vector<FrameType>> GetTimingFrames( |
| const int64_t delay_ms, |
| const size_t min_frame_size, |
| const size_t max_frame_size, |
| std::vector<size_t> average_frame_sizes, |
| const int num_streams, |
| const int num_frames) { |
| FakeEncodedImageCallback sink; |
| VCMEncodedFrameCallback callback(&sink); |
| const size_t kFramerate = 30; |
| callback.SetTimingFramesThresholds( |
| {delay_ms, kDefaultOutlierFrameSizePercent}); |
| callback.OnFrameRateChanged(kFramerate); |
| int s, i; |
| std::vector<uint8_t> frame_data(max_frame_size); |
| std::vector<std::vector<FrameType>> result(num_streams); |
| for (s = 0; s < num_streams; ++s) |
| callback.OnTargetBitrateChanged(average_frame_sizes[s] * kFramerate, s); |
| int64_t current_timestamp = 0; |
| for (i = 0; i < num_frames; ++i) { |
| current_timestamp += 1; |
| for (s = 0; s < num_streams; ++s) { |
| // every (5+s)-th frame is dropped on s-th stream by design. |
| bool dropped = i % (5 + s) == 0; |
| |
| EncodedImage image; |
| CodecSpecificInfo codec_specific; |
| image.set_buffer(frame_data.data(), frame_data.size()); |
| image.set_size(FrameSize(min_frame_size, max_frame_size, s, i)); |
| image.capture_time_ms_ = current_timestamp; |
| image.SetTimestamp(static_cast<uint32_t>(current_timestamp * 90)); |
| image.SetSpatialIndex(s); |
| codec_specific.codecType = kVideoCodecGeneric; |
| callback.OnEncodeStarted(static_cast<uint32_t>(current_timestamp * 90), |
| current_timestamp, s); |
| if (dropped) { |
| result[s].push_back(FrameType::kDropped); |
| continue; |
| } |
| callback.OnEncodedImage(image, &codec_specific, nullptr); |
| if (sink.WasTimingFrame()) { |
| result[s].push_back(FrameType::kTiming); |
| } else { |
| result[s].push_back(FrameType::kNormal); |
| } |
| } |
| } |
| return result; |
| } |
| } // namespace |
| |
| TEST(TestVCMEncodedFrameCallback, MarksTimingFramesPeriodicallyTogether) { |
| const int64_t kDelayMs = 29; |
| const size_t kMinFrameSize = 10; |
| const size_t kMaxFrameSize = 20; |
| const int kNumFrames = 1000; |
| const int kNumStreams = 3; |
| // No outliers as 1000 is larger than anything from range [10,20]. |
| const std::vector<size_t> kAverageSize = {1000, 1000, 1000}; |
| auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize, |
| kAverageSize, kNumStreams, kNumFrames); |
| // Timing frames should be tirggered every delayMs. |
| // As no outliers are expected, frames on all streams have to be |
| // marked together. |
| int last_timing_frame = -1; |
| for (int i = 0; i < kNumFrames; ++i) { |
| int num_normal = 0; |
| int num_timing = 0; |
| int num_dropped = 0; |
| for (int s = 0; s < kNumStreams; ++s) { |
| if (frames[s][i] == FrameType::kTiming) { |
| ++num_timing; |
| } else if (frames[s][i] == FrameType::kNormal) { |
| ++num_normal; |
| } else { |
| ++num_dropped; |
| } |
| } |
| // Can't have both normal and timing frames at the same timstamp. |
| EXPECT_TRUE(num_timing == 0 || num_normal == 0); |
| if (num_dropped < kNumStreams) { |
| if (last_timing_frame == -1 || i >= last_timing_frame + kDelayMs) { |
| // If didn't have timing frames for a period, current sent frame has to |
| // be one. No normal frames should be sent. |
| EXPECT_EQ(num_normal, 0); |
| } else { |
| // No unneeded timing frames should be sent. |
| EXPECT_EQ(num_timing, 0); |
| } |
| } |
| if (num_timing > 0) |
| last_timing_frame = i; |
| } |
| } |
| |
| TEST(TestVCMEncodedFrameCallback, MarksOutliers) { |
| const int64_t kDelayMs = 29; |
| const size_t kMinFrameSize = 2495; |
| const size_t kMaxFrameSize = 2505; |
| const int kNumFrames = 1000; |
| const int kNumStreams = 3; |
| // Possible outliers as 1000 lies in range [995, 1005]. |
| const std::vector<size_t> kAverageSize = {998, 1000, 1004}; |
| auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize, |
| kAverageSize, kNumStreams, kNumFrames); |
| // All outliers should be marked. |
| for (int i = 0; i < kNumFrames; ++i) { |
| for (int s = 0; s < kNumStreams; ++s) { |
| if (FrameSize(kMinFrameSize, kMaxFrameSize, s, i) >= |
| kAverageSize[s] * kDefaultOutlierFrameSizePercent / 100) { |
| // Too big frame. May be dropped or timing, but not normal. |
| EXPECT_NE(frames[s][i], FrameType::kNormal); |
| } |
| } |
| } |
| } |
| |
| TEST(TestVCMEncodedFrameCallback, NoTimingFrameIfNoEncodeStartTime) { |
| EncodedImage image; |
| CodecSpecificInfo codec_specific; |
| int64_t timestamp = 1; |
| uint8_t frame_data[500]; |
| image.set_buffer(frame_data, sizeof(frame_data)); |
| image.set_size(sizeof(frame_data)); |
| image.capture_time_ms_ = timestamp; |
| image.SetTimestamp(static_cast<uint32_t>(timestamp * 90)); |
| codec_specific.codecType = kVideoCodecGeneric; |
| FakeEncodedImageCallback sink; |
| VCMEncodedFrameCallback callback(&sink); |
| VideoCodec::TimingFrameTriggerThresholds thresholds; |
| thresholds.delay_ms = 1; // Make all frames timing frames. |
| callback.SetTimingFramesThresholds(thresholds); |
| callback.OnTargetBitrateChanged(500, 0); |
| |
| // Verify a single frame works with encode start time set. |
| callback.OnEncodeStarted(static_cast<uint32_t>(timestamp * 90), timestamp, 0); |
| callback.OnEncodedImage(image, &codec_specific, nullptr); |
| EXPECT_TRUE(sink.WasTimingFrame()); |
| |
| // New frame, now skip OnEncodeStarted. Should not result in timing frame. |
| image.capture_time_ms_ = ++timestamp; |
| image.SetTimestamp(static_cast<uint32_t>(timestamp * 90)); |
| callback.OnEncodedImage(image, &codec_specific, nullptr); |
| EXPECT_FALSE(sink.WasTimingFrame()); |
| } |
| |
| TEST(TestVCMEncodedFrameCallback, AdjustsCaptureTimeForInternalSourceEncoder) { |
| rtc::ScopedFakeClock clock; |
| clock.SetTimeMicros(1234567); |
| EncodedImage image; |
| CodecSpecificInfo codec_specific; |
| const int64_t kEncodeStartDelayMs = 2; |
| const int64_t kEncodeFinishDelayMs = 10; |
| int64_t timestamp = 1; |
| uint8_t frame_data[500]; |
| image.set_buffer(frame_data, sizeof(frame_data)); |
| image.set_size(sizeof(frame_data)); |
| image.capture_time_ms_ = timestamp; |
| image.SetTimestamp(static_cast<uint32_t>(timestamp * 90)); |
| codec_specific.codecType = kVideoCodecGeneric; |
| FakeEncodedImageCallback sink; |
| VCMEncodedFrameCallback callback(&sink); |
| callback.SetInternalSource(true); |
| VideoCodec::TimingFrameTriggerThresholds thresholds; |
| thresholds.delay_ms = 1; // Make all frames timing frames. |
| callback.SetTimingFramesThresholds(thresholds); |
| callback.OnTargetBitrateChanged(500, 0); |
| |
| // Verify a single frame without encode timestamps isn't a timing frame. |
| callback.OnEncodedImage(image, &codec_specific, nullptr); |
| EXPECT_FALSE(sink.WasTimingFrame()); |
| |
| // New frame, but this time with encode timestamps set in timing_. |
| // This should be a timing frame. |
| image.capture_time_ms_ = ++timestamp; |
| image.SetTimestamp(static_cast<uint32_t>(timestamp * 90)); |
| image.timing_.encode_start_ms = timestamp + kEncodeStartDelayMs; |
| image.timing_.encode_finish_ms = timestamp + kEncodeFinishDelayMs; |
| callback.OnEncodedImage(image, &codec_specific, nullptr); |
| EXPECT_TRUE(sink.WasTimingFrame()); |
| // Frame is captured kEncodeFinishDelayMs before it's encoded, so restored |
| // capture timestamp should be kEncodeFinishDelayMs in the past. |
| EXPECT_EQ( |
| sink.GetLastCaptureTimestamp(), |
| clock.TimeNanos() / rtc::kNumNanosecsPerMillisec - kEncodeFinishDelayMs); |
| } |
| |
| TEST(TestVCMEncodedFrameCallback, NotifiesAboutDroppedFrames) { |
| EncodedImage image; |
| CodecSpecificInfo codec_specific; |
| const int64_t kTimestampMs1 = 47721840; |
| const int64_t kTimestampMs2 = 47721850; |
| const int64_t kTimestampMs3 = 47721860; |
| const int64_t kTimestampMs4 = 47721870; |
| codec_specific.codecType = kVideoCodecGeneric; |
| FakeEncodedImageCallback sink; |
| VCMEncodedFrameCallback callback(&sink); |
| // Any non-zero bitrate needed to be set before the first frame. |
| callback.OnTargetBitrateChanged(500, 0); |
| image.capture_time_ms_ = kTimestampMs1; |
| image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90)); |
| callback.OnEncodeStarted(image.Timestamp(), image.capture_time_ms_, 0); |
| EXPECT_EQ(0u, sink.GetNumFramesDropped()); |
| callback.OnEncodedImage(image, &codec_specific, nullptr); |
| |
| image.capture_time_ms_ = kTimestampMs2; |
| image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90)); |
| callback.OnEncodeStarted(image.Timestamp(), image.capture_time_ms_, 0); |
| // No OnEncodedImageCall for timestamp2. Yet, at this moment it's not known |
| // that frame with timestamp2 was dropped. |
| EXPECT_EQ(0u, sink.GetNumFramesDropped()); |
| |
| image.capture_time_ms_ = kTimestampMs3; |
| image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90)); |
| callback.OnEncodeStarted(image.Timestamp(), image.capture_time_ms_, 0); |
| callback.OnEncodedImage(image, &codec_specific, nullptr); |
| EXPECT_EQ(1u, sink.GetNumFramesDropped()); |
| |
| image.capture_time_ms_ = kTimestampMs4; |
| image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90)); |
| callback.OnEncodeStarted(image.Timestamp(), image.capture_time_ms_, 0); |
| callback.OnEncodedImage(image, &codec_specific, nullptr); |
| EXPECT_EQ(1u, sink.GetNumFramesDropped()); |
| } |
| |
| TEST(TestVCMEncodedFrameCallback, RestoresCaptureTimestamps) { |
| EncodedImage image; |
| CodecSpecificInfo codec_specific; |
| const int64_t kTimestampMs = 123456; |
| codec_specific.codecType = kVideoCodecGeneric; |
| FakeEncodedImageCallback sink; |
| VCMEncodedFrameCallback callback(&sink); |
| // Any non-zero bitrate needed to be set before the first frame. |
| callback.OnTargetBitrateChanged(500, 0); |
| image.capture_time_ms_ = kTimestampMs; // Incorrect timesetamp. |
| image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90)); |
| callback.OnEncodeStarted(image.Timestamp(), image.capture_time_ms_, 0); |
| image.capture_time_ms_ = 0; // Incorrect timesetamp. |
| callback.OnEncodedImage(image, &codec_specific, nullptr); |
| EXPECT_EQ(kTimestampMs, sink.GetLastCaptureTimestamp()); |
| } |
| |
| } // namespace test |
| } // namespace webrtc |