blob: de87405b3095dcd31d249691cc34e2bbb0adc9ae [file] [log] [blame] [edit]
/*
* Copyright 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdint.h>
#include <atomic>
#include <cstdlib>
#include <iterator>
#include <memory>
#include <optional>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/strings/match.h"
#include "api/data_channel_interface.h"
#include "api/dtls_transport_interface.h"
#include "api/jsep.h"
#include "api/peer_connection_interface.h"
#include "api/rtc_error.h"
#include "api/scoped_refptr.h"
#include "api/sctp_transport_interface.h"
#include "api/stats/rtc_stats_report.h"
#include "api/stats/rtcstats_objects.h"
#include "api/test/rtc_error_matchers.h"
#include "api/units/time_delta.h"
#include "p2p/base/transport_description.h"
#include "p2p/base/transport_info.h"
#include "p2p/test/test_turn_server.h"
#include "pc/media_session.h"
#include "pc/session_description.h"
#include "pc/test/fake_rtc_certificate_generator.h"
#include "pc/test/integration_test_helpers.h"
#include "pc/test/mock_peer_connection_observers.h"
#include "rtc_base/copy_on_write_buffer.h"
#include "rtc_base/crypto_random.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/gunit.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/socket_address.h"
#include "rtc_base/ssl_stream_adapter.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/task_queue_for_test.h"
#include "rtc_base/virtual_socket_server.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/wait_until.h"
namespace webrtc {
namespace {
using ::testing::Eq;
using ::testing::IsTrue;
using ::testing::Ne;
using ::testing::ValuesIn;
// All tests in this file require SCTP support.
#ifdef WEBRTC_HAVE_SCTP
#if defined(WEBRTC_ANDROID)
// Disable heavy tests running on low-end Android devices.
#define DISABLED_ON_ANDROID(t) DISABLED_##t
#else
#define DISABLED_ON_ANDROID(t) t
#endif
class DataChannelIntegrationTest
: public PeerConnectionIntegrationBaseTest,
public ::testing::WithParamInterface<std::tuple<SdpSemantics, bool>> {
protected:
DataChannelIntegrationTest()
: PeerConnectionIntegrationBaseTest(std::get<0>(GetParam())),
allow_media_(std::get<1>(GetParam())) {}
bool allow_media() { return allow_media_; }
bool CreatePeerConnectionWrappers() {
if (allow_media_) {
return PeerConnectionIntegrationBaseTest::CreatePeerConnectionWrappers();
}
return PeerConnectionIntegrationBaseTest::
CreatePeerConnectionWrappersWithoutMediaEngine();
}
private:
// True if media is allowed to be added
const bool allow_media_;
};
// Fake clock must be set before threads are started to prevent race on
// Set/GetClockForTesting().
// To achieve that, multiple inheritance is used as a mixin pattern
// where order of construction is finely controlled.
// This also ensures peerconnection is closed before switching back to non-fake
// clock, avoiding other races and DCHECK failures such as in rtp_sender.cc.
class FakeClockForTest : public ScopedFakeClock {
protected:
FakeClockForTest() {
// Some things use a time of "0" as a special value, so we need to start out
// the fake clock at a nonzero time.
// TODO(deadbeef): Fix this.
AdvanceTime(TimeDelta::Seconds(1));
}
// Explicit handle.
ScopedFakeClock& FakeClock() { return *this; }
};
class DataChannelIntegrationTestPlanB
: public PeerConnectionIntegrationBaseTest {
protected:
DataChannelIntegrationTestPlanB()
: PeerConnectionIntegrationBaseTest(SdpSemantics::kPlanB_DEPRECATED) {}
};
class DataChannelIntegrationTestUnifiedPlan
: public PeerConnectionIntegrationBaseTest {
protected:
DataChannelIntegrationTestUnifiedPlan()
: PeerConnectionIntegrationBaseTest(SdpSemantics::kUnifiedPlan) {}
};
void MakeOfferHaveActiveDtlsRole(
std::unique_ptr<SessionDescriptionInterface>& desc) {
auto& transport_infos = desc->description()->transport_infos();
for (auto& transport_info : transport_infos) {
transport_info.description.connection_role = CONNECTIONROLE_ACTIVE;
}
}
void MakeOfferHavePassiveDtlsRole(
std::unique_ptr<SessionDescriptionInterface>& desc) {
auto& transport_infos = desc->description()->transport_infos();
for (auto& transport_info : transport_infos) {
transport_info.description.connection_role = CONNECTIONROLE_PASSIVE;
}
}
// This test causes a PeerConnection to enter Disconnected state, and
// sends data on a DataChannel while disconnected.
// The data should be surfaced when the connection reestablishes.
TEST_P(DataChannelIntegrationTest, DataChannelWhileDisconnected) {
CreatePeerConnectionWrappers();
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_observer(); }, IsTrue()),
IsRtcOk());
std::string data1 = "hello first";
caller()->data_channel()->Send(DataBuffer(data1));
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq(data1)),
IsRtcOk());
// Cause a network outage
virtual_socket_server()->set_drop_probability(1.0);
EXPECT_THAT(
WaitUntil([&] { return caller()->standardized_ice_connection_state(); },
Eq(PeerConnectionInterface::kIceConnectionDisconnected),
{.timeout = TimeDelta::Seconds(10)}),
IsRtcOk());
std::string data2 = "hello second";
caller()->data_channel()->Send(DataBuffer(data2));
// Remove the network outage. The connection should reestablish.
virtual_socket_server()->set_drop_probability(0.0);
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq(data2)),
IsRtcOk());
}
// This test causes a PeerConnection to enter Disconnected state,
// sends data on a DataChannel while disconnected, and then triggers
// an ICE restart.
// The data should be surfaced when the connection reestablishes.
TEST_P(DataChannelIntegrationTest, DataChannelWhileDisconnectedIceRestart) {
CreatePeerConnectionWrappers();
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_observer(); }, IsTrue()),
IsRtcOk());
std::string data1 = "hello first";
caller()->data_channel()->Send(DataBuffer(data1));
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq(data1)),
IsRtcOk());
// Cause a network outage
virtual_socket_server()->set_drop_probability(1.0);
ASSERT_THAT(
WaitUntil([&] { return caller()->standardized_ice_connection_state(); },
Eq(PeerConnectionInterface::kIceConnectionDisconnected),
{.timeout = TimeDelta::Seconds(10)}),
IsRtcOk());
std::string data2 = "hello second";
caller()->data_channel()->Send(DataBuffer(data2));
// Trigger an ICE restart. The signaling channel is not affected by
// the network outage.
caller()->SetOfferAnswerOptions(IceRestartOfferAnswerOptions());
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
// Remove the network outage. The connection should reestablish.
virtual_socket_server()->set_drop_probability(0.0);
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq(data2)),
IsRtcOk());
}
// This test sets up a call between two parties with audio, video and an SCTP
// data channel.
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannel) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Expect that data channel created on caller side will show up for callee as
// well.
caller()->CreateDataChannel();
if (allow_media()) {
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
}
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
if (allow_media()) {
// Ensure the existence of the SCTP data channel didn't impede audio/video.
MediaExpectations media_expectations;
media_expectations.ExpectBidirectionalAudioAndVideo();
ASSERT_TRUE(ExpectNewFrames(media_expectations));
}
// Caller data channel should already exist (it created one). Callee data
// channel may not exist yet, since negotiation happens in-band, not in SDP.
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
// Ensure data can be sent in both directions.
std::string data = "hello world";
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
}
// This test sets up a call between two parties with an SCTP
// data channel only, and sends messages of various sizes.
TEST_P(DataChannelIntegrationTest,
EndToEndCallWithSctpDataChannelVariousSizes) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Expect that data channel created on caller side will show up for callee as
// well.
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
// Caller data channel should already exist (it created one). Callee data
// channel may not exist yet, since negotiation happens in-band, not in SDP.
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
for (int message_size = 1; message_size < 100000; message_size *= 2) {
std::string data(message_size, 'a');
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
}
// Specifically probe the area around the MTU size.
for (int message_size = 1100; message_size < 1300; message_size += 1) {
std::string data(message_size, 'a');
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
}
caller()->data_channel()->Close();
EXPECT_THAT(WaitUntil([&] { return caller()->data_observer()->state(); },
Eq(webrtc::DataChannelInterface::kClosed)),
IsRtcOk());
EXPECT_THAT(WaitUntil([&] { return callee()->data_observer()->state(); },
Eq(webrtc::DataChannelInterface::kClosed)),
IsRtcOk());
}
// This test sets up a call between two parties with an SCTP
// data channel only, and sends enough messages to fill the queue and then
// closes on the caller. We expect the state to transition to closed on both
// caller and callee.
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannelFullBuffer) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Expect that data channel created on caller side will show up for callee as
// well.
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
// Caller data channel should already exist (it created one). Callee data
// channel may not exist yet, since negotiation happens in-band, not in SDP.
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
std::string data(256 * 1024, 'a');
for (size_t queued_size = 0;
queued_size < webrtc::DataChannelInterface::MaxSendQueueSize();
queued_size += data.size()) {
caller()->data_channel()->SendAsync(DataBuffer(data), nullptr);
}
caller()->data_channel()->Close();
DataChannelInterface::DataState expected_states[] = {
DataChannelInterface::DataState::kConnecting,
DataChannelInterface::DataState::kOpen,
DataChannelInterface::DataState::kClosing,
DataChannelInterface::DataState::kClosed};
// Debug data channels are very slow, use a long timeout for those slow,
// heavily parallelized runs.
EXPECT_THAT(WaitUntil([&] { return caller()->data_observer()->state(); },
Eq(DataChannelInterface::DataState::kClosed),
{.timeout = kLongTimeout}),
IsRtcOk());
EXPECT_THAT(caller()->data_observer()->states(),
::testing::ElementsAreArray(expected_states));
EXPECT_THAT(WaitUntil([&] { return callee()->data_observer()->state(); },
Eq(DataChannelInterface::DataState::kClosed)),
IsRtcOk());
EXPECT_THAT(callee()->data_observer()->states(),
::testing::ElementsAreArray(expected_states));
}
// This test sets up a call between two parties with an SCTP
// data channel only, and sends empty messages
TEST_P(DataChannelIntegrationTest,
EndToEndCallWithSctpDataChannelEmptyMessages) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Expect that data channel created on caller side will show up for callee as
// well.
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
// Caller data channel should already exist (it created one). Callee data
// channel may not exist yet, since negotiation happens in-band, not in SDP.
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
// Ensure data can be sent in both directions.
// Sending empty string data
std::string data = "";
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil(
[&] { return callee()->data_observer()->received_message_count(); },
Eq(1u)),
IsRtcOk());
EXPECT_TRUE(callee()->data_observer()->last_message().empty());
EXPECT_FALSE(callee()->data_observer()->messages().back().binary);
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil(
[&] { return caller()->data_observer()->received_message_count(); },
Eq(1u)),
IsRtcOk());
EXPECT_TRUE(caller()->data_observer()->last_message().empty());
EXPECT_FALSE(caller()->data_observer()->messages().back().binary);
// Sending empty binary data
CopyOnWriteBuffer empty_buffer;
caller()->data_channel()->Send(DataBuffer(empty_buffer, true));
EXPECT_THAT(
WaitUntil(
[&] { return callee()->data_observer()->received_message_count(); },
Eq(2u)),
IsRtcOk());
EXPECT_TRUE(callee()->data_observer()->last_message().empty());
EXPECT_TRUE(callee()->data_observer()->messages().back().binary);
callee()->data_channel()->Send(DataBuffer(empty_buffer, true));
EXPECT_THAT(
WaitUntil(
[&] { return caller()->data_observer()->received_message_count(); },
Eq(2u)),
IsRtcOk());
EXPECT_TRUE(caller()->data_observer()->last_message().empty());
EXPECT_TRUE(caller()->data_observer()->messages().back().binary);
}
TEST_P(DataChannelIntegrationTest,
EndToEndCallWithSctpDataChannelLowestSafeMtu) {
// The lowest payload size limit that's tested and found safe for this
// application. Note that this is not the safe limit under all conditions;
// in particular, the default is not the largest DTLS signature, and
// this test does not use TURN.
const size_t kLowestSafePayloadSizeLimit = 1225;
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Expect that data channel created on caller side will show up for callee as
// well.
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
// Caller data channel should already exist (it created one). Callee data
// channel may not exist yet, since negotiation happens in-band, not in SDP.
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
virtual_socket_server()->set_max_udp_payload(kLowestSafePayloadSizeLimit);
for (int message_size = 1140; message_size < 1240; message_size += 1) {
std::string data(message_size, 'a');
caller()->data_channel()->Send(DataBuffer(data));
ASSERT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
callee()->data_channel()->Send(DataBuffer(data));
ASSERT_THAT(
WaitUntil([&] { return caller()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
}
}
// This test verifies that lowering the MTU of the connection will cause
// the datachannel to not transmit reliably.
// The purpose of this test is to ensure that we know how a too-small MTU
// error manifests itself.
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannelHarmfulMtu) {
// The lowest payload size limit that's tested and found safe for this
// application in this configuration (see test above).
const size_t kLowestSafePayloadSizeLimit = 1225;
// The size of the smallest message that fails to be delivered.
const size_t kMessageSizeThatIsNotDelivered = 1157;
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
if (caller()->tls_version() == kDtls13VersionBytes) {
ASSERT_EQ(caller()->tls_version(), kDtls13VersionBytes);
GTEST_SKIP() << "DTLS1.3 fragments packets larger than MTU";
}
virtual_socket_server()->set_max_udp_payload(kLowestSafePayloadSizeLimit - 1);
// Probe for an undelivered or slowly delivered message. The exact
// size limit seems to be dependent on the message history, so make the
// code easily able to find the current value.
bool failure_seen = false;
for (size_t message_size = 1110; message_size < 1400; message_size++) {
const size_t message_count =
callee()->data_observer()->received_message_count();
const std::string data(message_size, 'a');
caller()->data_channel()->Send(DataBuffer(data));
// Wait a very short time for the message to be delivered.
// Note: Waiting only 10 ms is too short for Windows bots; they will
// flakily fail at a random frame.
WAIT(callee()->data_observer()->received_message_count() > message_count,
100);
if (callee()->data_observer()->received_message_count() == message_count) {
ASSERT_EQ(kMessageSizeThatIsNotDelivered, message_size);
failure_seen = true;
break;
}
}
ASSERT_TRUE(failure_seen);
}
// Ensure that when the callee closes an SCTP data channel, the closing
// procedure results in the data channel being closed for the caller as well.
TEST_P(DataChannelIntegrationTest, CalleeClosesSctpDataChannel) {
// Same procedure as above test.
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
if (allow_media()) {
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
}
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
// Close the data channel on the callee side, and wait for it to reach the
// "closed" state on both sides.
callee()->data_channel()->Close();
DataChannelInterface::DataState expected_states[] = {
DataChannelInterface::DataState::kConnecting,
DataChannelInterface::DataState::kOpen,
DataChannelInterface::DataState::kClosing,
DataChannelInterface::DataState::kClosed};
EXPECT_THAT(WaitUntil([&] { return caller()->data_observer()->state(); },
Eq(DataChannelInterface::DataState::kClosed)),
IsRtcOk());
EXPECT_THAT(caller()->data_observer()->states(),
::testing::ElementsAreArray(expected_states));
EXPECT_THAT(WaitUntil([&] { return callee()->data_observer()->state(); },
Eq(DataChannelInterface::DataState::kClosed)),
IsRtcOk());
EXPECT_THAT(callee()->data_observer()->states(),
::testing::ElementsAreArray(expected_states));
}
TEST_P(DataChannelIntegrationTest, SctpDataChannelConfigSentToOtherSide) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
DataChannelInit init;
init.id = 53;
init.maxRetransmits = 52;
caller()->CreateDataChannel("data-channel", &init);
if (allow_media()) {
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
}
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
// Since "negotiated" is false, the "id" parameter should be ignored.
EXPECT_NE(init.id, callee()->data_channel()->id());
EXPECT_EQ("data-channel", callee()->data_channel()->label());
EXPECT_EQ(init.maxRetransmits,
*callee()->data_channel()->maxRetransmitsOpt());
EXPECT_FALSE(callee()->data_channel()->negotiated());
}
// Test sctp's ability to process unordered data stream, where data actually
// arrives out of order using simulated delays. Previously there have been some
// bugs in this area.
TEST_P(DataChannelIntegrationTest, StressTestUnorderedSctpDataChannel) {
// Introduce random network delays.
// Otherwise it's not a true "unordered" test.
virtual_socket_server()->set_delay_mean(20);
virtual_socket_server()->set_delay_stddev(5);
virtual_socket_server()->UpdateDelayDistribution();
// Normal procedure, but with unordered data channel config.
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
DataChannelInit init;
init.ordered = false;
caller()->CreateDataChannel(&init);
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
static constexpr int kNumMessages = 100;
// Deliberately chosen to be larger than the MTU so messages get fragmented.
static constexpr size_t kMaxMessageSize = 4096;
// Create and send random messages.
std::vector<std::string> sent_messages;
for (int i = 0; i < kNumMessages; ++i) {
size_t length =
(rand() % kMaxMessageSize) + 1; // NOLINT (rand_r instead of rand)
std::string message;
ASSERT_TRUE(CreateRandomString(length, &message));
caller()->data_channel()->Send(DataBuffer(message));
callee()->data_channel()->Send(DataBuffer(message));
sent_messages.push_back(message);
}
// Wait for all messages to be received.
EXPECT_THAT(
WaitUntil(
[&] { return caller()->data_observer()->received_message_count(); },
Eq(checked_cast<size_t>(kNumMessages))),
IsRtcOk());
EXPECT_THAT(
WaitUntil(
[&] { return callee()->data_observer()->received_message_count(); },
Eq(checked_cast<size_t>(kNumMessages))),
IsRtcOk());
// Sort and compare to make sure none of the messages were corrupted.
std::vector<std::string> caller_received_messages;
absl::c_transform(caller()->data_observer()->messages(),
std::back_inserter(caller_received_messages),
[](const auto& a) { return a.data; });
std::vector<std::string> callee_received_messages;
absl::c_transform(callee()->data_observer()->messages(),
std::back_inserter(callee_received_messages),
[](const auto& a) { return a.data; });
absl::c_sort(sent_messages);
absl::c_sort(caller_received_messages);
absl::c_sort(callee_received_messages);
EXPECT_EQ(sent_messages, caller_received_messages);
EXPECT_EQ(sent_messages, callee_received_messages);
}
// Repeatedly open and close data channels on a peer connection to check that
// the channels are properly negotiated and SCTP stream IDs properly recycled.
TEST_P(DataChannelIntegrationTest, StressTestOpenCloseChannelNoDelay) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
int channel_id = 0;
const size_t kChannelCount = 8;
const size_t kIterations = 10;
bool has_negotiated = false;
DataChannelInit init;
for (size_t repeats = 0; repeats < kIterations; ++repeats) {
RTC_LOG(LS_INFO) << "Iteration " << (repeats + 1) << "/" << kIterations;
for (size_t i = 0; i < kChannelCount; ++i) {
StringBuilder sb;
sb << "channel-" << channel_id++;
caller()->CreateDataChannel(sb.Release(), &init);
}
ASSERT_EQ(caller()->data_channels().size(), kChannelCount);
if (!has_negotiated) {
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
has_negotiated = true;
}
for (size_t i = 0; i < kChannelCount; ++i) {
ASSERT_THAT(
WaitUntil([&] { return caller()->data_channels()[i]->state(); },
Eq(DataChannelInterface::DataState::kOpen)),
IsRtcOk());
RTC_LOG(LS_INFO) << "Caller Channel "
<< caller()->data_channels()[i]->label() << " with id "
<< caller()->data_channels()[i]->id() << " is open.";
}
ASSERT_THAT(WaitUntil([&] { return callee()->data_channels().size(); },
Eq(kChannelCount)),
IsRtcOk());
for (size_t i = 0; i < kChannelCount; ++i) {
ASSERT_THAT(
WaitUntil([&] { return callee()->data_channels()[i]->state(); },
Eq(DataChannelInterface::DataState::kOpen)),
IsRtcOk());
RTC_LOG(LS_INFO) << "Callee Channel "
<< callee()->data_channels()[i]->label() << " with id "
<< callee()->data_channels()[i]->id() << " is open.";
}
// Closing from both sides to attempt creating races.
// A real application would likely only close from one side.
for (size_t i = 0; i < kChannelCount; ++i) {
if (i % 3 == 0) {
callee()->data_channels()[i]->Close();
caller()->data_channels()[i]->Close();
} else {
caller()->data_channels()[i]->Close();
callee()->data_channels()[i]->Close();
}
}
for (size_t i = 0; i < kChannelCount; ++i) {
ASSERT_THAT(
WaitUntil([&] { return caller()->data_channels()[i]->state(); },
Eq(DataChannelInterface::DataState::kClosed)),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_channels()[i]->state(); },
Eq(DataChannelInterface::DataState::kClosed)),
IsRtcOk());
}
caller()->data_channels().clear();
caller()->data_observers().clear();
callee()->data_channels().clear();
callee()->data_observers().clear();
}
}
// Repeatedly open and close data channels on a peer connection to check that
// the channels are properly negotiated and SCTP stream IDs properly recycled.
// Some delay is added for better coverage.
TEST_P(DataChannelIntegrationTest, StressTestOpenCloseChannelWithDelay) {
// Simulate some network delay
virtual_socket_server()->set_delay_mean(20);
virtual_socket_server()->set_delay_stddev(5);
virtual_socket_server()->UpdateDelayDistribution();
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
int channel_id = 0;
const size_t kChannelCount = 8;
const size_t kIterations = 10;
bool has_negotiated = false;
DataChannelInit init;
for (size_t repeats = 0; repeats < kIterations; ++repeats) {
RTC_LOG(LS_INFO) << "Iteration " << (repeats + 1) << "/" << kIterations;
for (size_t i = 0; i < kChannelCount; ++i) {
StringBuilder sb;
sb << "channel-" << channel_id++;
caller()->CreateDataChannel(sb.Release(), &init);
}
ASSERT_EQ(caller()->data_channels().size(), kChannelCount);
if (!has_negotiated) {
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
has_negotiated = true;
}
for (size_t i = 0; i < kChannelCount; ++i) {
ASSERT_THAT(
WaitUntil([&] { return caller()->data_channels()[i]->state(); },
Eq(DataChannelInterface::DataState::kOpen)),
IsRtcOk());
RTC_LOG(LS_INFO) << "Caller Channel "
<< caller()->data_channels()[i]->label() << " with id "
<< caller()->data_channels()[i]->id() << " is open.";
}
ASSERT_THAT(WaitUntil([&] { return callee()->data_channels().size(); },
Eq(kChannelCount)),
IsRtcOk());
for (size_t i = 0; i < kChannelCount; ++i) {
ASSERT_THAT(
WaitUntil([&] { return callee()->data_channels()[i]->state(); },
Eq(DataChannelInterface::DataState::kOpen)),
IsRtcOk());
RTC_LOG(LS_INFO) << "Callee Channel "
<< callee()->data_channels()[i]->label() << " with id "
<< callee()->data_channels()[i]->id() << " is open.";
}
// Closing from both sides to attempt creating races.
// A real application would likely only close from one side.
for (size_t i = 0; i < kChannelCount; ++i) {
if (i % 3 == 0) {
callee()->data_channels()[i]->Close();
caller()->data_channels()[i]->Close();
} else {
caller()->data_channels()[i]->Close();
callee()->data_channels()[i]->Close();
}
}
for (size_t i = 0; i < kChannelCount; ++i) {
ASSERT_THAT(
WaitUntil([&] { return caller()->data_channels()[i]->state(); },
Eq(DataChannelInterface::DataState::kClosed)),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_channels()[i]->state(); },
Eq(DataChannelInterface::DataState::kClosed)),
IsRtcOk());
}
caller()->data_channels().clear();
caller()->data_observers().clear();
callee()->data_channels().clear();
callee()->data_observers().clear();
}
}
// This test sets up a call between two parties with audio, and video. When
// audio and video are setup and flowing, an SCTP data channel is negotiated.
TEST_P(DataChannelIntegrationTest, AddSctpDataChannelInSubsequentOffer) {
// This test can't be performed without media.
if (!allow_media()) {
return;
}
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Do initial offer/answer with audio/video.
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
// Create data channel and do new offer and answer.
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
// Caller data channel should already exist (it created one). Callee data
// channel may not exist yet, since negotiation happens in-band, not in SDP.
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
// Ensure data can be sent in both directions.
std::string data = "hello world";
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
}
// Set up a connection initially just using SCTP data channels, later
// upgrading to audio/video, ensuring frames are received end-to-end.
// Effectively the inverse of the test above. This was broken in M57; see
// https://crbug.com/711243
TEST_P(DataChannelIntegrationTest, SctpDataChannelToAudioVideoUpgrade) {
// This test can't be performed without media.
if (!allow_media()) {
return;
}
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Do initial offer/answer with just data channel.
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
// Wait until data can be sent over the data channel.
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
// Do subsequent offer/answer with two-way audio and video. Audio and video
// should end up bundled on the DTLS/ICE transport already used for data.
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
MediaExpectations media_expectations;
media_expectations.ExpectBidirectionalAudioAndVideo();
ASSERT_TRUE(ExpectNewFrames(media_expectations));
}
static void MakeSpecCompliantSctpOffer(
std::unique_ptr<SessionDescriptionInterface>& desc) {
SctpDataContentDescription* dcd_offer =
GetFirstSctpDataContentDescription(desc->description());
// See https://crbug.com/webrtc/11211 - this function is a no-op
ASSERT_TRUE(dcd_offer);
dcd_offer->set_use_sctpmap(false);
dcd_offer->set_protocol("UDP/DTLS/SCTP");
}
// Test that the data channel works when a spec-compliant SCTP m= section is
// offered (using "a=sctp-port" instead of "a=sctpmap", and using
// "UDP/DTLS/SCTP" as the protocol).
TEST_P(DataChannelIntegrationTest,
DataChannelWorksWhenSpecCompliantSctpOfferReceived) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->SetGeneratedSdpMunger(MakeSpecCompliantSctpOffer);
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, Ne(nullptr)),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
// Ensure data can be sent in both directions.
std::string data = "hello world";
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_THAT(
WaitUntil([&] { return caller()->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
}
// Test that after closing PeerConnections, they stop sending any packets
// (ICE, DTLS, RTP...).
TEST_P(DataChannelIntegrationTest, ClosingConnectionStopsPacketFlow) {
// This test can't be performed without media.
if (!allow_media()) {
return;
}
// Set up audio/video/data, wait for some frames to be received.
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->AddAudioVideoTracks();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
MediaExpectations media_expectations;
media_expectations.CalleeExpectsSomeAudioAndVideo();
ASSERT_TRUE(ExpectNewFrames(media_expectations));
// Close PeerConnections.
ClosePeerConnections();
// Pump messages for a second, and ensure no new packets end up sent.
uint32_t sent_packets_a = virtual_socket_server()->sent_packets();
WAIT(false, 1000);
uint32_t sent_packets_b = virtual_socket_server()->sent_packets();
EXPECT_EQ(sent_packets_a, sent_packets_b);
}
TEST_P(DataChannelIntegrationTest, DtlsRoleIsSetNormally) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
ASSERT_FALSE(caller()->pc()->GetSctpTransport());
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
ASSERT_TRUE(caller()->pc()->GetSctpTransport());
ASSERT_TRUE(
caller()->pc()->GetSctpTransport()->Information().dtls_transport());
EXPECT_TRUE(caller()
->pc()
->GetSctpTransport()
->Information()
.dtls_transport()
->Information()
.role());
EXPECT_EQ(caller()
->pc()
->GetSctpTransport()
->Information()
.dtls_transport()
->Information()
.role(),
DtlsTransportTlsRole::kServer);
EXPECT_EQ(callee()
->pc()
->GetSctpTransport()
->Information()
.dtls_transport()
->Information()
.role(),
DtlsTransportTlsRole::kClient);
// ID should be assigned according to the odd/even rule based on role;
// client gets even numbers, server gets odd ones. RFC 8832 section 6.
// TODO(hta): Test multiple channels.
EXPECT_EQ(caller()->data_channel()->id(), 1);
}
TEST_P(DataChannelIntegrationTest, DtlsRoleIsSetWhenReversed) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
callee()->SetReceivedSdpMunger(MakeOfferHaveActiveDtlsRole);
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
EXPECT_TRUE(caller()
->pc()
->GetSctpTransport()
->Information()
.dtls_transport()
->Information()
.role());
EXPECT_EQ(caller()
->pc()
->GetSctpTransport()
->Information()
.dtls_transport()
->Information()
.role(),
DtlsTransportTlsRole::kClient);
EXPECT_EQ(callee()
->pc()
->GetSctpTransport()
->Information()
.dtls_transport()
->Information()
.role(),
DtlsTransportTlsRole::kServer);
// ID should be assigned according to the odd/even rule based on role;
// client gets even numbers, server gets odd ones. RFC 8832 section 6.
// TODO(hta): Test multiple channels.
EXPECT_EQ(caller()->data_channel()->id(), 0);
}
TEST_P(DataChannelIntegrationTest,
DtlsRoleIsSetWhenReversedWithChannelCollision) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
callee()->SetReceivedSdpMunger(
[this](std::unique_ptr<SessionDescriptionInterface>& desc) {
MakeOfferHaveActiveDtlsRole(desc);
callee()->CreateDataChannel();
});
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_channels().size(); }, Eq(2U)),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return caller()->data_channels().size(); }, Eq(2U)),
IsRtcOk());
EXPECT_TRUE(caller()
->pc()
->GetSctpTransport()
->Information()
.dtls_transport()
->Information()
.role());
EXPECT_EQ(caller()
->pc()
->GetSctpTransport()
->Information()
.dtls_transport()
->Information()
.role(),
DtlsTransportTlsRole::kClient);
EXPECT_EQ(callee()
->pc()
->GetSctpTransport()
->Information()
.dtls_transport()
->Information()
.role(),
DtlsTransportTlsRole::kServer);
// ID should be assigned according to the odd/even rule based on role;
// client gets even numbers, server gets odd ones. RFC 8832 section 6.
ASSERT_EQ(caller()->data_channels().size(), 2U);
ASSERT_EQ(callee()->data_channels().size(), 2U);
EXPECT_EQ(caller()->data_channels()[0]->id(), 0);
EXPECT_EQ(caller()->data_channels()[1]->id(), 1);
EXPECT_EQ(callee()->data_channels()[0]->id(), 1);
EXPECT_EQ(callee()->data_channels()[1]->id(), 0);
}
// Test that transport stats are generated by the RTCStatsCollector for a
// connection that only involves data channels. This is a regression test for
// crbug.com/826972.
TEST_P(DataChannelIntegrationTest,
TransportStatsReportedForDataChannelOnlyConnection) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, IsTrue()),
IsRtcOk());
auto caller_report = caller()->NewGetStats();
EXPECT_EQ(1u, caller_report->GetStatsOfType<RTCTransportStats>().size());
auto callee_report = callee()->NewGetStats();
EXPECT_EQ(1u, callee_report->GetStatsOfType<RTCTransportStats>().size());
}
TEST_P(DataChannelIntegrationTest, QueuedPacketsGetDeliveredInReliableMode) {
CreatePeerConnectionWrappers();
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, IsTrue()),
IsRtcOk());
caller()->data_channel()->Send(DataBuffer("hello first"));
ASSERT_THAT(
WaitUntil(
[&] { return callee()->data_observer()->received_message_count(); },
Eq(1u)),
IsRtcOk());
// Cause a temporary network outage
virtual_socket_server()->set_drop_probability(1.0);
for (int i = 1; i <= 10; i++) {
caller()->data_channel()->Send(DataBuffer("Sent while blocked"));
}
// Nothing should be delivered during outage. Short wait.
EXPECT_THAT(
WaitUntil(
[&] { return callee()->data_observer()->received_message_count(); },
Eq(1u)),
IsRtcOk());
// Reverse outage
virtual_socket_server()->set_drop_probability(0.0);
// All packets should be delivered.
EXPECT_THAT(
WaitUntil(
[&] { return callee()->data_observer()->received_message_count(); },
Eq(11u)),
IsRtcOk());
}
TEST_P(DataChannelIntegrationTest, QueuedPacketsGetDroppedInUnreliableMode) {
CreatePeerConnectionWrappers();
ConnectFakeSignaling();
DataChannelInit init;
init.maxRetransmits = 0;
init.ordered = false;
caller()->CreateDataChannel(&init);
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, IsTrue()),
IsRtcOk());
caller()->data_channel()->Send(DataBuffer("hello first"));
ASSERT_THAT(
WaitUntil(
[&] { return callee()->data_observer()->received_message_count(); },
Eq(1u)),
IsRtcOk());
// Cause a temporary network outage
virtual_socket_server()->set_drop_probability(1.0);
// Send a few packets. Note that all get dropped only when all packets
// fit into the receiver receive window/congestion window, so that they
// actually get sent.
for (int i = 1; i <= 10; i++) {
caller()->data_channel()->Send(DataBuffer("Sent while blocked"));
}
// Nothing should be delivered during outage.
// We do a short wait to verify that delivery count is still 1.
WAIT(false, 10);
EXPECT_EQ(1u, callee()->data_observer()->received_message_count());
// Reverse the network outage.
virtual_socket_server()->set_drop_probability(0.0);
// Send a new packet, and wait for it to be delivered.
caller()->data_channel()->Send(DataBuffer("After block"));
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq("After block")),
IsRtcOk());
// Some messages should be lost, but first and last message should have
// been delivered.
// First, check that the protocol guarantee is preserved.
EXPECT_GT(11u, callee()->data_observer()->received_message_count());
EXPECT_LE(2u, callee()->data_observer()->received_message_count());
// Then, check that observed behavior (lose all messages) has not changed
EXPECT_EQ(2u, callee()->data_observer()->received_message_count());
}
TEST_P(DataChannelIntegrationTest,
QueuedPacketsGetDroppedInLifetimeLimitedMode) {
CreatePeerConnectionWrappers();
ConnectFakeSignaling();
DataChannelInit init;
init.maxRetransmitTime = 1;
init.ordered = false;
caller()->CreateDataChannel(&init);
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, IsTrue()),
IsRtcOk());
caller()->data_channel()->Send(DataBuffer("hello first"));
ASSERT_THAT(
WaitUntil(
[&] { return callee()->data_observer()->received_message_count(); },
Eq(1u)),
IsRtcOk());
// Cause a temporary network outage
virtual_socket_server()->set_drop_probability(1.0);
for (int i = 1; i <= 200; i++) {
caller()->data_channel()->Send(DataBuffer("Sent while blocked"));
}
// Nothing should be delivered during outage.
// We do a short wait to verify that delivery count is still 1,
// and to make sure max packet lifetime (which is in ms) is exceeded.
WAIT(false, 10);
EXPECT_EQ(1u, callee()->data_observer()->received_message_count());
// Reverse the network outage.
virtual_socket_server()->set_drop_probability(0.0);
// Send a new packet, and wait for it to be delivered.
caller()->data_channel()->Send(DataBuffer("After block"));
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq("After block")),
IsRtcOk());
// Some messages should be lost, but first and last message should have
// been delivered.
// First, check that the protocol guarantee is preserved.
EXPECT_GT(202u, callee()->data_observer()->received_message_count());
EXPECT_LE(2u, callee()->data_observer()->received_message_count());
// Then, check that observed behavior (lose some messages) has not changed
// DcSctp loses all messages. This is correct.
EXPECT_EQ(2u, callee()->data_observer()->received_message_count());
}
TEST_P(DataChannelIntegrationTest,
DISABLED_ON_ANDROID(SomeQueuedPacketsGetDroppedInMaxRetransmitsMode)) {
CreatePeerConnectionWrappers();
ConnectFakeSignaling();
DataChannelInit init;
init.maxRetransmits = 0;
init.ordered = false;
caller()->CreateDataChannel(&init);
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, IsTrue()),
IsRtcOk());
caller()->data_channel()->Send(DataBuffer("hello first"));
ASSERT_THAT(
WaitUntil(
[&] { return callee()->data_observer()->received_message_count(); },
Eq(1u)),
IsRtcOk());
// Cause a temporary network outage
virtual_socket_server()->set_drop_probability(1.0);
// Fill the SCTP socket buffer until queued data starts to build.
constexpr size_t kBufferedDataInSctpSocket = 2'000'000;
size_t packet_counter = 0;
while (caller()->data_channel()->buffered_amount() <
kBufferedDataInSctpSocket &&
packet_counter < 10000) {
packet_counter++;
caller()->data_channel()->Send(DataBuffer("Sent while blocked"));
}
if (caller()->data_channel()->buffered_amount() > kBufferedDataInSctpSocket) {
RTC_LOG(LS_INFO) << "Buffered data after " << packet_counter << " packets";
} else {
RTC_LOG(LS_INFO) << "No buffered data after " << packet_counter
<< " packets";
}
// Nothing should be delivered during outage.
// We do a short wait to verify that delivery count is still 1.
WAIT(false, 10);
EXPECT_EQ(1u, callee()->data_observer()->received_message_count());
// Reverse the network outage.
virtual_socket_server()->set_drop_probability(0.0);
// Send a new packet, and wait for it to be delivered.
caller()->data_channel()->Send(DataBuffer("After block"));
EXPECT_THAT(
WaitUntil([&] { return callee()->data_observer()->last_message(); },
Eq("After block")),
IsRtcOk());
// Some messages should be lost, but first and last message should have
// been delivered.
// Due to the fact that retransmissions are only counted when the packet
// goes on the wire, NOT when they are stalled in queue due to
// congestion, we expect some of the packets to be delivered, because
// congestion prevented them from being sent.
// Citation: https://tools.ietf.org/html/rfc7496#section-3.1
// First, check that the protocol guarantee is preserved.
EXPECT_GT(packet_counter,
callee()->data_observer()->received_message_count());
EXPECT_LE(2u, callee()->data_observer()->received_message_count());
// Then, check that observed behavior (lose between 100 and 200 messages)
// has not changed.
// Usrsctp behavior is different on Android (177) and other platforms (122).
// Dcsctp loses 432 packets.
EXPECT_GT(2 + packet_counter - 100,
callee()->data_observer()->received_message_count());
EXPECT_LT(2 + packet_counter - 500,
callee()->data_observer()->received_message_count());
}
INSTANTIATE_TEST_SUITE_P(DataChannelIntegrationTest,
DataChannelIntegrationTest,
Combine(Values(SdpSemantics::kPlanB_DEPRECATED,
SdpSemantics::kUnifiedPlan),
testing::Bool()));
TEST_F(DataChannelIntegrationTestUnifiedPlan,
EndToEndCallWithBundledSctpDataChannel) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return caller()->pc()->GetSctpTransport(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil(
[&] {
return caller()->pc()->GetSctpTransport()->Information().state();
},
Eq(SctpTransportState::kConnected)),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
}
TEST_F(DataChannelIntegrationTestUnifiedPlan,
EndToEndCallWithDataChannelOnlyConnects) {
ASSERT_TRUE(CreatePeerConnectionWrappersWithoutMediaEngine());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_channel(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
ASSERT_TRUE(caller()->data_observer()->IsOpen());
}
TEST_F(DataChannelIntegrationTestUnifiedPlan, DataChannelClosesWhenClosed) {
ASSERT_TRUE(CreatePeerConnectionWrappersWithoutMediaEngine());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_observer(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
caller()->data_channel()->Close();
ASSERT_THAT(
WaitUntil([&] { return !callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
}
TEST_F(DataChannelIntegrationTestUnifiedPlan,
DataChannelClosesWhenClosedReverse) {
ASSERT_TRUE(CreatePeerConnectionWrappersWithoutMediaEngine());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_observer(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
callee()->data_channel()->Close();
ASSERT_THAT(
WaitUntil([&] { return !caller()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
}
TEST_F(DataChannelIntegrationTestUnifiedPlan,
DataChannelClosesWhenPeerConnectionClosed) {
ASSERT_TRUE(CreatePeerConnectionWrappersWithoutMediaEngine());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_THAT(WaitUntil([&] { return SignalingStateStable(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee()->data_observer(); }, IsTrue()),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
caller()->pc()->Close();
ASSERT_THAT(
WaitUntil([&] { return !callee()->data_observer()->IsOpen(); }, IsTrue()),
IsRtcOk());
}
class DataChannelIntegrationTestUnifiedPlanFieldTrials
: public DataChannelIntegrationTestUnifiedPlan,
public ::testing::WithParamInterface<std::tuple<
/* callee-DTLS-active=*/bool,
/* caller-field-trials=*/const char*,
/* callee-field-trials=*/const char*,
/* callee2-field-trials=*/const char*>> {
protected:
DataChannelIntegrationTestUnifiedPlanFieldTrials() {
const bool callee_active = std::get<0>(GetParam());
RTC_LOG(LS_INFO) << "dtls_active: " << (callee_active ? "callee" : "caller")
<< " field-trials: caller: " << std::get<1>(GetParam())
<< " callee: " << std::get<2>(GetParam())
<< " callee2: " << std::get<3>(GetParam());
SetFieldTrials(kCallerName, std::get<1>(GetParam()));
SetFieldTrials(kCalleeName, std::get<2>(GetParam()));
SetFieldTrials("Callee2", std::get<3>(GetParam()));
}
std::unique_ptr<PeerConnectionIntegrationWrapper> SetupCallee2AndDc(
bool addTurn) {
RTCConfiguration config;
if (addTurn) {
static const SocketAddress turn_server_1_internal_address{"192.0.2.1",
3478};
static const SocketAddress turn_server_1_external_address{"192.0.3.1", 0};
TestTurnServer* turn_server_1 = CreateTurnServer(
turn_server_1_internal_address, turn_server_1_external_address);
// Bypass permission check on received packets so media can be sent before
// the candidate is signaled.
SendTask(network_thread(), [turn_server_1] {
turn_server_1->set_enable_permission_checks(false);
});
PeerConnectionInterface::IceServer ice_server_1;
ice_server_1.urls.push_back("turn:192.0.2.1:3478");
ice_server_1.username = "test";
ice_server_1.password = "test";
config.servers.push_back(ice_server_1);
config.type = PeerConnectionInterface::kRelay;
config.presume_writable_when_fully_relayed = true;
}
CreatePeerConnectionWrappersWithConfig(config, config,
/* create_media_engine= */ false);
PeerConnectionDependencies dependencies(nullptr);
std::unique_ptr<FakeRTCCertificateGenerator> cert_generator(
new FakeRTCCertificateGenerator());
cert_generator->use_alternate_key();
dependencies.cert_generator = std::move(cert_generator);
auto callee2 = CreatePeerConnectionWrapper("Callee2", nullptr, &config,
std::move(dependencies), nullptr,
/*reset_encoder_factory=*/false,
/*reset_decoder_factory=*/false,
/*create_media_engine=*/false);
ConnectFakeSignaling();
DataChannelInit dc_init;
dc_init.negotiated = true;
dc_init.id = 77;
caller()->CreateDataChannel("label", &dc_init);
callee()->CreateDataChannel("label", &dc_init);
callee2->CreateDataChannel("label", &dc_init);
callee2->set_signaling_message_receiver(caller());
return callee2;
}
void WaitConnectedAndDcOpen(bool prAnswer,
PeerConnectionIntegrationWrapper* caller,
PeerConnectionIntegrationWrapper* callee) {
if (prAnswer) {
EXPECT_EQ(caller->pc()->signaling_state(),
PeerConnectionInterface::kHaveRemotePrAnswer);
EXPECT_EQ(callee->pc()->signaling_state(),
PeerConnectionInterface::kHaveLocalPrAnswer);
} else {
EXPECT_EQ(caller->pc()->signaling_state(),
PeerConnectionInterface::kStable);
EXPECT_EQ(callee->pc()->signaling_state(),
PeerConnectionInterface::kStable);
}
ASSERT_THAT(WaitUntil([&] { return caller->data_channel()->state(); },
Eq(DataChannelInterface::kOpen)),
IsRtcOk());
ASSERT_THAT(WaitUntil([&] { return callee->data_channel()->state(); },
Eq(DataChannelInterface::kOpen)),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return caller->pc()->peer_connection_state(); },
Eq(PeerConnectionInterface::PeerConnectionState::kConnected)),
IsRtcOk());
ASSERT_THAT(
WaitUntil([&] { return callee->pc()->peer_connection_state(); },
Eq(PeerConnectionInterface::PeerConnectionState::kConnected)),
IsRtcOk());
}
static void SendOnDatachannelWhenConnectedCallback(
PeerConnectionIntegrationWrapper* peer,
const std::string& data,
std::atomic<int>& signal) {
if (peer->pc()->peer_connection_state() ==
PeerConnectionInterface::PeerConnectionState::kConnected &&
peer->data_channel()->state() == DataChannelInterface::kOpen) {
peer->data_channel()->SendAsync(DataBuffer(data), [&](RTCError err) {
signal.store(err.ok() ? 1 : -1);
});
}
}
void VerifyDtlsRoles(PeerConnectionIntegrationWrapper* caller,
PeerConnectionIntegrationWrapper* callee) {
const bool callee_active = std::get<0>(GetParam());
if (callee_active) {
ASSERT_THAT(caller->dtls_transport_role(),
Eq(DtlsTransportTlsRole::kServer));
ASSERT_THAT(callee->dtls_transport_role(),
Eq(DtlsTransportTlsRole::kClient));
} else {
ASSERT_THAT(caller->dtls_transport_role(),
Eq(DtlsTransportTlsRole::kClient));
ASSERT_THAT(callee->dtls_transport_role(),
Eq(DtlsTransportTlsRole::kServer));
}
}
void VerifyReceivedDcMessages(PeerConnectionIntegrationWrapper* peer,
const std::string& data,
std::atomic<int>& signal) {
ASSERT_THAT(WaitUntil([&] { return signal.load(); }, Ne(0)), IsRtcOk());
EXPECT_THAT(WaitUntil([&] { return peer->data_observer()->last_message(); },
Eq(data)),
IsRtcOk());
}
const char* CheckSupported() {
const bool callee_active = std::get<0>(GetParam());
const bool callee_has_dtls_in_stun = absl::StrContains(
std::get<2>(GetParam()), "WebRTC-IceHandshakeDtls/Enabled/");
const bool callee2_has_dtls_in_stun = absl::StrContains(
std::get<3>(GetParam()), "WebRTC-IceHandshakeDtls/Enabled/");
if (callee_active &&
(callee_has_dtls_in_stun || callee2_has_dtls_in_stun)) {
return "dtls-in-stun when callee(s) are dtls clients";
}
return nullptr;
}
};
static const char* kTrialsVariants[] = {
"",
"WebRTC-ForceDtls13/Enabled/",
"WebRTC-IceHandshakeDtls/Enabled/",
"WebRTC-ForceDtls13/Enabled/WebRTC-EnableDtlsPqc/Enabled/",
"WebRTC-ForceDtls13/Enabled/WebRTC-IceHandshakeDtls/Enabled/",
("WebRTC-ForceDtls13/Enabled/WebRTC-IceHandshakeDtls/Enabled/"
"WebRTC-EnableDtlsPqc/Enabled/"),
};
INSTANTIATE_TEST_SUITE_P(DataChannelIntegrationTestUnifiedPlanFieldTrials,
DataChannelIntegrationTestUnifiedPlanFieldTrials,
Combine(testing::Bool(),
ValuesIn(kTrialsVariants),
ValuesIn(kTrialsVariants),
ValuesIn(kTrialsVariants)));
TEST_P(DataChannelIntegrationTestUnifiedPlanFieldTrials,
DtlsRestartOneCalleAtATime) {
if (auto msg = CheckSupported()) {
GTEST_SKIP() << "Testcase not supported for this scenario: " << msg;
}
auto callee2 = SetupCallee2AndDc(/* addTurn= */ false);
const bool callee_active = std::get<0>(GetParam());
std::unique_ptr<SessionDescriptionInterface> offer;
callee()->SetReceivedSdpMunger(
[&](std::unique_ptr<SessionDescriptionInterface>& sdp) {
if (callee_active) {
MakeOfferHavePassiveDtlsRole(sdp);
} else {
MakeOfferHaveActiveDtlsRole(sdp);
}
// Capture offer so that it can be sent to Callee2 too.
offer = sdp->Clone();
});
callee()->SetGeneratedSdpMunger(
[&](std::unique_ptr<SessionDescriptionInterface>& sdp) {
// Modify offer to kPrAnswer
SetSdpType(sdp, SdpType::kPrAnswer);
if (callee_active) {
MakeOfferHaveActiveDtlsRole(sdp);
} else {
MakeOfferHavePassiveDtlsRole(sdp);
}
});
caller()->CreateAndSetAndSignalOffer();
ASSERT_FALSE(HasFailure());
WaitConnectedAndDcOpen(/* prAnswer= */ true, caller(), callee());
VerifyDtlsRoles(caller(), callee());
ASSERT_FALSE(HasFailure());
std::atomic<int> caller_sent_on_dc(0);
std::atomic<int> callee2_sent_on_dc(0);
caller()->set_connection_change_callback([&](auto new_state) {
SendOnDatachannelWhenConnectedCallback(caller(), "KESO", caller_sent_on_dc);
});
// Install same cb on both connection_change_callback and
// data_observer->set_state_change_callback since they can fire in any order.
callee2->set_connection_change_callback([&](auto new_state) {
SendOnDatachannelWhenConnectedCallback(callee2.get(), "KENT",
callee2_sent_on_dc);
});
callee2->data_observer()->set_state_change_callback([&](auto new_state) {
SendOnDatachannelWhenConnectedCallback(callee2.get(), "KENT",
callee2_sent_on_dc);
});
// Now let callee2 get the offer, apply it and send the answer to caller.
std::string offer_sdp;
EXPECT_TRUE(offer->ToString(&offer_sdp));
callee2->ReceiveSdpMessage(SdpType::kOffer, offer_sdp);
WaitConnectedAndDcOpen(/* prAnswer= */ false, caller(), callee2.get());
ASSERT_FALSE(HasFailure());
VerifyReceivedDcMessages(caller(), "KENT", callee2_sent_on_dc);
VerifyReceivedDcMessages(callee2.get(), "KESO", caller_sent_on_dc);
VerifyDtlsRoles(caller(), callee2.get());
ASSERT_FALSE(HasFailure());
}
TEST_P(DataChannelIntegrationTestUnifiedPlanFieldTrials,
DtlsRestartTwoActiveCallees) {
if (auto msg = CheckSupported()) {
GTEST_SKIP() << "Testcase not supported for this scenario: " << msg;
}
auto callee2 = SetupCallee2AndDc(/* addTurn= */ true);
const bool callee_active = std::get<0>(GetParam());
std::unique_ptr<SessionDescriptionInterface> offer;
callee()->SetReceivedSdpMunger(
[&](std::unique_ptr<SessionDescriptionInterface>& sdp) {
if (callee_active) {
MakeOfferHavePassiveDtlsRole(sdp);
} else {
MakeOfferHaveActiveDtlsRole(sdp);
}
// Capture offer so that it can be sent to Callee2 too.
offer = sdp->Clone();
});
callee()->SetGeneratedSdpMunger(
[&](std::unique_ptr<SessionDescriptionInterface>& sdp) {
// Modify offer to kPrAnswer
SetSdpType(sdp, SdpType::kPrAnswer);
if (callee_active) {
MakeOfferHaveActiveDtlsRole(sdp);
} else {
MakeOfferHavePassiveDtlsRole(sdp);
}
});
bool first_answer = true;
std::unique_ptr<SessionDescriptionInterface> answer;
caller()->SetReceivedSdpMunger(
[&](std::unique_ptr<SessionDescriptionInterface>& sdp) {
if (first_answer) {
first_answer = false;
} else {
answer = std::move(sdp);
}
});
caller()->CreateAndSetAndSignalOffer();
std::string offer_sdp;
EXPECT_TRUE(offer->ToString(&offer_sdp));
// Apply offer on callee2 "in parallell" to callee.
callee2->ReceiveSdpMessage(SdpType::kOffer, offer_sdp);
ASSERT_FALSE(HasFailure());
EXPECT_EQ(callee2->pc()->signaling_state(), PeerConnectionInterface::kStable);
WaitConnectedAndDcOpen(/* prAnswer= */ true, caller(), callee());
ASSERT_FALSE(HasFailure());
// Forward turn ice candidate also to callee2.
auto candidate = caller()->last_gathered_ice_candidate();
std::string ice_sdp;
EXPECT_TRUE(candidate->ToString(&ice_sdp));
callee2->ReceiveIceMessage(candidate->sdp_mid(), candidate->sdp_mline_index(),
ice_sdp);
// Wait until callee2 is ICE connected.
ASSERT_THAT(
WaitUntil(
[&] { return callee2->pc()->standardized_ice_connection_state(); },
Eq(PeerConnectionInterface::kIceConnectionConnected)),
IsRtcOk());
VerifyDtlsRoles(caller(), callee());
ASSERT_THAT(callee2->dtls_transport_role(), Eq(std::nullopt));
std::atomic<int> caller_sent_on_dc(0);
std::atomic<int> callee2_sent_on_dc(0);
caller()->set_connection_change_callback([&](auto new_state) {
SendOnDatachannelWhenConnectedCallback(caller(), "KESO", caller_sent_on_dc);
});
// Install same cb on both connection_change_callback and
// data_observer->set_state_change_callback since they can fire in any order.
callee2->set_connection_change_callback([&](auto new_state) {
SendOnDatachannelWhenConnectedCallback(callee2.get(), "KENT",
callee2_sent_on_dc);
});
callee2->data_observer()->set_state_change_callback([&](auto new_state) {
SendOnDatachannelWhenConnectedCallback(callee2.get(), "KENT",
callee2_sent_on_dc);
});
// Now switch to callee2!
first_answer = true;
ASSERT_THAT(answer, testing::Not(testing::IsNull()));
std::string answer_sdp;
EXPECT_TRUE(answer->ToString(&answer_sdp));
caller()->ReceiveSdpMessage(SdpType::kAnswer, answer_sdp);
EXPECT_EQ(caller()->pc()->signaling_state(),
PeerConnectionInterface::kStable);
VerifyReceivedDcMessages(caller(), "KENT", callee2_sent_on_dc);
VerifyReceivedDcMessages(callee2.get(), "KESO", caller_sent_on_dc);
VerifyDtlsRoles(caller(), callee2.get());
ASSERT_FALSE(HasFailure());
}
#endif // WEBRTC_HAVE_SCTP
} // namespace
} // namespace webrtc