blob: 221b499e3216f9b88b355799ce6c7443b2a1d201 [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/compute_interpolated_gain_curve.h"
#include <algorithm>
#include <cmath>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>
#include "modules/audio_processing/agc2/agc2_common.h"
#include "modules/audio_processing/agc2/agc2_testing_common.h"
#include "modules/audio_processing/agc2/limiter_db_gain_curve.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
std::pair<double, double> ComputeLinearApproximationParams(
const LimiterDbGainCurve* limiter,
const double x) {
const double m = limiter->GetGainFirstDerivativeLinear(x);
const double q = limiter->GetGainLinear(x) - m * x;
return {m, q};
}
double ComputeAreaUnderPiecewiseLinearApproximation(
const LimiterDbGainCurve* limiter,
const double x0,
const double x1) {
RTC_CHECK_LT(x0, x1);
// Linear approximation in x0 and x1.
double m0, q0, m1, q1;
std::tie(m0, q0) = ComputeLinearApproximationParams(limiter, x0);
std::tie(m1, q1) = ComputeLinearApproximationParams(limiter, x1);
// Intersection point between two adjacent linear pieces.
RTC_CHECK_NE(m1, m0);
const double x_split = (q0 - q1) / (m1 - m0);
RTC_CHECK_LT(x0, x_split);
RTC_CHECK_LT(x_split, x1);
auto area_under_linear_piece = [](double x_l, double x_r, double m,
double q) {
return x_r * (m * x_r / 2.0 + q) - x_l * (m * x_l / 2.0 + q);
};
return area_under_linear_piece(x0, x_split, m0, q0) +
area_under_linear_piece(x_split, x1, m1, q1);
}
// Computes the approximation error in the limiter region for a given interval.
// The error is computed as the difference between the areas beneath the limiter
// curve to approximate and its linear under-approximation.
double LimiterUnderApproximationNegativeError(const LimiterDbGainCurve* limiter,
const double x0,
const double x1) {
const double area_limiter = limiter->GetGainIntegralLinear(x0, x1);
const double area_interpolated_curve =
ComputeAreaUnderPiecewiseLinearApproximation(limiter, x0, x1);
RTC_CHECK_GE(area_limiter, area_interpolated_curve);
return area_limiter - area_interpolated_curve;
}
// Automatically finds where to sample the beyond-knee region of a limiter using
// a greedy optimization algorithm that iteratively decreases the approximation
// error.
// The solution is sub-optimal because the algorithm is greedy and the points
// are assigned by halving intervals (starting with the whole beyond-knee region
// as a single interval). However, even if sub-optimal, this algorithm works
// well in practice and it is efficiently implemented using priority queues.
std::vector<double> SampleLimiterRegion(const LimiterDbGainCurve* limiter) {
static_assert(kInterpolatedGainCurveBeyondKneePoints > 2, "");
struct Interval {
Interval() = default; // Ctor required by std::priority_queue.
Interval(double l, double r, double e) : x0(l), x1(r), error(e) {
RTC_CHECK(x0 < x1);
}
bool operator<(const Interval& other) const { return error < other.error; }
double x0;
double x1;
double error;
};
std::priority_queue<Interval, std::vector<Interval>> q;
q.emplace(limiter->limiter_start_linear(), limiter->max_input_level_linear(),
LimiterUnderApproximationNegativeError(
limiter, limiter->limiter_start_linear(),
limiter->max_input_level_linear()));
// Iteratively find points by halving the interval with greatest error.
while (q.size() < kInterpolatedGainCurveBeyondKneePoints) {
// Get the interval with highest error.
const auto interval = q.top();
q.pop();
// Split `interval` and enqueue.
double x_split = (interval.x0 + interval.x1) / 2.0;
q.emplace(interval.x0, x_split,
LimiterUnderApproximationNegativeError(limiter, interval.x0,
x_split)); // Left.
q.emplace(x_split, interval.x1,
LimiterUnderApproximationNegativeError(limiter, x_split,
interval.x1)); // Right.
}
// Copy x1 values and sort them.
RTC_CHECK_EQ(q.size(), kInterpolatedGainCurveBeyondKneePoints);
std::vector<double> samples(kInterpolatedGainCurveBeyondKneePoints);
for (size_t i = 0; i < kInterpolatedGainCurveBeyondKneePoints; ++i) {
const auto interval = q.top();
q.pop();
samples[i] = interval.x1;
}
RTC_CHECK(q.empty());
std::sort(samples.begin(), samples.end());
return samples;
}
// Compute the parameters to over-approximate the knee region via linear
// interpolation. Over-approximating is saturation-safe since the knee region is
// convex.
void PrecomputeKneeApproxParams(const LimiterDbGainCurve* limiter,
test::InterpolatedParameters* parameters) {
static_assert(kInterpolatedGainCurveKneePoints > 2, "");
// Get `kInterpolatedGainCurveKneePoints` - 1 equally spaced points.
const std::vector<double> points = test::LinSpace(
limiter->knee_start_linear(), limiter->limiter_start_linear(),
kInterpolatedGainCurveKneePoints - 1);
// Set the first two points. The second is computed to help with the beginning
// of the knee region, which has high curvature.
parameters->computed_approximation_params_x[0] = points[0];
parameters->computed_approximation_params_x[1] =
(points[0] + points[1]) / 2.0;
// Copy the remaining points.
std::copy(std::begin(points) + 1, std::end(points),
std::begin(parameters->computed_approximation_params_x) + 2);
// Compute (m, q) pairs for each linear piece y = mx + q.
for (size_t i = 0; i < kInterpolatedGainCurveKneePoints - 1; ++i) {
const double x0 = parameters->computed_approximation_params_x[i];
const double x1 = parameters->computed_approximation_params_x[i + 1];
const double y0 = limiter->GetGainLinear(x0);
const double y1 = limiter->GetGainLinear(x1);
RTC_CHECK_NE(x1, x0);
parameters->computed_approximation_params_m[i] = (y1 - y0) / (x1 - x0);
parameters->computed_approximation_params_q[i] =
y0 - parameters->computed_approximation_params_m[i] * x0;
}
}
// Compute the parameters to under-approximate the beyond-knee region via linear
// interpolation and greedy sampling. Under-approximating is saturation-safe
// since the beyond-knee region is concave.
void PrecomputeBeyondKneeApproxParams(
const LimiterDbGainCurve* limiter,
test::InterpolatedParameters* parameters) {
// Find points on which the linear pieces are tangent to the gain curve.
const auto samples = SampleLimiterRegion(limiter);
// Parametrize each linear piece.
double m, q;
std::tie(m, q) = ComputeLinearApproximationParams(
limiter,
parameters
->computed_approximation_params_x[kInterpolatedGainCurveKneePoints -
1]);
parameters
->computed_approximation_params_m[kInterpolatedGainCurveKneePoints - 1] =
m;
parameters
->computed_approximation_params_q[kInterpolatedGainCurveKneePoints - 1] =
q;
for (size_t i = 0; i < samples.size(); ++i) {
std::tie(m, q) = ComputeLinearApproximationParams(limiter, samples[i]);
parameters
->computed_approximation_params_m[i +
kInterpolatedGainCurveKneePoints] = m;
parameters
->computed_approximation_params_q[i +
kInterpolatedGainCurveKneePoints] = q;
}
// Find the point of intersection between adjacent linear pieces. They will be
// used as boundaries between adjacent linear pieces.
for (size_t i = kInterpolatedGainCurveKneePoints;
i < kInterpolatedGainCurveKneePoints +
kInterpolatedGainCurveBeyondKneePoints;
++i) {
RTC_CHECK_NE(parameters->computed_approximation_params_m[i],
parameters->computed_approximation_params_m[i - 1]);
parameters->computed_approximation_params_x[i] =
( // Formula: (q0 - q1) / (m1 - m0).
parameters->computed_approximation_params_q[i - 1] -
parameters->computed_approximation_params_q[i]) /
(parameters->computed_approximation_params_m[i] -
parameters->computed_approximation_params_m[i - 1]);
}
}
} // namespace
namespace test {
InterpolatedParameters ComputeInterpolatedGainCurveApproximationParams() {
InterpolatedParameters parameters;
LimiterDbGainCurve limiter;
parameters.computed_approximation_params_x.fill(0.0f);
parameters.computed_approximation_params_m.fill(0.0f);
parameters.computed_approximation_params_q.fill(0.0f);
PrecomputeKneeApproxParams(&limiter, &parameters);
PrecomputeBeyondKneeApproxParams(&limiter, &parameters);
return parameters;
}
} // namespace test
} // namespace webrtc