blob: e28a1726741a93b798de990615135d4ddaf48e9a [file] [log] [blame] [edit]
/*
* Copyright 2013 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "p2p/base/async_stun_tcp_socket.h"
#include <stdint.h>
#include <string.h>
#include <cstdint>
#include <list>
#include <memory>
#include <string>
#include <utility>
#include "absl/memory/memory.h"
#include "api/array_view.h"
#include "rtc_base/buffer.h"
#include "rtc_base/byte_buffer.h"
#include "rtc_base/network/received_packet.h"
#include "rtc_base/network/sent_packet.h"
#include "rtc_base/socket.h"
#include "rtc_base/third_party/sigslot/sigslot.h"
#include "rtc_base/thread.h"
#include "rtc_base/virtual_socket_server.h"
#include "test/gtest.h"
namespace cricket {
static unsigned char kStunMessageWithZeroLength[] = {
0x00, 0x01, 0x00, 0x00, // length of 0 (last 2 bytes)
0x21, 0x12, 0xA4, 0x42, '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', 'a', 'b',
};
static unsigned char kTurnChannelDataMessageWithZeroLength[] = {
0x40, 0x00, 0x00, 0x00, // length of 0 (last 2 bytes)
};
static unsigned char kTurnChannelDataMessage[] = {
0x40, 0x00, 0x00, 0x10, 0x21, 0x12, 0xA4, 0x42, '0', '1',
'2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b',
};
static unsigned char kStunMessageWithInvalidLength[] = {
0x00, 0x01, 0x00, 0x10, 0x21, 0x12, 0xA4, 0x42, '0', '1',
'2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b',
};
static unsigned char kTurnChannelDataMessageWithInvalidLength[] = {
0x80, 0x00, 0x00, 0x20, 0x21, 0x12, 0xA4, 0x42, '0', '1',
'2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b',
};
static unsigned char kTurnChannelDataMessageWithOddLength[] = {
0x40, 0x00, 0x00, 0x05, 0x21, 0x12, 0xA4, 0x42, '0',
};
static const rtc::SocketAddress kClientAddr("11.11.11.11", 0);
static const rtc::SocketAddress kServerAddr("22.22.22.22", 0);
class AsyncStunServerTCPSocket : public rtc::AsyncTcpListenSocket {
public:
explicit AsyncStunServerTCPSocket(std::unique_ptr<rtc::Socket> socket)
: AsyncTcpListenSocket(std::move(socket)) {}
void HandleIncomingConnection(rtc::Socket* socket) override {
SignalNewConnection(this, new AsyncStunTCPSocket(socket));
}
};
class AsyncStunTCPSocketTest : public ::testing::Test,
public sigslot::has_slots<> {
protected:
AsyncStunTCPSocketTest()
: vss_(new rtc::VirtualSocketServer()), thread_(vss_.get()) {}
virtual void SetUp() { CreateSockets(); }
void CreateSockets() {
std::unique_ptr<rtc::Socket> server =
absl::WrapUnique(vss_->CreateSocket(kServerAddr.family(), SOCK_STREAM));
server->Bind(kServerAddr);
listen_socket_ =
std::make_unique<AsyncStunServerTCPSocket>(std::move(server));
listen_socket_->SignalNewConnection.connect(
this, &AsyncStunTCPSocketTest::OnNewConnection);
rtc::Socket* client = vss_->CreateSocket(kClientAddr.family(), SOCK_STREAM);
send_socket_.reset(AsyncStunTCPSocket::Create(
client, kClientAddr, listen_socket_->GetLocalAddress()));
send_socket_->SignalSentPacket.connect(
this, &AsyncStunTCPSocketTest::OnSentPacket);
ASSERT_TRUE(send_socket_.get() != NULL);
vss_->ProcessMessagesUntilIdle();
}
void OnReadPacket(rtc::AsyncPacketSocket* /* socket */,
const rtc::ReceivedPacket& packet) {
recv_packets_.push_back(
std::string(reinterpret_cast<const char*>(packet.payload().data()),
packet.payload().size()));
}
void OnSentPacket(rtc::AsyncPacketSocket* /* socket */,
const rtc::SentPacket& /* packet */) {
++sent_packets_;
}
void OnNewConnection(rtc::AsyncListenSocket* /*server*/,
rtc::AsyncPacketSocket* new_socket) {
recv_socket_ = absl::WrapUnique(new_socket);
new_socket->RegisterReceivedPacketCallback(
[&](rtc::AsyncPacketSocket* socket, const rtc::ReceivedPacket& packet) {
OnReadPacket(socket, packet);
});
}
bool Send(const void* data, size_t len) {
rtc::PacketOptions options;
int ret =
send_socket_->Send(reinterpret_cast<const char*>(data), len, options);
vss_->ProcessMessagesUntilIdle();
return (ret == static_cast<int>(len));
}
bool CheckData(const void* data, int len) {
bool ret = false;
if (recv_packets_.size()) {
std::string packet = recv_packets_.front();
recv_packets_.pop_front();
ret = (memcmp(data, packet.c_str(), len) == 0);
}
return ret;
}
std::unique_ptr<rtc::VirtualSocketServer> vss_;
rtc::AutoSocketServerThread thread_;
std::unique_ptr<AsyncStunTCPSocket> send_socket_;
std::unique_ptr<rtc::AsyncListenSocket> listen_socket_;
std::unique_ptr<rtc::AsyncPacketSocket> recv_socket_;
std::list<std::string> recv_packets_;
int sent_packets_ = 0;
};
// Testing a stun packet sent/recv properly.
TEST_F(AsyncStunTCPSocketTest, TestSingleStunPacket) {
EXPECT_TRUE(
Send(kStunMessageWithZeroLength, sizeof(kStunMessageWithZeroLength)));
EXPECT_EQ(1u, recv_packets_.size());
EXPECT_TRUE(CheckData(kStunMessageWithZeroLength,
sizeof(kStunMessageWithZeroLength)));
}
// Verify sending multiple packets.
TEST_F(AsyncStunTCPSocketTest, TestMultipleStunPackets) {
EXPECT_TRUE(
Send(kStunMessageWithZeroLength, sizeof(kStunMessageWithZeroLength)));
EXPECT_TRUE(
Send(kStunMessageWithZeroLength, sizeof(kStunMessageWithZeroLength)));
EXPECT_TRUE(
Send(kStunMessageWithZeroLength, sizeof(kStunMessageWithZeroLength)));
EXPECT_TRUE(
Send(kStunMessageWithZeroLength, sizeof(kStunMessageWithZeroLength)));
EXPECT_EQ(4u, recv_packets_.size());
}
TEST_F(AsyncStunTCPSocketTest, ProcessInputHandlesMultiplePackets) {
send_socket_->RegisterReceivedPacketCallback(
[&](rtc::AsyncPacketSocket* /* socket */,
const rtc::ReceivedPacket& packet) {
recv_packets_.push_back(
std::string(reinterpret_cast<const char*>(packet.payload().data()),
packet.payload().size()));
});
rtc::Buffer buffer;
buffer.AppendData(kStunMessageWithZeroLength,
sizeof(kStunMessageWithZeroLength));
// ChannelData message MUST be padded to
// a multiple of four bytes.
const unsigned char kTurnChannelData[] = {
0x40, 0x00, 0x00, 0x04, 0x21, 0x12, 0xA4, 0x42,
};
buffer.AppendData(kTurnChannelData, sizeof(kTurnChannelData));
send_socket_->ProcessInput(buffer);
EXPECT_EQ(2u, recv_packets_.size());
EXPECT_TRUE(CheckData(kStunMessageWithZeroLength,
sizeof(kStunMessageWithZeroLength)));
EXPECT_TRUE(CheckData(kTurnChannelData, sizeof(kTurnChannelData)));
}
// Verifying TURN channel data message with zero length.
TEST_F(AsyncStunTCPSocketTest, TestTurnChannelDataWithZeroLength) {
EXPECT_TRUE(Send(kTurnChannelDataMessageWithZeroLength,
sizeof(kTurnChannelDataMessageWithZeroLength)));
EXPECT_EQ(1u, recv_packets_.size());
EXPECT_TRUE(CheckData(kTurnChannelDataMessageWithZeroLength,
sizeof(kTurnChannelDataMessageWithZeroLength)));
}
// Verifying TURN channel data message.
TEST_F(AsyncStunTCPSocketTest, TestTurnChannelData) {
EXPECT_TRUE(Send(kTurnChannelDataMessage, sizeof(kTurnChannelDataMessage)));
EXPECT_EQ(1u, recv_packets_.size());
EXPECT_TRUE(
CheckData(kTurnChannelDataMessage, sizeof(kTurnChannelDataMessage)));
}
// Verifying TURN channel messages which needs padding handled properly.
TEST_F(AsyncStunTCPSocketTest, TestTurnChannelDataPadding) {
EXPECT_TRUE(Send(kTurnChannelDataMessageWithOddLength,
sizeof(kTurnChannelDataMessageWithOddLength)));
EXPECT_EQ(1u, recv_packets_.size());
EXPECT_TRUE(CheckData(kTurnChannelDataMessageWithOddLength,
sizeof(kTurnChannelDataMessageWithOddLength)));
}
// Verifying stun message with invalid length.
TEST_F(AsyncStunTCPSocketTest, TestStunInvalidLength) {
EXPECT_FALSE(Send(kStunMessageWithInvalidLength,
sizeof(kStunMessageWithInvalidLength)));
EXPECT_EQ(0u, recv_packets_.size());
// Modify the message length to larger value.
kStunMessageWithInvalidLength[2] = 0xFF;
kStunMessageWithInvalidLength[3] = 0xFF;
EXPECT_FALSE(Send(kStunMessageWithInvalidLength,
sizeof(kStunMessageWithInvalidLength)));
// Modify the message length to smaller value.
kStunMessageWithInvalidLength[2] = 0x00;
kStunMessageWithInvalidLength[3] = 0x01;
EXPECT_FALSE(Send(kStunMessageWithInvalidLength,
sizeof(kStunMessageWithInvalidLength)));
}
// Verifying TURN channel data message with invalid length.
TEST_F(AsyncStunTCPSocketTest, TestTurnChannelDataWithInvalidLength) {
EXPECT_FALSE(Send(kTurnChannelDataMessageWithInvalidLength,
sizeof(kTurnChannelDataMessageWithInvalidLength)));
// Modify the length to larger value.
kTurnChannelDataMessageWithInvalidLength[2] = 0xFF;
kTurnChannelDataMessageWithInvalidLength[3] = 0xF0;
EXPECT_FALSE(Send(kTurnChannelDataMessageWithInvalidLength,
sizeof(kTurnChannelDataMessageWithInvalidLength)));
// Modify the length to smaller value.
kTurnChannelDataMessageWithInvalidLength[2] = 0x00;
kTurnChannelDataMessageWithInvalidLength[3] = 0x00;
EXPECT_FALSE(Send(kTurnChannelDataMessageWithInvalidLength,
sizeof(kTurnChannelDataMessageWithInvalidLength)));
}
// Verifying a small buffer handled (dropped) properly. This will be
// a common one for both stun and turn.
TEST_F(AsyncStunTCPSocketTest, TestTooSmallMessageBuffer) {
char data[1];
EXPECT_FALSE(Send(data, sizeof(data)));
}
// Verifying a legal large turn message.
TEST_F(AsyncStunTCPSocketTest, TestMaximumSizeTurnPacket) {
unsigned char packet[65539];
packet[0] = 0x40;
packet[1] = 0x00;
packet[2] = 0xFF;
packet[3] = 0xFF;
EXPECT_TRUE(Send(packet, sizeof(packet)));
}
// Verifying a legal large stun message.
TEST_F(AsyncStunTCPSocketTest, TestMaximumSizeStunPacket) {
unsigned char packet[65552];
packet[0] = 0x00;
packet[1] = 0x01;
packet[2] = 0xFF;
packet[3] = 0xFC;
EXPECT_TRUE(Send(packet, sizeof(packet)));
}
// Test that a turn message is sent completely even if it exceeds the socket
// send buffer capacity.
TEST_F(AsyncStunTCPSocketTest, TestWithSmallSendBuffer) {
vss_->set_send_buffer_capacity(1);
Send(kTurnChannelDataMessageWithOddLength,
sizeof(kTurnChannelDataMessageWithOddLength));
EXPECT_EQ(1u, recv_packets_.size());
EXPECT_TRUE(CheckData(kTurnChannelDataMessageWithOddLength,
sizeof(kTurnChannelDataMessageWithOddLength)));
}
// Test that SignalSentPacket is fired when a packet is sent.
TEST_F(AsyncStunTCPSocketTest, SignalSentPacketFiredWhenPacketSent) {
ASSERT_TRUE(
Send(kStunMessageWithZeroLength, sizeof(kStunMessageWithZeroLength)));
EXPECT_EQ(1, sent_packets_);
// Send another packet for good measure.
ASSERT_TRUE(
Send(kStunMessageWithZeroLength, sizeof(kStunMessageWithZeroLength)));
EXPECT_EQ(2, sent_packets_);
}
// Test that SignalSentPacket isn't fired when a packet isn't sent (for
// example, because it's invalid).
TEST_F(AsyncStunTCPSocketTest, SignalSentPacketNotFiredWhenPacketNotSent) {
// Attempt to send a packet that's too small; since it isn't sent,
// SignalSentPacket shouldn't fire.
char data[1];
ASSERT_FALSE(Send(data, sizeof(data)));
EXPECT_EQ(0, sent_packets_);
}
} // namespace cricket