blob: c5b851ae11ea62d9ed8ff477b39cdbf9e59a1b18 [file] [log] [blame] [edit]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/video_codecs/video_encoder.h"
#include <string.h>
#include <algorithm>
#include <cstdint>
#include <optional>
#include <string>
#include <tuple>
#include <vector>
#include "absl/container/inlined_vector.h"
#include "api/fec_controller_override.h"
#include "api/units/data_rate.h"
#include "api/video/video_bitrate_allocation.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_frame_buffer.h"
#include "api/video_codecs/video_codec.h"
#include "rtc_base/checks.h"
#include "rtc_base/strings/string_builder.h"
namespace webrtc {
// TODO(mflodman): Add default complexity for VP9 and VP9.
VideoCodecVP8 VideoEncoder::GetDefaultVp8Settings() {
VideoCodecVP8 vp8_settings;
memset(&vp8_settings, 0, sizeof(vp8_settings));
vp8_settings.numberOfTemporalLayers = 1;
vp8_settings.denoisingOn = true;
vp8_settings.automaticResizeOn = false;
vp8_settings.keyFrameInterval = 3000;
return vp8_settings;
}
VideoCodecVP9 VideoEncoder::GetDefaultVp9Settings() {
VideoCodecVP9 vp9_settings;
memset(&vp9_settings, 0, sizeof(vp9_settings));
vp9_settings.numberOfTemporalLayers = 1;
vp9_settings.denoisingOn = true;
vp9_settings.keyFrameInterval = 3000;
vp9_settings.adaptiveQpMode = true;
vp9_settings.automaticResizeOn = true;
vp9_settings.numberOfSpatialLayers = 1;
vp9_settings.flexibleMode = false;
vp9_settings.interLayerPred = InterLayerPredMode::kOn;
return vp9_settings;
}
VideoCodecH264 VideoEncoder::GetDefaultH264Settings() {
VideoCodecH264 h264_settings;
memset(&h264_settings, 0, sizeof(h264_settings));
h264_settings.keyFrameInterval = 3000;
h264_settings.numberOfTemporalLayers = 1;
return h264_settings;
}
VideoEncoder::ScalingSettings::ScalingSettings() = default;
VideoEncoder::ScalingSettings::ScalingSettings(KOff) : ScalingSettings() {}
VideoEncoder::ScalingSettings::ScalingSettings(int low, int high)
: thresholds(QpThresholds(low, high)) {}
VideoEncoder::ScalingSettings::ScalingSettings(int low,
int high,
int min_pixels)
: thresholds(QpThresholds(low, high)), min_pixels_per_frame(min_pixels) {}
VideoEncoder::ScalingSettings::ScalingSettings(const ScalingSettings&) =
default;
VideoEncoder::ScalingSettings::~ScalingSettings() {}
// static
constexpr VideoEncoder::ScalingSettings::KOff
VideoEncoder::ScalingSettings::kOff;
// static
constexpr uint8_t VideoEncoder::EncoderInfo::kMaxFramerateFraction;
bool VideoEncoder::ResolutionBitrateLimits::operator==(
const ResolutionBitrateLimits& rhs) const {
return frame_size_pixels == rhs.frame_size_pixels &&
min_start_bitrate_bps == rhs.min_start_bitrate_bps &&
min_bitrate_bps == rhs.min_bitrate_bps &&
max_bitrate_bps == rhs.max_bitrate_bps;
}
VideoEncoder::EncoderInfo::EncoderInfo()
: scaling_settings(VideoEncoder::ScalingSettings::kOff),
requested_resolution_alignment(1),
apply_alignment_to_all_simulcast_layers(false),
supports_native_handle(false),
implementation_name("unknown"),
has_trusted_rate_controller(false),
is_hardware_accelerated(true),
fps_allocation{absl::InlinedVector<uint8_t, kMaxTemporalStreams>(
1,
kMaxFramerateFraction)},
supports_simulcast(false),
preferred_pixel_formats{VideoFrameBuffer::Type::kI420} {}
VideoEncoder::EncoderInfo::EncoderInfo(const EncoderInfo&) = default;
VideoEncoder::EncoderInfo::~EncoderInfo() = default;
std::string VideoEncoder::EncoderInfo::ToString() const {
char string_buf[2048];
rtc::SimpleStringBuilder oss(string_buf);
oss << "EncoderInfo { "
"ScalingSettings { ";
if (scaling_settings.thresholds) {
oss << "Thresholds { "
"low = "
<< scaling_settings.thresholds->low
<< ", high = " << scaling_settings.thresholds->high << "}, ";
}
oss << "min_pixels_per_frame = " << scaling_settings.min_pixels_per_frame
<< " }";
oss << ", requested_resolution_alignment = " << requested_resolution_alignment
<< ", apply_alignment_to_all_simulcast_layers = "
<< apply_alignment_to_all_simulcast_layers
<< ", supports_native_handle = " << supports_native_handle
<< ", implementation_name = '" << implementation_name
<< "'"
", has_trusted_rate_controller = "
<< has_trusted_rate_controller
<< ", is_hardware_accelerated = " << is_hardware_accelerated
<< ", fps_allocation = [";
size_t num_spatial_layer_with_fps_allocation = 0;
for (size_t i = 0; i < kMaxSpatialLayers; ++i) {
if (!fps_allocation[i].empty()) {
num_spatial_layer_with_fps_allocation = i + 1;
}
}
bool first = true;
for (size_t i = 0; i < num_spatial_layer_with_fps_allocation; ++i) {
if (fps_allocation[i].empty()) {
break;
}
if (!first) {
oss << ", ";
}
const absl::InlinedVector<uint8_t, kMaxTemporalStreams>& fractions =
fps_allocation[i];
if (!fractions.empty()) {
first = false;
oss << "[ ";
for (size_t i = 0; i < fractions.size(); ++i) {
if (i > 0) {
oss << ", ";
}
oss << (static_cast<double>(fractions[i]) / kMaxFramerateFraction);
}
oss << "] ";
}
}
oss << "]";
oss << ", resolution_bitrate_limits = [";
for (size_t i = 0; i < resolution_bitrate_limits.size(); ++i) {
if (i > 0) {
oss << ", ";
}
ResolutionBitrateLimits l = resolution_bitrate_limits[i];
oss << "Limits { "
"frame_size_pixels = "
<< l.frame_size_pixels
<< ", min_start_bitrate_bps = " << l.min_start_bitrate_bps
<< ", min_bitrate_bps = " << l.min_bitrate_bps
<< ", max_bitrate_bps = " << l.max_bitrate_bps << "} ";
}
oss << "] "
", supports_simulcast = "
<< supports_simulcast;
oss << ", preferred_pixel_formats = [";
for (size_t i = 0; i < preferred_pixel_formats.size(); ++i) {
if (i > 0)
oss << ", ";
oss << VideoFrameBufferTypeToString(preferred_pixel_formats.at(i));
}
oss << "]";
if (is_qp_trusted.has_value()) {
oss << ", is_qp_trusted = " << is_qp_trusted.value();
}
oss << "}";
return oss.str();
}
bool VideoEncoder::EncoderInfo::operator==(const EncoderInfo& rhs) const {
if (scaling_settings.thresholds.has_value() !=
rhs.scaling_settings.thresholds.has_value()) {
return false;
}
if (scaling_settings.thresholds.has_value()) {
QpThresholds l = *scaling_settings.thresholds;
QpThresholds r = *rhs.scaling_settings.thresholds;
if (l.low != r.low || l.high != r.high) {
return false;
}
}
if (scaling_settings.min_pixels_per_frame !=
rhs.scaling_settings.min_pixels_per_frame) {
return false;
}
if (supports_native_handle != rhs.supports_native_handle ||
implementation_name != rhs.implementation_name ||
has_trusted_rate_controller != rhs.has_trusted_rate_controller ||
is_hardware_accelerated != rhs.is_hardware_accelerated) {
return false;
}
for (size_t i = 0; i < kMaxSpatialLayers; ++i) {
if (fps_allocation[i] != rhs.fps_allocation[i]) {
return false;
}
}
if (resolution_bitrate_limits != rhs.resolution_bitrate_limits ||
supports_simulcast != rhs.supports_simulcast) {
return false;
}
return true;
}
std::optional<VideoEncoder::ResolutionBitrateLimits>
VideoEncoder::EncoderInfo::GetEncoderBitrateLimitsForResolution(
int frame_size_pixels) const {
std::vector<ResolutionBitrateLimits> bitrate_limits =
resolution_bitrate_limits;
// Sort the list of bitrate limits by resolution.
sort(bitrate_limits.begin(), bitrate_limits.end(),
[](const ResolutionBitrateLimits& lhs,
const ResolutionBitrateLimits& rhs) {
return lhs.frame_size_pixels < rhs.frame_size_pixels;
});
for (size_t i = 0; i < bitrate_limits.size(); ++i) {
RTC_DCHECK_GE(bitrate_limits[i].min_bitrate_bps, 0);
RTC_DCHECK_GE(bitrate_limits[i].min_start_bitrate_bps, 0);
RTC_DCHECK_GE(bitrate_limits[i].max_bitrate_bps,
bitrate_limits[i].min_bitrate_bps);
if (i > 0) {
// The bitrate limits aren't expected to decrease with resolution.
RTC_DCHECK_GE(bitrate_limits[i].min_bitrate_bps,
bitrate_limits[i - 1].min_bitrate_bps);
RTC_DCHECK_GE(bitrate_limits[i].min_start_bitrate_bps,
bitrate_limits[i - 1].min_start_bitrate_bps);
RTC_DCHECK_GE(bitrate_limits[i].max_bitrate_bps,
bitrate_limits[i - 1].max_bitrate_bps);
}
if (bitrate_limits[i].frame_size_pixels >= frame_size_pixels) {
return std::optional<ResolutionBitrateLimits>(bitrate_limits[i]);
}
}
return std::nullopt;
}
VideoEncoder::RateControlParameters::RateControlParameters()
: bitrate(VideoBitrateAllocation()),
framerate_fps(0.0),
bandwidth_allocation(DataRate::Zero()) {}
VideoEncoder::RateControlParameters::RateControlParameters(
const VideoBitrateAllocation& bitrate,
double framerate_fps)
: bitrate(bitrate),
framerate_fps(framerate_fps),
bandwidth_allocation(DataRate::BitsPerSec(bitrate.get_sum_bps())) {}
VideoEncoder::RateControlParameters::RateControlParameters(
const VideoBitrateAllocation& bitrate,
double framerate_fps,
DataRate bandwidth_allocation)
: bitrate(bitrate),
framerate_fps(framerate_fps),
bandwidth_allocation(bandwidth_allocation) {}
bool VideoEncoder::RateControlParameters::operator==(
const VideoEncoder::RateControlParameters& rhs) const {
return std::tie(bitrate, framerate_fps, bandwidth_allocation) ==
std::tie(rhs.bitrate, rhs.framerate_fps, rhs.bandwidth_allocation);
}
bool VideoEncoder::RateControlParameters::operator!=(
const VideoEncoder::RateControlParameters& rhs) const {
return !(rhs == *this);
}
VideoEncoder::RateControlParameters::~RateControlParameters() = default;
void VideoEncoder::SetFecControllerOverride(
FecControllerOverride* /* fec_controller_override */) {}
int32_t VideoEncoder::InitEncode(const VideoCodec* codec_settings,
int32_t number_of_cores,
size_t max_payload_size) {
const VideoEncoder::Capabilities capabilities(/* loss_notification= */ false);
const VideoEncoder::Settings settings(capabilities, number_of_cores,
max_payload_size);
// In theory, this and the other version of InitEncode() could end up calling
// each other in a loop until we get a stack overflow.
// In practice, any subclass of VideoEncoder would overload at least one
// of these, and we have a TODO in the header file to make this pure virtual.
return InitEncode(codec_settings, settings);
}
int VideoEncoder::InitEncode(const VideoCodec* codec_settings,
const VideoEncoder::Settings& settings) {
// In theory, this and the other version of InitEncode() could end up calling
// each other in a loop until we get a stack overflow.
// In practice, any subclass of VideoEncoder would overload at least one
// of these, and we have a TODO in the header file to make this pure virtual.
return InitEncode(codec_settings, settings.number_of_cores,
settings.max_payload_size);
}
void VideoEncoder::OnPacketLossRateUpdate(float /* packet_loss_rate */) {}
void VideoEncoder::OnRttUpdate(int64_t /* rtt_ms */) {}
void VideoEncoder::OnLossNotification(
const LossNotification& /* loss_notification */) {}
} // namespace webrtc