| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/video_coding/codecs/test/videoprocessor.h" |
| |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <cstddef> |
| #include <limits> |
| #include <memory> |
| #include <utility> |
| |
| #include "api/scoped_refptr.h" |
| #include "api/video/builtin_video_bitrate_allocator_factory.h" |
| #include "api/video/i420_buffer.h" |
| #include "api/video/video_bitrate_allocator_factory.h" |
| #include "api/video/video_frame_buffer.h" |
| #include "api/video/video_rotation.h" |
| #include "api/video_codecs/video_codec.h" |
| #include "api/video_codecs/video_encoder.h" |
| #include "common_video/h264/h264_common.h" |
| #include "common_video/libyuv/include/webrtc_libyuv.h" |
| #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" |
| #include "modules/video_coding/codecs/interface/common_constants.h" |
| #include "modules/video_coding/include/video_error_codes.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/time_utils.h" |
| #include "test/gtest.h" |
| #include "third_party/libyuv/include/libyuv/compare.h" |
| #include "third_party/libyuv/include/libyuv/scale.h" |
| |
| namespace webrtc { |
| namespace test { |
| |
| namespace { |
| const int kMsToRtpTimestamp = kVideoPayloadTypeFrequency / 1000; |
| const int kMaxBufferedInputFrames = 20; |
| |
| const VideoEncoder::Capabilities kCapabilities(false); |
| |
| size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame, |
| const VideoCodecTestFixture::Config& config) { |
| if (config.codec_settings.codecType != kVideoCodecH264) |
| return 0; |
| |
| std::vector<webrtc::H264::NaluIndex> nalu_indices = |
| webrtc::H264::FindNaluIndices(encoded_frame); |
| |
| RTC_CHECK(!nalu_indices.empty()); |
| |
| size_t max_size = 0; |
| for (const webrtc::H264::NaluIndex& index : nalu_indices) |
| max_size = std::max(max_size, index.payload_size); |
| |
| return max_size; |
| } |
| |
| size_t GetTemporalLayerIndex(const CodecSpecificInfo& codec_specific) { |
| size_t temporal_idx = 0; |
| if (codec_specific.codecType == kVideoCodecVP8) { |
| temporal_idx = codec_specific.codecSpecific.VP8.temporalIdx; |
| } else if (codec_specific.codecType == kVideoCodecVP9) { |
| temporal_idx = codec_specific.codecSpecific.VP9.temporal_idx; |
| } |
| if (temporal_idx == kNoTemporalIdx) { |
| temporal_idx = 0; |
| } |
| return temporal_idx; |
| } |
| |
| int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) { |
| int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec; |
| RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min()); |
| RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max()); |
| return static_cast<int>(diff_us); |
| } |
| |
| void CalculateFrameQuality(const I420BufferInterface& ref_buffer, |
| const I420BufferInterface& dec_buffer, |
| VideoCodecTestStats::FrameStatistics* frame_stat, |
| bool calc_ssim) { |
| if (ref_buffer.width() != dec_buffer.width() || |
| ref_buffer.height() != dec_buffer.height()) { |
| RTC_CHECK_GE(ref_buffer.width(), dec_buffer.width()); |
| RTC_CHECK_GE(ref_buffer.height(), dec_buffer.height()); |
| // Downscale reference frame. |
| rtc::scoped_refptr<I420Buffer> scaled_buffer = |
| I420Buffer::Create(dec_buffer.width(), dec_buffer.height()); |
| I420Scale(ref_buffer.DataY(), ref_buffer.StrideY(), ref_buffer.DataU(), |
| ref_buffer.StrideU(), ref_buffer.DataV(), ref_buffer.StrideV(), |
| ref_buffer.width(), ref_buffer.height(), |
| scaled_buffer->MutableDataY(), scaled_buffer->StrideY(), |
| scaled_buffer->MutableDataU(), scaled_buffer->StrideU(), |
| scaled_buffer->MutableDataV(), scaled_buffer->StrideV(), |
| scaled_buffer->width(), scaled_buffer->height(), |
| libyuv::kFilterBox); |
| |
| CalculateFrameQuality(*scaled_buffer, dec_buffer, frame_stat, calc_ssim); |
| } else { |
| const uint64_t sse_y = libyuv::ComputeSumSquareErrorPlane( |
| dec_buffer.DataY(), dec_buffer.StrideY(), ref_buffer.DataY(), |
| ref_buffer.StrideY(), dec_buffer.width(), dec_buffer.height()); |
| |
| const uint64_t sse_u = libyuv::ComputeSumSquareErrorPlane( |
| dec_buffer.DataU(), dec_buffer.StrideU(), ref_buffer.DataU(), |
| ref_buffer.StrideU(), dec_buffer.width() / 2, dec_buffer.height() / 2); |
| |
| const uint64_t sse_v = libyuv::ComputeSumSquareErrorPlane( |
| dec_buffer.DataV(), dec_buffer.StrideV(), ref_buffer.DataV(), |
| ref_buffer.StrideV(), dec_buffer.width() / 2, dec_buffer.height() / 2); |
| |
| const size_t num_y_samples = dec_buffer.width() * dec_buffer.height(); |
| const size_t num_u_samples = |
| dec_buffer.width() / 2 * dec_buffer.height() / 2; |
| |
| frame_stat->psnr_y = libyuv::SumSquareErrorToPsnr(sse_y, num_y_samples); |
| frame_stat->psnr_u = libyuv::SumSquareErrorToPsnr(sse_u, num_u_samples); |
| frame_stat->psnr_v = libyuv::SumSquareErrorToPsnr(sse_v, num_u_samples); |
| frame_stat->psnr = libyuv::SumSquareErrorToPsnr( |
| sse_y + sse_u + sse_v, num_y_samples + 2 * num_u_samples); |
| |
| if (calc_ssim) { |
| frame_stat->ssim = I420SSIM(ref_buffer, dec_buffer); |
| } |
| } |
| } |
| |
| } // namespace |
| |
| VideoProcessor::VideoProcessor(const Environment& env, |
| webrtc::VideoEncoder* encoder, |
| VideoDecoderList* decoders, |
| FrameReader* input_frame_reader, |
| const VideoCodecTestFixture::Config& config, |
| VideoCodecTestStatsImpl* stats, |
| IvfFileWriterMap* encoded_frame_writers, |
| FrameWriterList* decoded_frame_writers) |
| : config_(config), |
| num_simulcast_or_spatial_layers_( |
| std::max(config_.NumberOfSimulcastStreams(), |
| config_.NumberOfSpatialLayers())), |
| analyze_frame_quality_(!config_.measure_cpu), |
| stats_(stats), |
| encoder_(encoder), |
| decoders_(decoders), |
| bitrate_allocator_(CreateBuiltinVideoBitrateAllocatorFactory()->Create( |
| env, |
| config_.codec_settings)), |
| encode_callback_(this), |
| input_frame_reader_(input_frame_reader), |
| merged_encoded_frames_(num_simulcast_or_spatial_layers_), |
| encoded_frame_writers_(encoded_frame_writers), |
| decoded_frame_writers_(decoded_frame_writers), |
| last_inputed_frame_num_(0), |
| last_inputed_timestamp_(0), |
| first_encoded_frame_(num_simulcast_or_spatial_layers_, true), |
| last_encoded_frame_num_(num_simulcast_or_spatial_layers_), |
| first_decoded_frame_(num_simulcast_or_spatial_layers_, true), |
| last_decoded_frame_num_(num_simulcast_or_spatial_layers_), |
| last_decoded_frame_buffer_(num_simulcast_or_spatial_layers_), |
| post_encode_time_ns_(0), |
| is_finalized_(false) { |
| // Sanity checks. |
| RTC_CHECK(TaskQueueBase::Current()) |
| << "VideoProcessor must be run on a task queue."; |
| RTC_CHECK(stats_); |
| RTC_CHECK(encoder_); |
| RTC_CHECK(decoders_); |
| RTC_CHECK_EQ(decoders_->size(), num_simulcast_or_spatial_layers_); |
| RTC_CHECK(input_frame_reader_); |
| RTC_CHECK(encoded_frame_writers_); |
| RTC_CHECK(!decoded_frame_writers || |
| decoded_frame_writers->size() == num_simulcast_or_spatial_layers_); |
| |
| // Setup required callbacks for the encoder and decoder and initialize them. |
| RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_), |
| WEBRTC_VIDEO_CODEC_OK); |
| |
| // Initialize codecs so that they are ready to receive frames. |
| RTC_CHECK_EQ(encoder_->InitEncode( |
| &config_.codec_settings, |
| VideoEncoder::Settings( |
| kCapabilities, static_cast<int>(config_.NumberOfCores()), |
| config_.max_payload_size_bytes)), |
| WEBRTC_VIDEO_CODEC_OK); |
| |
| for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) { |
| decode_callback_.push_back( |
| std::make_unique<VideoProcessorDecodeCompleteCallback>(this, i)); |
| VideoDecoder::Settings decoder_settings; |
| decoder_settings.set_max_render_resolution( |
| {config_.codec_settings.width, config_.codec_settings.height}); |
| decoder_settings.set_codec_type(config_.codec_settings.codecType); |
| decoder_settings.set_number_of_cores(config_.NumberOfCores()); |
| RTC_CHECK(decoders_->at(i)->Configure(decoder_settings)); |
| RTC_CHECK_EQ(decoders_->at(i)->RegisterDecodeCompleteCallback( |
| decode_callback_.at(i).get()), |
| WEBRTC_VIDEO_CODEC_OK); |
| } |
| } |
| |
| VideoProcessor::~VideoProcessor() { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| |
| if (!is_finalized_) { |
| Finalize(); |
| } |
| |
| // Explicitly reset codecs, in case they don't do that themselves when they |
| // go out of scope. |
| RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK); |
| encoder_->RegisterEncodeCompleteCallback(nullptr); |
| for (auto& decoder : *decoders_) { |
| RTC_CHECK_EQ(decoder->Release(), WEBRTC_VIDEO_CODEC_OK); |
| decoder->RegisterDecodeCompleteCallback(nullptr); |
| } |
| |
| // Sanity check. |
| RTC_CHECK_LE(input_frames_.size(), kMaxBufferedInputFrames); |
| } |
| |
| void VideoProcessor::ProcessFrame() { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| RTC_DCHECK(!is_finalized_); |
| |
| RTC_DCHECK_GT(target_rates_.size(), 0u); |
| RTC_DCHECK_EQ(target_rates_.begin()->first, 0u); |
| RateProfile target_rate = |
| std::prev(target_rates_.upper_bound(last_inputed_frame_num_))->second; |
| |
| const size_t frame_number = last_inputed_frame_num_++; |
| |
| // Get input frame and store for future quality calculation. |
| Resolution resolution = Resolution({.width = config_.codec_settings.width, |
| .height = config_.codec_settings.height}); |
| FrameReader::Ratio framerate_scale = FrameReader::Ratio( |
| {.num = config_.clip_fps.value_or(config_.codec_settings.maxFramerate), |
| .den = static_cast<int>(config_.codec_settings.maxFramerate)}); |
| rtc::scoped_refptr<I420BufferInterface> buffer = |
| input_frame_reader_->PullFrame( |
| /*frame_num*/ nullptr, resolution, framerate_scale); |
| |
| RTC_CHECK(buffer) << "Tried to read too many frames from the file."; |
| const size_t timestamp = |
| last_inputed_timestamp_ + |
| static_cast<size_t>(kVideoPayloadTypeFrequency / target_rate.input_fps); |
| VideoFrame input_frame = |
| VideoFrame::Builder() |
| .set_video_frame_buffer(buffer) |
| .set_rtp_timestamp(static_cast<uint32_t>(timestamp)) |
| .set_timestamp_ms(static_cast<int64_t>(timestamp / kMsToRtpTimestamp)) |
| .set_rotation(webrtc::kVideoRotation_0) |
| .build(); |
| // Store input frame as a reference for quality calculations. |
| if (config_.decode && !config_.measure_cpu) { |
| if (input_frames_.size() == kMaxBufferedInputFrames) { |
| input_frames_.erase(input_frames_.begin()); |
| } |
| |
| if (config_.reference_width != -1 && config_.reference_height != -1 && |
| (input_frame.width() != config_.reference_width || |
| input_frame.height() != config_.reference_height)) { |
| rtc::scoped_refptr<I420Buffer> scaled_buffer = I420Buffer::Create( |
| config_.codec_settings.width, config_.codec_settings.height); |
| scaled_buffer->ScaleFrom(*input_frame.video_frame_buffer()->ToI420()); |
| |
| VideoFrame scaled_reference_frame = input_frame; |
| scaled_reference_frame.set_video_frame_buffer(scaled_buffer); |
| input_frames_.emplace(frame_number, scaled_reference_frame); |
| |
| if (config_.reference_width == config_.codec_settings.width && |
| config_.reference_height == config_.codec_settings.height) { |
| // Both encoding and comparison uses the same down-scale factor, reuse |
| // it for encoder below. |
| input_frame = scaled_reference_frame; |
| } |
| } else { |
| input_frames_.emplace(frame_number, input_frame); |
| } |
| } |
| last_inputed_timestamp_ = timestamp; |
| |
| post_encode_time_ns_ = 0; |
| |
| // Create frame statistics object for all simulcast/spatial layers. |
| for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) { |
| FrameStatistics frame_stat(frame_number, timestamp, i); |
| stats_->AddFrame(frame_stat); |
| } |
| |
| // For the highest measurement accuracy of the encode time, the start/stop |
| // time recordings should wrap the Encode call as tightly as possible. |
| const int64_t encode_start_ns = rtc::TimeNanos(); |
| for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) { |
| FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i); |
| frame_stat->encode_start_ns = encode_start_ns; |
| } |
| |
| if (input_frame.width() != config_.codec_settings.width || |
| input_frame.height() != config_.codec_settings.height) { |
| rtc::scoped_refptr<I420Buffer> scaled_buffer = I420Buffer::Create( |
| config_.codec_settings.width, config_.codec_settings.height); |
| scaled_buffer->ScaleFrom(*input_frame.video_frame_buffer()->ToI420()); |
| input_frame.set_video_frame_buffer(scaled_buffer); |
| } |
| |
| // Encode. |
| const std::vector<VideoFrameType> frame_types = |
| (frame_number == 0) |
| ? std::vector<VideoFrameType>(num_simulcast_or_spatial_layers_, |
| VideoFrameType::kVideoFrameKey) |
| : std::vector<VideoFrameType>(num_simulcast_or_spatial_layers_, |
| VideoFrameType::kVideoFrameDelta); |
| const int encode_return_code = encoder_->Encode(input_frame, &frame_types); |
| for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) { |
| FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i); |
| frame_stat->encode_return_code = encode_return_code; |
| } |
| } |
| |
| void VideoProcessor::SetRates(size_t bitrate_kbps, double framerate_fps) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| RTC_DCHECK(!is_finalized_); |
| |
| target_rates_[last_inputed_frame_num_] = |
| RateProfile({.target_kbps = bitrate_kbps, .input_fps = framerate_fps}); |
| |
| auto bitrate_allocation = |
| bitrate_allocator_->Allocate(VideoBitrateAllocationParameters( |
| static_cast<uint32_t>(bitrate_kbps * 1000), framerate_fps)); |
| encoder_->SetRates( |
| VideoEncoder::RateControlParameters(bitrate_allocation, framerate_fps)); |
| } |
| |
| int32_t VideoProcessor::VideoProcessorDecodeCompleteCallback::Decoded( |
| VideoFrame& image) { |
| // Post the callback to the right task queue, if needed. |
| if (!task_queue_->IsCurrent()) { |
| // There might be a limited amount of output buffers, make a copy to make |
| // sure we don't block the decoder. |
| VideoFrame copy = VideoFrame::Builder() |
| .set_video_frame_buffer(I420Buffer::Copy( |
| *image.video_frame_buffer()->ToI420())) |
| .set_rotation(image.rotation()) |
| .set_timestamp_us(image.timestamp_us()) |
| .set_id(image.id()) |
| .build(); |
| copy.set_rtp_timestamp(image.rtp_timestamp()); |
| |
| task_queue_->PostTask([this, copy]() { |
| video_processor_->FrameDecoded(copy, simulcast_svc_idx_); |
| }); |
| return 0; |
| } |
| video_processor_->FrameDecoded(image, simulcast_svc_idx_); |
| return 0; |
| } |
| |
| void VideoProcessor::FrameEncoded( |
| const webrtc::EncodedImage& encoded_image, |
| const webrtc::CodecSpecificInfo& codec_specific) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| |
| // For the highest measurement accuracy of the encode time, the start/stop |
| // time recordings should wrap the Encode call as tightly as possible. |
| const int64_t encode_stop_ns = rtc::TimeNanos(); |
| |
| const VideoCodecType codec_type = codec_specific.codecType; |
| if (config_.encoded_frame_checker) { |
| config_.encoded_frame_checker->CheckEncodedFrame(codec_type, encoded_image); |
| } |
| |
| // Layer metadata. |
| // We could either have simulcast layers or spatial layers. |
| // TODO(https://crbug.com/webrtc/14891): If we want to support a mix of |
| // simulcast and SVC we'll also need to consider the case where we have both |
| // simulcast and spatial indices. |
| size_t stream_idx = encoded_image.SpatialIndex().value_or( |
| encoded_image.SimulcastIndex().value_or(0)); |
| size_t temporal_idx = GetTemporalLayerIndex(codec_specific); |
| |
| FrameStatistics* frame_stat = |
| stats_->GetFrameWithTimestamp(encoded_image.RtpTimestamp(), stream_idx); |
| const size_t frame_number = frame_stat->frame_number; |
| |
| // Ensure that the encode order is monotonically increasing, within this |
| // simulcast/spatial layer. |
| RTC_CHECK(first_encoded_frame_[stream_idx] || |
| last_encoded_frame_num_[stream_idx] < frame_number); |
| |
| // Ensure SVC spatial layers are delivered in ascending order. |
| const size_t num_spatial_layers = config_.NumberOfSpatialLayers(); |
| if (!first_encoded_frame_[stream_idx] && num_spatial_layers > 1) { |
| for (size_t i = 0; i < stream_idx; ++i) { |
| RTC_CHECK_LE(last_encoded_frame_num_[i], frame_number); |
| } |
| for (size_t i = stream_idx + 1; i < num_simulcast_or_spatial_layers_; ++i) { |
| RTC_CHECK_GT(frame_number, last_encoded_frame_num_[i]); |
| } |
| } |
| first_encoded_frame_[stream_idx] = false; |
| last_encoded_frame_num_[stream_idx] = frame_number; |
| |
| RateProfile target_rate = |
| std::prev(target_rates_.upper_bound(frame_number))->second; |
| auto bitrate_allocation = |
| bitrate_allocator_->Allocate(VideoBitrateAllocationParameters( |
| static_cast<uint32_t>(target_rate.target_kbps * 1000), |
| target_rate.input_fps)); |
| |
| // Update frame statistics. |
| frame_stat->encoding_successful = true; |
| frame_stat->encode_time_us = GetElapsedTimeMicroseconds( |
| frame_stat->encode_start_ns, encode_stop_ns - post_encode_time_ns_); |
| frame_stat->target_bitrate_kbps = |
| bitrate_allocation.GetTemporalLayerSum(stream_idx, temporal_idx) / 1000; |
| frame_stat->target_framerate_fps = target_rate.input_fps; |
| frame_stat->length_bytes = encoded_image.size(); |
| frame_stat->frame_type = encoded_image._frameType; |
| frame_stat->temporal_idx = temporal_idx; |
| frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_); |
| frame_stat->qp = encoded_image.qp_; |
| |
| if (codec_type == kVideoCodecVP9) { |
| const CodecSpecificInfoVP9& vp9_info = codec_specific.codecSpecific.VP9; |
| frame_stat->inter_layer_predicted = vp9_info.inter_layer_predicted; |
| frame_stat->non_ref_for_inter_layer_pred = |
| vp9_info.non_ref_for_inter_layer_pred; |
| } else { |
| frame_stat->inter_layer_predicted = false; |
| frame_stat->non_ref_for_inter_layer_pred = true; |
| } |
| |
| const webrtc::EncodedImage* encoded_image_for_decode = &encoded_image; |
| if (config_.decode || !encoded_frame_writers_->empty()) { |
| if (num_spatial_layers > 1) { |
| encoded_image_for_decode = BuildAndStoreSuperframe( |
| encoded_image, codec_type, frame_number, stream_idx, |
| frame_stat->inter_layer_predicted); |
| } |
| } |
| |
| if (config_.decode) { |
| DecodeFrame(*encoded_image_for_decode, stream_idx); |
| |
| if (codec_specific.end_of_picture && num_spatial_layers > 1) { |
| // If inter-layer prediction is enabled and upper layer was dropped then |
| // base layer should be passed to upper layer decoder. Otherwise decoder |
| // won't be able to decode next superframe. |
| const EncodedImage* base_image = nullptr; |
| const FrameStatistics* base_stat = nullptr; |
| for (size_t i = 0; i < num_spatial_layers; ++i) { |
| const bool layer_dropped = (first_decoded_frame_[i] || |
| last_decoded_frame_num_[i] < frame_number); |
| |
| // Ensure current layer was decoded. |
| RTC_CHECK(layer_dropped == false || i != stream_idx); |
| |
| if (!layer_dropped) { |
| base_image = &merged_encoded_frames_[i]; |
| base_stat = |
| stats_->GetFrameWithTimestamp(encoded_image.RtpTimestamp(), i); |
| } else if (base_image && !base_stat->non_ref_for_inter_layer_pred) { |
| DecodeFrame(*base_image, i); |
| } |
| } |
| } |
| } else { |
| frame_stat->decode_return_code = WEBRTC_VIDEO_CODEC_NO_OUTPUT; |
| } |
| |
| // Since frames in higher TLs typically depend on frames in lower TLs, |
| // write out frames in lower TLs to bitstream dumps of higher TLs. |
| for (size_t write_temporal_idx = temporal_idx; |
| write_temporal_idx < config_.NumberOfTemporalLayers(); |
| ++write_temporal_idx) { |
| const VideoProcessor::LayerKey layer_key(stream_idx, write_temporal_idx); |
| auto it = encoded_frame_writers_->find(layer_key); |
| if (it != encoded_frame_writers_->cend()) { |
| RTC_CHECK(it->second->WriteFrame(*encoded_image_for_decode, |
| config_.codec_settings.codecType)); |
| } |
| } |
| |
| if (!config_.encode_in_real_time) { |
| // To get pure encode time for next layers, measure time spent in encode |
| // callback and subtract it from encode time of next layers. |
| post_encode_time_ns_ += rtc::TimeNanos() - encode_stop_ns; |
| } |
| } |
| |
| void VideoProcessor::CalcFrameQuality(const I420BufferInterface& decoded_frame, |
| FrameStatistics* frame_stat) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| |
| const auto reference_frame = input_frames_.find(frame_stat->frame_number); |
| RTC_CHECK(reference_frame != input_frames_.cend()) |
| << "The codecs are either buffering too much, dropping too much, or " |
| "being too slow relative to the input frame rate."; |
| |
| // SSIM calculation is not optimized. Skip it in real-time mode. |
| const bool calc_ssim = !config_.encode_in_real_time; |
| CalculateFrameQuality(*reference_frame->second.video_frame_buffer()->ToI420(), |
| decoded_frame, frame_stat, calc_ssim); |
| |
| frame_stat->quality_analysis_successful = true; |
| } |
| |
| void VideoProcessor::WriteDecodedFrame(const I420BufferInterface& decoded_frame, |
| FrameWriter& frame_writer) { |
| int input_video_width = config_.codec_settings.width; |
| int input_video_height = config_.codec_settings.height; |
| |
| rtc::scoped_refptr<I420Buffer> scaled_buffer; |
| const I420BufferInterface* scaled_frame; |
| |
| if (decoded_frame.width() == input_video_width && |
| decoded_frame.height() == input_video_height) { |
| scaled_frame = &decoded_frame; |
| } else { |
| EXPECT_DOUBLE_EQ( |
| static_cast<double>(input_video_width) / input_video_height, |
| static_cast<double>(decoded_frame.width()) / decoded_frame.height()); |
| |
| scaled_buffer = I420Buffer::Create(input_video_width, input_video_height); |
| scaled_buffer->ScaleFrom(decoded_frame); |
| |
| scaled_frame = scaled_buffer.get(); |
| } |
| |
| // Ensure there is no padding. |
| RTC_CHECK_EQ(scaled_frame->StrideY(), input_video_width); |
| RTC_CHECK_EQ(scaled_frame->StrideU(), input_video_width / 2); |
| RTC_CHECK_EQ(scaled_frame->StrideV(), input_video_width / 2); |
| |
| RTC_CHECK_EQ(3 * input_video_width * input_video_height / 2, |
| frame_writer.FrameLength()); |
| |
| RTC_CHECK(frame_writer.WriteFrame(scaled_frame->DataY())); |
| } |
| |
| void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame, |
| size_t spatial_idx) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| |
| // For the highest measurement accuracy of the decode time, the start/stop |
| // time recordings should wrap the Decode call as tightly as possible. |
| const int64_t decode_stop_ns = rtc::TimeNanos(); |
| |
| FrameStatistics* frame_stat = |
| stats_->GetFrameWithTimestamp(decoded_frame.rtp_timestamp(), spatial_idx); |
| const size_t frame_number = frame_stat->frame_number; |
| |
| if (!first_decoded_frame_[spatial_idx]) { |
| for (size_t dropped_frame_number = last_decoded_frame_num_[spatial_idx] + 1; |
| dropped_frame_number < frame_number; ++dropped_frame_number) { |
| FrameStatistics* dropped_frame_stat = |
| stats_->GetFrame(dropped_frame_number, spatial_idx); |
| |
| if (analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) { |
| // Calculate frame quality comparing input frame with last decoded one. |
| CalcFrameQuality(*last_decoded_frame_buffer_[spatial_idx], |
| dropped_frame_stat); |
| } |
| |
| if (decoded_frame_writers_ != nullptr) { |
| // Fill drops with last decoded frame to make them look like freeze at |
| // playback and to keep decoded layers in sync. |
| WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx], |
| *decoded_frame_writers_->at(spatial_idx)); |
| } |
| } |
| } |
| |
| // Ensure that the decode order is monotonically increasing, within this |
| // simulcast/spatial layer. |
| RTC_CHECK(first_decoded_frame_[spatial_idx] || |
| last_decoded_frame_num_[spatial_idx] < frame_number); |
| first_decoded_frame_[spatial_idx] = false; |
| last_decoded_frame_num_[spatial_idx] = frame_number; |
| |
| // Update frame statistics. |
| frame_stat->decoding_successful = true; |
| frame_stat->decode_time_us = |
| GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns); |
| frame_stat->decoded_width = decoded_frame.width(); |
| frame_stat->decoded_height = decoded_frame.height(); |
| |
| // Skip quality metrics calculation to not affect CPU usage. |
| if (analyze_frame_quality_ || decoded_frame_writers_) { |
| // Save last decoded frame to handle possible future drops. |
| rtc::scoped_refptr<I420BufferInterface> i420buffer = |
| decoded_frame.video_frame_buffer()->ToI420(); |
| |
| // Copy decoded frame to a buffer without padding/stride such that we can |
| // dump Y, U and V planes into a file in one shot. |
| last_decoded_frame_buffer_[spatial_idx] = I420Buffer::Copy( |
| i420buffer->width(), i420buffer->height(), i420buffer->DataY(), |
| i420buffer->StrideY(), i420buffer->DataU(), i420buffer->StrideU(), |
| i420buffer->DataV(), i420buffer->StrideV()); |
| } |
| |
| if (analyze_frame_quality_) { |
| CalcFrameQuality(*decoded_frame.video_frame_buffer()->ToI420(), frame_stat); |
| } |
| |
| if (decoded_frame_writers_ != nullptr) { |
| WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx], |
| *decoded_frame_writers_->at(spatial_idx)); |
| } |
| |
| // Erase all buffered input frames that we have moved past for all |
| // simulcast/spatial layers. Never buffer more than |
| // `kMaxBufferedInputFrames` frames, to protect against long runs of |
| // consecutive frame drops for a particular layer. |
| const auto min_last_decoded_frame_num = std::min_element( |
| last_decoded_frame_num_.cbegin(), last_decoded_frame_num_.cend()); |
| const size_t min_buffered_frame_num = |
| std::max(0, static_cast<int>(frame_number) - kMaxBufferedInputFrames + 1); |
| RTC_CHECK(min_last_decoded_frame_num != last_decoded_frame_num_.cend()); |
| const auto input_frames_erase_before = input_frames_.lower_bound( |
| std::max(*min_last_decoded_frame_num, min_buffered_frame_num)); |
| input_frames_.erase(input_frames_.cbegin(), input_frames_erase_before); |
| } |
| |
| void VideoProcessor::DecodeFrame(const EncodedImage& encoded_image, |
| size_t spatial_idx) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| FrameStatistics* frame_stat = |
| stats_->GetFrameWithTimestamp(encoded_image.RtpTimestamp(), spatial_idx); |
| |
| frame_stat->decode_start_ns = rtc::TimeNanos(); |
| frame_stat->decode_return_code = |
| decoders_->at(spatial_idx)->Decode(encoded_image, 0); |
| } |
| |
| const webrtc::EncodedImage* VideoProcessor::BuildAndStoreSuperframe( |
| const EncodedImage& encoded_image, |
| const VideoCodecType /* codec */, |
| size_t /* frame_number */, |
| size_t spatial_idx, |
| bool inter_layer_predicted) { |
| // Should only be called for SVC. |
| RTC_CHECK_GT(config_.NumberOfSpatialLayers(), 1); |
| |
| EncodedImage base_image; |
| RTC_CHECK_EQ(base_image.size(), 0); |
| |
| // Each SVC layer is decoded with dedicated decoder. Find the nearest |
| // non-dropped base frame and merge it and current frame into superframe. |
| if (inter_layer_predicted) { |
| for (int base_idx = static_cast<int>(spatial_idx) - 1; base_idx >= 0; |
| --base_idx) { |
| EncodedImage lower_layer = merged_encoded_frames_.at(base_idx); |
| if (lower_layer.RtpTimestamp() == encoded_image.RtpTimestamp()) { |
| base_image = lower_layer; |
| break; |
| } |
| } |
| } |
| const size_t payload_size_bytes = base_image.size() + encoded_image.size(); |
| |
| auto buffer = EncodedImageBuffer::Create(payload_size_bytes); |
| if (base_image.size()) { |
| RTC_CHECK(base_image.data()); |
| memcpy(buffer->data(), base_image.data(), base_image.size()); |
| } |
| memcpy(buffer->data() + base_image.size(), encoded_image.data(), |
| encoded_image.size()); |
| |
| EncodedImage copied_image = encoded_image; |
| copied_image.SetEncodedData(buffer); |
| if (base_image.size()) |
| copied_image._frameType = base_image._frameType; |
| |
| // Replace previous EncodedImage for this spatial layer. |
| merged_encoded_frames_.at(spatial_idx) = std::move(copied_image); |
| |
| return &merged_encoded_frames_.at(spatial_idx); |
| } |
| |
| void VideoProcessor::Finalize() { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| RTC_DCHECK(!is_finalized_); |
| is_finalized_ = true; |
| |
| if (!(analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) && |
| decoded_frame_writers_ == nullptr) { |
| return; |
| } |
| |
| for (size_t spatial_idx = 0; spatial_idx < num_simulcast_or_spatial_layers_; |
| ++spatial_idx) { |
| if (first_decoded_frame_[spatial_idx]) { |
| continue; // No decoded frames on this spatial layer. |
| } |
| |
| for (size_t dropped_frame_number = last_decoded_frame_num_[spatial_idx] + 1; |
| dropped_frame_number < last_inputed_frame_num_; |
| ++dropped_frame_number) { |
| FrameStatistics* frame_stat = |
| stats_->GetFrame(dropped_frame_number, spatial_idx); |
| |
| RTC_DCHECK(!frame_stat->decoding_successful); |
| |
| if (analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) { |
| CalcFrameQuality(*last_decoded_frame_buffer_[spatial_idx], frame_stat); |
| } |
| |
| if (decoded_frame_writers_ != nullptr) { |
| WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx], |
| *decoded_frame_writers_->at(spatial_idx)); |
| } |
| } |
| } |
| } |
| |
| } // namespace test |
| } // namespace webrtc |