blob: 190e0e78eb0dfc1a4528568f5dd527a5b77d29d8 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cstring>
#include <map>
#include <set>
#include <utility>
#include "common_video/h264/h264_common.h"
#include "modules/video_coding/frame_object.h"
#include "modules/video_coding/packet_buffer.h"
#include "rtc_base/random.h"
#include "system_wrappers/include/clock.h"
#include "test/field_trial.h"
#include "test/gtest.h"
namespace webrtc {
namespace video_coding {
class TestPacketBuffer : public ::testing::Test,
public OnReceivedFrameCallback {
protected:
TestPacketBuffer() : TestPacketBuffer("") {}
explicit TestPacketBuffer(std::string field_trials)
: scoped_field_trials_(field_trials),
rand_(0x7732213),
clock_(new SimulatedClock(0)),
packet_buffer_(
PacketBuffer::Create(clock_.get(), kStartSize, kMaxSize, this)) {}
uint16_t Rand() { return rand_.Rand<uint16_t>(); }
void OnReceivedFrame(std::unique_ptr<RtpFrameObject> frame) override {
uint16_t first_seq_num = frame->first_seq_num();
if (frames_from_callback_.find(first_seq_num) !=
frames_from_callback_.end()) {
ADD_FAILURE() << "Already received frame with first sequence number "
<< first_seq_num << ".";
return;
}
frames_from_callback_.insert(
std::make_pair(frame->first_seq_num(), std::move(frame)));
}
enum IsKeyFrame { kKeyFrame, kDeltaFrame };
enum IsFirst { kFirst, kNotFirst };
enum IsLast { kLast, kNotLast };
bool Insert(uint16_t seq_num, // packet sequence number
IsKeyFrame keyframe, // is keyframe
IsFirst first, // is first packet of frame
IsLast last, // is last packet of frame
int data_size = 0, // size of data
uint8_t* data = nullptr, // data pointer
uint32_t timestamp = 123u) { // rtp timestamp
VCMPacket packet;
packet.codec = kVideoCodecGeneric;
packet.timestamp = timestamp;
packet.seqNum = seq_num;
packet.frameType =
keyframe == kKeyFrame ? kVideoFrameKey : kVideoFrameDelta;
packet.is_first_packet_in_frame = first == kFirst;
packet.is_last_packet_in_frame = last == kLast;
packet.sizeBytes = data_size;
packet.dataPtr = data;
return packet_buffer_->InsertPacket(&packet);
}
void CheckFrame(uint16_t first_seq_num) {
auto frame_it = frames_from_callback_.find(first_seq_num);
ASSERT_FALSE(frame_it == frames_from_callback_.end())
<< "Could not find frame with first sequence number " << first_seq_num
<< ".";
}
void DeleteFrame(uint16_t first_seq_num) {
auto frame_it = frames_from_callback_.find(first_seq_num);
ASSERT_FALSE(frame_it == frames_from_callback_.end())
<< "Could not find frame with first sequence number " << first_seq_num
<< ".";
frames_from_callback_.erase(frame_it);
}
static constexpr int kStartSize = 16;
static constexpr int kMaxSize = 64;
const test::ScopedFieldTrials scoped_field_trials_;
Random rand_;
std::unique_ptr<SimulatedClock> clock_;
rtc::scoped_refptr<PacketBuffer> packet_buffer_;
std::map<uint16_t, std::unique_ptr<RtpFrameObject>> frames_from_callback_;
};
TEST_F(TestPacketBuffer, InsertOnePacket) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kLast));
}
TEST_F(TestPacketBuffer, InsertMultiplePackets) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 1, kKeyFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 2, kKeyFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 3, kKeyFrame, kFirst, kLast));
}
TEST_F(TestPacketBuffer, InsertDuplicatePacket) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kLast));
}
TEST_F(TestPacketBuffer, SeqNumWrapOneFrame) {
EXPECT_TRUE(Insert(0xFFFF, kKeyFrame, kFirst, kNotLast));
EXPECT_TRUE(Insert(0x0, kKeyFrame, kNotFirst, kLast));
CheckFrame(0xFFFF);
}
TEST_F(TestPacketBuffer, SeqNumWrapTwoFrames) {
EXPECT_TRUE(Insert(0xFFFF, kKeyFrame, kFirst, kLast));
EXPECT_TRUE(Insert(0x0, kKeyFrame, kFirst, kLast));
CheckFrame(0xFFFF);
CheckFrame(0x0);
}
TEST_F(TestPacketBuffer, InsertOldPackets) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + 2, kDeltaFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 1, kKeyFrame, kNotFirst, kLast));
ASSERT_EQ(2UL, frames_from_callback_.size());
frames_from_callback_.erase(seq_num + 2);
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kNotLast));
ASSERT_EQ(1UL, frames_from_callback_.size());
frames_from_callback_.erase(frames_from_callback_.find(seq_num));
ASSERT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + 2, kDeltaFrame, kFirst, kLast));
packet_buffer_->ClearTo(seq_num + 2);
EXPECT_FALSE(Insert(seq_num + 2, kDeltaFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 3, kDeltaFrame, kFirst, kLast));
ASSERT_EQ(2UL, frames_from_callback_.size());
}
TEST_F(TestPacketBuffer, NackCount) {
const uint16_t seq_num = Rand();
VCMPacket packet;
packet.codec = kVideoCodecGeneric;
packet.seqNum = seq_num;
packet.frameType = kVideoFrameKey;
packet.is_first_packet_in_frame = true;
packet.is_last_packet_in_frame = false;
packet.timesNacked = 0;
packet_buffer_->InsertPacket(&packet);
packet.seqNum++;
packet.is_first_packet_in_frame = false;
packet.timesNacked = 1;
packet_buffer_->InsertPacket(&packet);
packet.seqNum++;
packet.timesNacked = 3;
packet_buffer_->InsertPacket(&packet);
packet.seqNum++;
packet.is_last_packet_in_frame = true;
packet.timesNacked = 1;
packet_buffer_->InsertPacket(&packet);
ASSERT_EQ(1UL, frames_from_callback_.size());
RtpFrameObject* frame = frames_from_callback_.begin()->second.get();
EXPECT_EQ(3, frame->times_nacked());
}
TEST_F(TestPacketBuffer, FrameSize) {
const uint16_t seq_num = Rand();
uint8_t* data1 = new uint8_t[5]();
uint8_t* data2 = new uint8_t[5]();
uint8_t* data3 = new uint8_t[5]();
uint8_t* data4 = new uint8_t[5]();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kNotLast, 5, data1));
EXPECT_TRUE(Insert(seq_num + 1, kKeyFrame, kNotFirst, kNotLast, 5, data2));
EXPECT_TRUE(Insert(seq_num + 2, kKeyFrame, kNotFirst, kNotLast, 5, data3));
EXPECT_TRUE(Insert(seq_num + 3, kKeyFrame, kNotFirst, kLast, 5, data4));
ASSERT_EQ(1UL, frames_from_callback_.size());
EXPECT_EQ(20UL, frames_from_callback_.begin()->second->size());
}
TEST_F(TestPacketBuffer, CountsUniqueFrames) {
const uint16_t seq_num = Rand();
ASSERT_EQ(0, packet_buffer_->GetUniqueFramesSeen());
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kNotLast, 0, nullptr, 100));
ASSERT_EQ(1, packet_buffer_->GetUniqueFramesSeen());
// Still the same frame.
EXPECT_TRUE(
Insert(seq_num + 1, kKeyFrame, kNotFirst, kLast, 0, nullptr, 100));
ASSERT_EQ(1, packet_buffer_->GetUniqueFramesSeen());
// Second frame.
EXPECT_TRUE(
Insert(seq_num + 2, kKeyFrame, kFirst, kNotLast, 0, nullptr, 200));
ASSERT_EQ(2, packet_buffer_->GetUniqueFramesSeen());
EXPECT_TRUE(
Insert(seq_num + 3, kKeyFrame, kNotFirst, kLast, 0, nullptr, 200));
ASSERT_EQ(2, packet_buffer_->GetUniqueFramesSeen());
// Old packet.
EXPECT_TRUE(
Insert(seq_num + 1, kKeyFrame, kNotFirst, kLast, 0, nullptr, 100));
ASSERT_EQ(2, packet_buffer_->GetUniqueFramesSeen());
// Missing middle packet.
EXPECT_TRUE(
Insert(seq_num + 4, kKeyFrame, kFirst, kNotLast, 0, nullptr, 300));
EXPECT_TRUE(
Insert(seq_num + 6, kKeyFrame, kNotFirst, kLast, 0, nullptr, 300));
ASSERT_EQ(3, packet_buffer_->GetUniqueFramesSeen());
}
TEST_F(TestPacketBuffer, HasHistoryOfUniqueFrames) {
const int kNumFrames = 1500;
const int kRequiredHistoryLength = 1000;
const uint16_t seq_num = Rand();
const uint32_t timestamp = 0xFFFFFFF0; // Large enough to cause wrap-around.
for (int i = 0; i < kNumFrames; ++i) {
EXPECT_TRUE(Insert(seq_num + i, kKeyFrame, kFirst, kNotLast, 0, nullptr,
timestamp + 10 * i));
}
ASSERT_EQ(kNumFrames, packet_buffer_->GetUniqueFramesSeen());
// Old packets within history should not affect number of seen unique frames.
for (int i = kNumFrames - kRequiredHistoryLength; i < kNumFrames; ++i) {
EXPECT_TRUE(Insert(seq_num + i, kKeyFrame, kFirst, kNotLast, 0, nullptr,
timestamp + 10 * i));
}
ASSERT_EQ(kNumFrames, packet_buffer_->GetUniqueFramesSeen());
// Very old packets should be treated as unique.
EXPECT_TRUE(
Insert(seq_num, kKeyFrame, kFirst, kNotLast, 0, nullptr, timestamp));
ASSERT_EQ(kNumFrames + 1, packet_buffer_->GetUniqueFramesSeen());
}
TEST_F(TestPacketBuffer, ExpandBuffer) {
const uint16_t seq_num = Rand();
for (int i = 0; i < kStartSize + 1; ++i) {
EXPECT_TRUE(Insert(seq_num + i, kKeyFrame, kFirst, kLast));
}
}
TEST_F(TestPacketBuffer, SingleFrameExpandsBuffer) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kNotLast));
for (int i = 1; i < kStartSize; ++i)
EXPECT_TRUE(Insert(seq_num + i, kKeyFrame, kNotFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + kStartSize, kKeyFrame, kNotFirst, kLast));
ASSERT_EQ(1UL, frames_from_callback_.size());
CheckFrame(seq_num);
}
TEST_F(TestPacketBuffer, ExpandBufferOverflow) {
const uint16_t seq_num = Rand();
for (int i = 0; i < kMaxSize; ++i)
EXPECT_TRUE(Insert(seq_num + i, kKeyFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + kMaxSize + 1, kKeyFrame, kFirst, kLast));
}
TEST_F(TestPacketBuffer, OnePacketOneFrame) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kLast));
ASSERT_EQ(1UL, frames_from_callback_.size());
CheckFrame(seq_num);
}
TEST_F(TestPacketBuffer, TwoPacketsTwoFrames) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 1, kKeyFrame, kFirst, kLast));
EXPECT_EQ(2UL, frames_from_callback_.size());
CheckFrame(seq_num);
CheckFrame(seq_num + 1);
}
TEST_F(TestPacketBuffer, TwoPacketsOneFrames) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + 1, kKeyFrame, kNotFirst, kLast));
EXPECT_EQ(1UL, frames_from_callback_.size());
CheckFrame(seq_num);
}
TEST_F(TestPacketBuffer, ThreePacketReorderingOneFrame) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + 2, kKeyFrame, kNotFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 1, kKeyFrame, kNotFirst, kNotLast));
EXPECT_EQ(1UL, frames_from_callback_.size());
CheckFrame(seq_num);
}
TEST_F(TestPacketBuffer, Frames) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 1, kDeltaFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 2, kDeltaFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 3, kDeltaFrame, kFirst, kLast));
ASSERT_EQ(4UL, frames_from_callback_.size());
CheckFrame(seq_num);
CheckFrame(seq_num + 1);
CheckFrame(seq_num + 2);
CheckFrame(seq_num + 3);
}
TEST_F(TestPacketBuffer, ClearSinglePacket) {
const uint16_t seq_num = Rand();
for (int i = 0; i < kMaxSize; ++i)
EXPECT_TRUE(Insert(seq_num + i, kDeltaFrame, kFirst, kLast));
packet_buffer_->ClearTo(seq_num);
EXPECT_TRUE(Insert(seq_num + kMaxSize, kDeltaFrame, kFirst, kLast));
}
TEST_F(TestPacketBuffer, ClearFullBuffer) {
for (int i = 0; i < kMaxSize; ++i)
EXPECT_TRUE(Insert(i, kDeltaFrame, kFirst, kLast));
packet_buffer_->ClearTo(kMaxSize - 1);
for (int i = kMaxSize; i < 2 * kMaxSize; ++i)
EXPECT_TRUE(Insert(i, kDeltaFrame, kFirst, kLast));
}
TEST_F(TestPacketBuffer, DontClearNewerPacket) {
EXPECT_TRUE(Insert(0, kKeyFrame, kFirst, kLast));
packet_buffer_->ClearTo(0);
EXPECT_TRUE(Insert(2 * kStartSize, kKeyFrame, kFirst, kLast));
EXPECT_TRUE(Insert(3 * kStartSize + 1, kKeyFrame, kFirst, kNotLast));
packet_buffer_->ClearTo(2 * kStartSize);
EXPECT_TRUE(Insert(3 * kStartSize + 2, kKeyFrame, kNotFirst, kLast));
ASSERT_EQ(3UL, frames_from_callback_.size());
CheckFrame(0);
CheckFrame(2 * kStartSize);
CheckFrame(3 * kStartSize + 1);
}
TEST_F(TestPacketBuffer, OneIncompleteFrame) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kDeltaFrame, kFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + 1, kDeltaFrame, kNotFirst, kLast));
EXPECT_TRUE(Insert(seq_num - 1, kDeltaFrame, kNotFirst, kLast));
ASSERT_EQ(1UL, frames_from_callback_.size());
CheckFrame(seq_num);
}
TEST_F(TestPacketBuffer, TwoIncompleteFramesFullBuffer) {
const uint16_t seq_num = Rand();
for (int i = 1; i < kMaxSize - 1; ++i)
EXPECT_TRUE(Insert(seq_num + i, kDeltaFrame, kNotFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num, kDeltaFrame, kFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num - 1, kDeltaFrame, kNotFirst, kLast));
ASSERT_EQ(0UL, frames_from_callback_.size());
}
TEST_F(TestPacketBuffer, FramesReordered) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num + 1, kDeltaFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 3, kDeltaFrame, kFirst, kLast));
EXPECT_TRUE(Insert(seq_num + 2, kDeltaFrame, kFirst, kLast));
ASSERT_EQ(4UL, frames_from_callback_.size());
CheckFrame(seq_num);
CheckFrame(seq_num + 1);
CheckFrame(seq_num + 2);
CheckFrame(seq_num + 3);
}
TEST_F(TestPacketBuffer, GetBitstream) {
// "many bitstream, such data" with null termination.
uint8_t many_data[] = {0x6d, 0x61, 0x6e, 0x79, 0x20};
uint8_t bitstream_data[] = {0x62, 0x69, 0x74, 0x73, 0x74, 0x72,
0x65, 0x61, 0x6d, 0x2c, 0x20};
uint8_t such_data[] = {0x73, 0x75, 0x63, 0x68, 0x20};
uint8_t data_data[] = {0x64, 0x61, 0x74, 0x61, 0x0};
uint8_t* many = new uint8_t[sizeof(many_data)];
uint8_t* bitstream = new uint8_t[sizeof(bitstream_data)];
uint8_t* such = new uint8_t[sizeof(such_data)];
uint8_t* data = new uint8_t[sizeof(data_data)];
memcpy(many, many_data, sizeof(many_data));
memcpy(bitstream, bitstream_data, sizeof(bitstream_data));
memcpy(such, such_data, sizeof(such_data));
memcpy(data, data_data, sizeof(data_data));
const size_t result_length = sizeof(many_data) + sizeof(bitstream_data) +
sizeof(such_data) + sizeof(data_data);
const uint16_t seq_num = Rand();
EXPECT_TRUE(
Insert(seq_num, kKeyFrame, kFirst, kNotLast, sizeof(many_data), many));
EXPECT_TRUE(Insert(seq_num + 1, kDeltaFrame, kNotFirst, kNotLast,
sizeof(bitstream_data), bitstream));
EXPECT_TRUE(Insert(seq_num + 2, kDeltaFrame, kNotFirst, kNotLast,
sizeof(such_data), such));
EXPECT_TRUE(Insert(seq_num + 3, kDeltaFrame, kNotFirst, kLast,
sizeof(data_data), data));
ASSERT_EQ(1UL, frames_from_callback_.size());
CheckFrame(seq_num);
EXPECT_EQ(frames_from_callback_[seq_num]->size(), result_length);
EXPECT_EQ(memcmp(frames_from_callback_[seq_num]->data(),
"many bitstream, such data", result_length),
0);
}
TEST_F(TestPacketBuffer, GetBitstreamOneFrameOnePacket) {
uint8_t bitstream_data[] = "All the bitstream data for this frame!";
uint8_t* data = new uint8_t[sizeof(bitstream_data)];
memcpy(data, bitstream_data, sizeof(bitstream_data));
EXPECT_TRUE(
Insert(0, kKeyFrame, kFirst, kLast, sizeof(bitstream_data), data));
ASSERT_EQ(1UL, frames_from_callback_.size());
CheckFrame(0);
EXPECT_EQ(frames_from_callback_[0]->size(), sizeof(bitstream_data));
EXPECT_EQ(
memcmp(frames_from_callback_[0]->data(), data, sizeof(bitstream_data)),
0);
}
TEST_F(TestPacketBuffer, GetBitstreamOneFrameFullBuffer) {
uint8_t* data_arr[kStartSize];
uint8_t expected[kStartSize];
for (uint8_t i = 0; i < kStartSize; ++i) {
data_arr[i] = new uint8_t[1];
data_arr[i][0] = i;
expected[i] = i;
}
EXPECT_TRUE(Insert(0, kKeyFrame, kFirst, kNotLast, 1, data_arr[0]));
for (uint8_t i = 1; i < kStartSize - 1; ++i)
EXPECT_TRUE(Insert(i, kKeyFrame, kNotFirst, kNotLast, 1, data_arr[i]));
EXPECT_TRUE(Insert(kStartSize - 1, kKeyFrame, kNotFirst, kLast, 1,
data_arr[kStartSize - 1]));
ASSERT_EQ(1UL, frames_from_callback_.size());
CheckFrame(0);
EXPECT_EQ(frames_from_callback_[0]->size(), static_cast<size_t>(kStartSize));
EXPECT_EQ(memcmp(frames_from_callback_[0]->data(), expected, kStartSize), 0);
}
TEST_F(TestPacketBuffer, InsertPacketAfterOldFrameObjectIsRemoved) {
uint16_t kFirstSeqNum = 0;
uint32_t kTimestampDelta = 100;
uint32_t timestamp = 10000;
uint16_t seq_num = kFirstSeqNum;
// Loop until seq_num wraps around.
SeqNumUnwrapper<uint16_t> unwrapper(0);
while (unwrapper.Unwrap(seq_num) < std::numeric_limits<uint16_t>::max()) {
Insert(seq_num++, kKeyFrame, kFirst, kNotLast, 0, nullptr, timestamp);
for (int i = 0; i < 5; ++i) {
Insert(seq_num++, kKeyFrame, kNotFirst, kNotLast, 0, nullptr, timestamp);
}
Insert(seq_num++, kKeyFrame, kNotFirst, kLast, 0, nullptr, timestamp);
timestamp += kTimestampDelta;
}
size_t number_of_frames = frames_from_callback_.size();
// Delete old frame object while receiving frame with overlapping sequence
// numbers.
Insert(seq_num++, kKeyFrame, kFirst, kNotLast, 0, nullptr, timestamp);
for (int i = 0; i < 5; ++i) {
Insert(seq_num++, kKeyFrame, kNotFirst, kNotLast, 0, nullptr, timestamp);
}
// Delete FrameObject connected to packets that have already been cleared.
DeleteFrame(kFirstSeqNum);
Insert(seq_num++, kKeyFrame, kNotFirst, kLast, 0, nullptr, timestamp);
// Regardless of the initial size, the number of frames should be constant
// after removing and then adding a new frame object.
EXPECT_EQ(number_of_frames, frames_from_callback_.size());
}
// If |sps_pps_idr_is_keyframe| is true, we require keyframes to contain
// SPS/PPS/IDR and the keyframes we create as part of the test do contain
// SPS/PPS/IDR. If |sps_pps_idr_is_keyframe| is false, we only require and
// create keyframes containing only IDR.
class TestPacketBufferH264 : public TestPacketBuffer {
protected:
explicit TestPacketBufferH264(bool sps_pps_idr_is_keyframe)
: TestPacketBuffer(sps_pps_idr_is_keyframe
? "WebRTC-SpsPpsIdrIsH264Keyframe/Enabled/"
: ""),
sps_pps_idr_is_keyframe_(sps_pps_idr_is_keyframe) {}
bool InsertH264(uint16_t seq_num, // packet sequence number
IsKeyFrame keyframe, // is keyframe
IsFirst first, // is first packet of frame
IsLast last, // is last packet of frame
uint32_t timestamp, // rtp timestamp
int data_size = 0, // size of data
uint8_t* data = nullptr) { // data pointer
VCMPacket packet;
packet.codec = kVideoCodecH264;
auto& h264_header =
packet.video_header.video_type_header.emplace<RTPVideoHeaderH264>();
packet.seqNum = seq_num;
packet.timestamp = timestamp;
if (keyframe == kKeyFrame) {
if (sps_pps_idr_is_keyframe_) {
h264_header.nalus[0].type = H264::NaluType::kSps;
h264_header.nalus[1].type = H264::NaluType::kPps;
h264_header.nalus[2].type = H264::NaluType::kIdr;
h264_header.nalus_length = 3;
} else {
h264_header.nalus[0].type = H264::NaluType::kIdr;
h264_header.nalus_length = 1;
}
}
packet.is_first_packet_in_frame = first == kFirst;
packet.is_last_packet_in_frame = last == kLast;
packet.sizeBytes = data_size;
packet.dataPtr = data;
return packet_buffer_->InsertPacket(&packet);
}
const bool sps_pps_idr_is_keyframe_;
};
// This fixture is used to test the general behaviour of the packet buffer
// in both configurations.
class TestPacketBufferH264Parameterized
: public ::testing::WithParamInterface<bool>,
public TestPacketBufferH264 {
protected:
TestPacketBufferH264Parameterized() : TestPacketBufferH264(GetParam()) {}
};
INSTANTIATE_TEST_CASE_P(SpsPpsIdrIsKeyframe,
TestPacketBufferH264Parameterized,
::testing::Values(false, true));
TEST_P(TestPacketBufferH264Parameterized, DontRemoveMissingPacketOnClearTo) {
EXPECT_TRUE(InsertH264(0, kKeyFrame, kFirst, kLast, 0));
EXPECT_TRUE(InsertH264(2, kDeltaFrame, kFirst, kNotLast, 2));
packet_buffer_->ClearTo(0);
EXPECT_TRUE(InsertH264(3, kDeltaFrame, kNotFirst, kLast, 2));
ASSERT_EQ(1UL, frames_from_callback_.size());
CheckFrame(0);
}
TEST_P(TestPacketBufferH264Parameterized, GetBitstreamOneFrameFullBuffer) {
uint8_t* data_arr[kStartSize];
uint8_t expected[kStartSize];
for (uint8_t i = 0; i < kStartSize; ++i) {
data_arr[i] = new uint8_t[1];
data_arr[i][0] = i;
expected[i] = i;
}
EXPECT_TRUE(InsertH264(0, kKeyFrame, kFirst, kNotLast, 1, 1, data_arr[0]));
for (uint8_t i = 1; i < kStartSize - 1; ++i) {
EXPECT_TRUE(
InsertH264(i, kKeyFrame, kNotFirst, kNotLast, 1, 1, data_arr[i]));
}
EXPECT_TRUE(InsertH264(kStartSize - 1, kKeyFrame, kNotFirst, kLast, 1, 1,
data_arr[kStartSize - 1]));
ASSERT_EQ(1UL, frames_from_callback_.size());
CheckFrame(0);
EXPECT_EQ(frames_from_callback_[0]->size(), static_cast<size_t>(kStartSize));
EXPECT_EQ(memcmp(frames_from_callback_[0]->data(), expected, kStartSize), 0);
}
TEST_P(TestPacketBufferH264Parameterized, GetBitstreamBufferPadding) {
uint16_t seq_num = Rand();
uint8_t data_data[] = "some plain old data";
uint8_t* data = new uint8_t[sizeof(data_data)];
memcpy(data, data_data, sizeof(data_data));
VCMPacket packet;
auto& h264_header =
packet.video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus_length = 1;
h264_header.nalus[0].type = H264::NaluType::kIdr;
h264_header.packetization_type = kH264SingleNalu;
packet.seqNum = seq_num;
packet.codec = kVideoCodecH264;
packet.insertStartCode = true;
packet.dataPtr = data;
packet.sizeBytes = sizeof(data_data);
packet.is_first_packet_in_frame = true;
packet.is_last_packet_in_frame = true;
packet_buffer_->InsertPacket(&packet);
ASSERT_EQ(1UL, frames_from_callback_.size());
EXPECT_EQ(frames_from_callback_[seq_num]->EncodedImage().size(),
sizeof(data_data));
EXPECT_EQ(frames_from_callback_[seq_num]->EncodedImage().capacity(),
sizeof(data_data) + EncodedImage::kBufferPaddingBytesH264);
EXPECT_EQ(
memcmp(frames_from_callback_[seq_num]->data(), data, sizeof(data_data)),
0);
}
TEST_F(TestPacketBuffer, FreeSlotsOnFrameDestruction) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + 1, kDeltaFrame, kNotFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + 2, kDeltaFrame, kNotFirst, kLast));
EXPECT_EQ(1UL, frames_from_callback_.size());
CheckFrame(seq_num);
frames_from_callback_.clear();
// Insert frame that fills the whole buffer.
EXPECT_TRUE(Insert(seq_num + 3, kKeyFrame, kFirst, kNotLast));
for (int i = 0; i < kMaxSize - 2; ++i)
EXPECT_TRUE(Insert(seq_num + i + 4, kDeltaFrame, kNotFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + kMaxSize + 2, kKeyFrame, kNotFirst, kLast));
EXPECT_EQ(1UL, frames_from_callback_.size());
CheckFrame(seq_num + 3);
}
TEST_F(TestPacketBuffer, Clear) {
const uint16_t seq_num = Rand();
EXPECT_TRUE(Insert(seq_num, kKeyFrame, kFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + 1, kDeltaFrame, kNotFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + 2, kDeltaFrame, kNotFirst, kLast));
EXPECT_EQ(1UL, frames_from_callback_.size());
CheckFrame(seq_num);
packet_buffer_->Clear();
EXPECT_TRUE(Insert(seq_num + kStartSize, kKeyFrame, kFirst, kNotLast));
EXPECT_TRUE(
Insert(seq_num + kStartSize + 1, kDeltaFrame, kNotFirst, kNotLast));
EXPECT_TRUE(Insert(seq_num + kStartSize + 2, kDeltaFrame, kNotFirst, kLast));
EXPECT_EQ(2UL, frames_from_callback_.size());
CheckFrame(seq_num + kStartSize);
}
TEST_F(TestPacketBuffer, FramesAfterClear) {
Insert(9025, kDeltaFrame, kFirst, kLast);
Insert(9024, kKeyFrame, kFirst, kLast);
packet_buffer_->ClearTo(9025);
Insert(9057, kDeltaFrame, kFirst, kLast);
Insert(9026, kDeltaFrame, kFirst, kLast);
CheckFrame(9024);
CheckFrame(9025);
CheckFrame(9026);
CheckFrame(9057);
}
TEST_F(TestPacketBuffer, SameFrameDifferentTimestamps) {
Insert(0, kKeyFrame, kFirst, kNotLast, 0, nullptr, 1000);
Insert(1, kKeyFrame, kNotFirst, kLast, 0, nullptr, 1001);
ASSERT_EQ(0UL, frames_from_callback_.size());
}
TEST_F(TestPacketBuffer, DontLeakPayloadData) {
// NOTE! Any eventual leak is suppose to be detected by valgrind
// or any other similar tool.
uint8_t* data1 = new uint8_t[5];
uint8_t* data2 = new uint8_t[5];
uint8_t* data3 = new uint8_t[5];
uint8_t* data4 = new uint8_t[5];
// Expected to free data1 upon PacketBuffer destruction.
EXPECT_TRUE(Insert(2, kKeyFrame, kFirst, kNotLast, 5, data1));
// Expect to free data2 upon insertion.
EXPECT_TRUE(Insert(2, kKeyFrame, kFirst, kNotLast, 5, data2));
// Expect to free data3 upon insertion (old packet).
packet_buffer_->ClearTo(1);
EXPECT_FALSE(Insert(1, kKeyFrame, kFirst, kNotLast, 5, data3));
// Expect to free data4 upon insertion (packet buffer is full).
EXPECT_TRUE(Insert(2 + kMaxSize, kKeyFrame, kFirst, kNotLast, 5, data4));
}
TEST_F(TestPacketBuffer, ContinuousSeqNumDoubleMarkerBit) {
Insert(2, kKeyFrame, kNotFirst, kNotLast);
Insert(1, kKeyFrame, kFirst, kLast);
frames_from_callback_.clear();
Insert(3, kKeyFrame, kNotFirst, kLast);
EXPECT_EQ(0UL, frames_from_callback_.size());
}
TEST_F(TestPacketBuffer, PacketTimestamps) {
absl::optional<int64_t> packet_ms;
absl::optional<int64_t> packet_keyframe_ms;
packet_ms = packet_buffer_->LastReceivedPacketMs();
packet_keyframe_ms = packet_buffer_->LastReceivedKeyframePacketMs();
EXPECT_FALSE(packet_ms);
EXPECT_FALSE(packet_keyframe_ms);
int64_t keyframe_ms = clock_->TimeInMilliseconds();
EXPECT_TRUE(Insert(100, kKeyFrame, kFirst, kLast));
packet_ms = packet_buffer_->LastReceivedPacketMs();
packet_keyframe_ms = packet_buffer_->LastReceivedKeyframePacketMs();
EXPECT_TRUE(packet_ms);
EXPECT_TRUE(packet_keyframe_ms);
EXPECT_EQ(keyframe_ms, *packet_ms);
EXPECT_EQ(keyframe_ms, *packet_keyframe_ms);
clock_->AdvanceTimeMilliseconds(100);
int64_t delta_ms = clock_->TimeInMilliseconds();
EXPECT_TRUE(Insert(101, kDeltaFrame, kFirst, kLast));
packet_ms = packet_buffer_->LastReceivedPacketMs();
packet_keyframe_ms = packet_buffer_->LastReceivedKeyframePacketMs();
EXPECT_TRUE(packet_ms);
EXPECT_TRUE(packet_keyframe_ms);
EXPECT_EQ(delta_ms, *packet_ms);
EXPECT_EQ(keyframe_ms, *packet_keyframe_ms);
packet_buffer_->Clear();
packet_ms = packet_buffer_->LastReceivedPacketMs();
packet_keyframe_ms = packet_buffer_->LastReceivedKeyframePacketMs();
EXPECT_FALSE(packet_ms);
EXPECT_FALSE(packet_keyframe_ms);
}
TEST_F(TestPacketBuffer, IncomingCodecChange) {
VCMPacket packet;
packet.is_first_packet_in_frame = true;
packet.is_last_packet_in_frame = true;
packet.sizeBytes = 0;
packet.dataPtr = nullptr;
packet.codec = kVideoCodecVP8;
packet.timestamp = 1;
packet.seqNum = 1;
packet.frameType = kVideoFrameKey;
EXPECT_TRUE(packet_buffer_->InsertPacket(&packet));
packet.codec = kVideoCodecH264;
auto& h264_header =
packet.video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus_length = 1;
packet.timestamp = 3;
packet.seqNum = 3;
EXPECT_TRUE(packet_buffer_->InsertPacket(&packet));
packet.codec = kVideoCodecVP8;
packet.timestamp = 2;
packet.seqNum = 2;
packet.frameType = kVideoFrameDelta;
EXPECT_TRUE(packet_buffer_->InsertPacket(&packet));
EXPECT_EQ(3UL, frames_from_callback_.size());
}
TEST_F(TestPacketBuffer, TooManyNalusInPacket) {
VCMPacket packet;
packet.codec = kVideoCodecH264;
packet.timestamp = 1;
packet.seqNum = 1;
packet.frameType = kVideoFrameKey;
packet.is_first_packet_in_frame = true;
packet.is_last_packet_in_frame = true;
auto& h264_header =
packet.video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus_length = kMaxNalusPerPacket;
packet.sizeBytes = 0;
packet.dataPtr = nullptr;
EXPECT_TRUE(packet_buffer_->InsertPacket(&packet));
EXPECT_EQ(0UL, frames_from_callback_.size());
}
TEST_P(TestPacketBufferH264Parameterized, OneFrameFillBuffer) {
InsertH264(0, kKeyFrame, kFirst, kNotLast, 1000);
for (int i = 1; i < kStartSize - 1; ++i)
InsertH264(i, kKeyFrame, kNotFirst, kNotLast, 1000);
InsertH264(kStartSize - 1, kKeyFrame, kNotFirst, kLast, 1000);
EXPECT_EQ(1UL, frames_from_callback_.size());
CheckFrame(0);
}
TEST_P(TestPacketBufferH264Parameterized, CreateFramesAfterFilledBuffer) {
InsertH264(kStartSize - 2, kKeyFrame, kFirst, kLast, 0);
ASSERT_EQ(1UL, frames_from_callback_.size());
frames_from_callback_.clear();
InsertH264(kStartSize, kDeltaFrame, kFirst, kNotLast, 2000);
for (int i = 1; i < kStartSize; ++i)
InsertH264(kStartSize + i, kDeltaFrame, kNotFirst, kNotLast, 2000);
InsertH264(kStartSize + kStartSize, kDeltaFrame, kNotFirst, kLast, 2000);
ASSERT_EQ(0UL, frames_from_callback_.size());
InsertH264(kStartSize - 1, kKeyFrame, kFirst, kLast, 1000);
ASSERT_EQ(2UL, frames_from_callback_.size());
CheckFrame(kStartSize - 1);
CheckFrame(kStartSize);
}
TEST_P(TestPacketBufferH264Parameterized, OneFrameMaxSeqNum) {
InsertH264(65534, kKeyFrame, kFirst, kNotLast, 1000);
InsertH264(65535, kKeyFrame, kNotFirst, kLast, 1000);
EXPECT_EQ(1UL, frames_from_callback_.size());
CheckFrame(65534);
}
TEST_P(TestPacketBufferH264Parameterized, ClearMissingPacketsOnKeyframe) {
InsertH264(0, kKeyFrame, kFirst, kLast, 1000);
InsertH264(2, kKeyFrame, kFirst, kLast, 3000);
InsertH264(3, kDeltaFrame, kFirst, kNotLast, 4000);
InsertH264(4, kDeltaFrame, kNotFirst, kLast, 4000);
ASSERT_EQ(3UL, frames_from_callback_.size());
InsertH264(kStartSize + 1, kKeyFrame, kFirst, kLast, 18000);
ASSERT_EQ(4UL, frames_from_callback_.size());
CheckFrame(0);
CheckFrame(2);
CheckFrame(3);
CheckFrame(kStartSize + 1);
}
TEST_P(TestPacketBufferH264Parameterized, FindFramesOnPadding) {
InsertH264(0, kKeyFrame, kFirst, kLast, 1000);
InsertH264(2, kDeltaFrame, kFirst, kLast, 1000);
ASSERT_EQ(1UL, frames_from_callback_.size());
packet_buffer_->PaddingReceived(1);
ASSERT_EQ(2UL, frames_from_callback_.size());
CheckFrame(0);
CheckFrame(2);
}
class TestPacketBufferH264XIsKeyframe : public TestPacketBufferH264 {
protected:
const uint16_t kSeqNum = 5;
explicit TestPacketBufferH264XIsKeyframe(bool sps_pps_idr_is_keyframe)
: TestPacketBufferH264(sps_pps_idr_is_keyframe) {
packet_.codec = kVideoCodecH264;
packet_.seqNum = kSeqNum;
packet_.is_first_packet_in_frame = true;
packet_.is_last_packet_in_frame = true;
}
VCMPacket packet_;
};
class TestPacketBufferH264IdrIsKeyframe
: public TestPacketBufferH264XIsKeyframe {
protected:
TestPacketBufferH264IdrIsKeyframe()
: TestPacketBufferH264XIsKeyframe(false) {}
};
TEST_F(TestPacketBufferH264IdrIsKeyframe, IdrIsKeyframe) {
auto& h264_header =
packet_.video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus[0].type = H264::NaluType::kIdr;
h264_header.nalus_length = 1;
packet_buffer_->InsertPacket(&packet_);
ASSERT_EQ(1u, frames_from_callback_.size());
EXPECT_EQ(kVideoFrameKey, frames_from_callback_[kSeqNum]->frame_type());
}
TEST_F(TestPacketBufferH264IdrIsKeyframe, SpsPpsIdrIsKeyframe) {
auto& h264_header =
packet_.video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus[0].type = H264::NaluType::kSps;
h264_header.nalus[1].type = H264::NaluType::kPps;
h264_header.nalus[2].type = H264::NaluType::kIdr;
h264_header.nalus_length = 3;
packet_buffer_->InsertPacket(&packet_);
ASSERT_EQ(1u, frames_from_callback_.size());
EXPECT_EQ(kVideoFrameKey, frames_from_callback_[kSeqNum]->frame_type());
}
class TestPacketBufferH264SpsPpsIdrIsKeyframe
: public TestPacketBufferH264XIsKeyframe {
protected:
TestPacketBufferH264SpsPpsIdrIsKeyframe()
: TestPacketBufferH264XIsKeyframe(true) {}
};
TEST_F(TestPacketBufferH264SpsPpsIdrIsKeyframe, IdrIsNotKeyframe) {
auto& h264_header =
packet_.video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus[0].type = H264::NaluType::kIdr;
h264_header.nalus_length = 1;
packet_buffer_->InsertPacket(&packet_);
ASSERT_EQ(1u, frames_from_callback_.size());
EXPECT_EQ(kVideoFrameDelta, frames_from_callback_[5]->frame_type());
}
TEST_F(TestPacketBufferH264SpsPpsIdrIsKeyframe, SpsPpsIsNotKeyframe) {
auto& h264_header =
packet_.video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus[0].type = H264::NaluType::kSps;
h264_header.nalus[1].type = H264::NaluType::kPps;
h264_header.nalus_length = 2;
packet_buffer_->InsertPacket(&packet_);
ASSERT_EQ(1u, frames_from_callback_.size());
EXPECT_EQ(kVideoFrameDelta, frames_from_callback_[kSeqNum]->frame_type());
}
TEST_F(TestPacketBufferH264SpsPpsIdrIsKeyframe, SpsPpsIdrIsKeyframe) {
auto& h264_header =
packet_.video_header.video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.nalus[0].type = H264::NaluType::kSps;
h264_header.nalus[1].type = H264::NaluType::kPps;
h264_header.nalus[2].type = H264::NaluType::kIdr;
h264_header.nalus_length = 3;
packet_buffer_->InsertPacket(&packet_);
ASSERT_EQ(1u, frames_from_callback_.size());
EXPECT_EQ(kVideoFrameKey, frames_from_callback_[kSeqNum]->frame_type());
}
} // namespace video_coding
} // namespace webrtc