blob: e3bdf147568e0110c41b7b46d6982078123e9c63 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/frame_cadence_adapter.h"
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
#include "absl/functional/any_invocable.h"
#include "api/metronome/test/fake_metronome.h"
#include "api/task_queue/default_task_queue_factory.h"
#include "api/task_queue/task_queue_base.h"
#include "api/task_queue/task_queue_factory.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "api/video/nv12_buffer.h"
#include "api/video/video_frame.h"
#include "rtc_base/event.h"
#include "rtc_base/logging.h"
#include "rtc_base/rate_statistics.h"
#include "rtc_base/task_queue_for_test.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/metrics.h"
#include "system_wrappers/include/ntp_time.h"
#include "system_wrappers/include/sleep.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"
#include "test/time_controller/simulated_time_controller.h"
namespace webrtc {
namespace {
using ::testing::_;
using ::testing::ElementsAre;
using ::testing::InSequence;
using ::testing::Invoke;
using ::testing::InvokeWithoutArgs;
using ::testing::Mock;
using ::testing::NiceMock;
using ::testing::Pair;
using ::testing::Values;
VideoFrame CreateFrame() {
return VideoFrame::Builder()
.set_video_frame_buffer(
rtc::make_ref_counted<NV12Buffer>(/*width=*/16, /*height=*/16))
.build();
}
VideoFrame CreateFrameWithTimestamps(
GlobalSimulatedTimeController* time_controller) {
return VideoFrame::Builder()
.set_video_frame_buffer(
rtc::make_ref_counted<NV12Buffer>(/*width=*/16, /*height=*/16))
.set_ntp_time_ms(time_controller->GetClock()->CurrentNtpInMilliseconds())
.set_timestamp_us(time_controller->GetClock()->CurrentTime().us())
.build();
}
std::unique_ptr<FrameCadenceAdapterInterface> CreateAdapter(
const FieldTrialsView& field_trials,
Clock* clock) {
return FrameCadenceAdapterInterface::Create(
clock, TaskQueueBase::Current(), /*metronome=*/nullptr,
/*worker_queue=*/nullptr, field_trials);
}
class MockCallback : public FrameCadenceAdapterInterface::Callback {
public:
MOCK_METHOD(void, OnFrame, (Timestamp, bool, const VideoFrame&), (override));
MOCK_METHOD(void, OnDiscardedFrame, (), (override));
MOCK_METHOD(void, RequestRefreshFrame, (), (override));
};
TEST(FrameCadenceAdapterTest, CountsOutstandingFramesToProcess) {
test::ScopedKeyValueConfig no_field_trials;
GlobalSimulatedTimeController time_controller(Timestamp::Millis(1));
MockCallback callback;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
EXPECT_CALL(callback, OnFrame(_, true, _)).Times(1);
EXPECT_CALL(callback, OnFrame(_, false, _)).Times(1);
auto frame = CreateFrame();
adapter->OnFrame(frame);
adapter->OnFrame(frame);
time_controller.AdvanceTime(TimeDelta::Zero());
EXPECT_CALL(callback, OnFrame(_, false, _)).Times(1);
adapter->OnFrame(frame);
time_controller.AdvanceTime(TimeDelta::Zero());
}
TEST(FrameCadenceAdapterTest, FrameRateFollowsRateStatisticsByDefault) {
test::ScopedKeyValueConfig no_field_trials;
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
MockCallback callback;
adapter->Initialize(&callback);
// Create an "oracle" rate statistics which should be followed on a sequence
// of frames.
RateStatistics rate(
FrameCadenceAdapterInterface::kFrameRateAveragingWindowSizeMs, 1000);
for (int frame = 0; frame != 10; ++frame) {
time_controller.AdvanceTime(TimeDelta::Millis(10));
std::optional<int64_t> expected_fps =
rate.Rate(time_controller.GetClock()->TimeInMilliseconds());
rate.Update(1, time_controller.GetClock()->TimeInMilliseconds());
// FrameCadanceAdapter::OnFrame post the frame to another sequence.
adapter->OnFrame(CreateFrameWithTimestamps(&time_controller));
time_controller.AdvanceTime(TimeDelta::Millis(0));
EXPECT_EQ(expected_fps, adapter->GetInputFrameRateFps())
<< " failed for frame " << frame;
}
}
TEST(FrameCadenceAdapterTest, FrameRateFollowsMaxFpsWhenZeroHertzActivated) {
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
MockCallback callback;
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 1});
for (int frame = 0; frame != 10; ++frame) {
time_controller.AdvanceTime(TimeDelta::Millis(10));
// FrameCadanceAdapter::OnFrame post the frame to another sequence.
adapter->OnFrame(CreateFrameWithTimestamps(&time_controller));
time_controller.AdvanceTime(TimeDelta::Millis(0));
EXPECT_EQ(adapter->GetInputFrameRateFps(), 1u);
}
}
TEST(FrameCadenceAdapterTest, ZeroHertzAdapterSupportsMaxFpsChange) {
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
MockCallback callback;
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 1});
time_controller.AdvanceTime(TimeDelta::Zero());
EXPECT_EQ(adapter->GetInputFrameRateFps(), 1u);
adapter->OnFrame(CreateFrame());
time_controller.AdvanceTime(TimeDelta::Seconds(1));
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 2});
time_controller.AdvanceTime(TimeDelta::Zero());
EXPECT_EQ(adapter->GetInputFrameRateFps(), 2u);
adapter->OnFrame(CreateFrame());
// Ensure that the max_fps has been changed from 1 to 2 fps even if it was
// changed while zero hertz was already active.
EXPECT_CALL(callback, OnFrame);
time_controller.AdvanceTime(TimeDelta::Millis(500));
}
TEST(FrameCadenceAdapterTest,
FrameRateFollowsRateStatisticsAfterZeroHertzDeactivated) {
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
MockCallback callback;
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 1});
RateStatistics rate(
FrameCadenceAdapterInterface::kFrameRateAveragingWindowSizeMs, 1000);
constexpr int MAX = 10;
for (int frame = 0; frame != MAX; ++frame) {
time_controller.AdvanceTime(TimeDelta::Millis(10));
rate.Update(1, time_controller.GetClock()->TimeInMilliseconds());
adapter->OnFrame(CreateFrameWithTimestamps(&time_controller));
time_controller.AdvanceTime(TimeDelta::Millis(0));
}
// Turn off zero hertz on the next-last frame; after the last frame we
// should see a value that tracks the rate oracle.
adapter->SetZeroHertzModeEnabled(std::nullopt);
// Last frame.
time_controller.AdvanceTime(TimeDelta::Millis(10));
adapter->OnFrame(CreateFrameWithTimestamps(&time_controller));
time_controller.AdvanceTime(TimeDelta::Millis(0));
EXPECT_EQ(rate.Rate(time_controller.GetClock()->TimeInMilliseconds()),
adapter->GetInputFrameRateFps());
}
TEST(FrameCadenceAdapterTest, ForwardsFramesDelayed) {
MockCallback callback;
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 1});
constexpr int kNumFrames = 3;
NtpTime original_ntp_time = time_controller.GetClock()->CurrentNtpTime();
auto frame = CreateFrameWithTimestamps(&time_controller);
int64_t original_timestamp_us = frame.timestamp_us();
for (int index = 0; index != kNumFrames; ++index) {
EXPECT_CALL(callback, OnFrame).Times(0);
adapter->OnFrame(frame);
EXPECT_CALL(callback, OnFrame)
.WillOnce(Invoke([&](Timestamp post_time, bool,
const VideoFrame& frame) {
EXPECT_EQ(post_time, time_controller.GetClock()->CurrentTime());
EXPECT_EQ(frame.timestamp_us(),
original_timestamp_us + index * rtc::kNumMicrosecsPerSec);
EXPECT_EQ(frame.ntp_time_ms(), original_ntp_time.ToMs() +
index * rtc::kNumMillisecsPerSec);
}));
time_controller.AdvanceTime(TimeDelta::Seconds(1));
frame = CreateFrameWithTimestamps(&time_controller);
}
}
TEST(FrameCadenceAdapterTest, DelayedProcessingUnderSlightContention) {
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
MockCallback callback;
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 1});
// Expect frame delivery at 1 sec despite target sequence not running
// callbacks for the time skipped.
constexpr TimeDelta time_skipped = TimeDelta::Millis(999);
EXPECT_CALL(callback, OnFrame).WillOnce(InvokeWithoutArgs([&] {
EXPECT_EQ(time_controller.GetClock()->CurrentTime(),
Timestamp::Zero() + TimeDelta::Seconds(1));
}));
adapter->OnFrame(CreateFrame());
time_controller.SkipForwardBy(time_skipped);
time_controller.AdvanceTime(TimeDelta::Seconds(1) - time_skipped);
}
TEST(FrameCadenceAdapterTest, DelayedProcessingUnderHeavyContention) {
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
MockCallback callback;
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 1});
// Expect frame delivery at origin + `time_skipped` when the target sequence
// is not running callbacks for the initial 1+ sec.
constexpr TimeDelta time_skipped =
TimeDelta::Seconds(1) + TimeDelta::Micros(1);
EXPECT_CALL(callback, OnFrame).WillOnce(InvokeWithoutArgs([&] {
EXPECT_EQ(time_controller.GetClock()->CurrentTime(),
Timestamp::Zero() + time_skipped);
}));
adapter->OnFrame(CreateFrame());
time_controller.SkipForwardBy(time_skipped);
time_controller.AdvanceTime(TimeDelta::Zero());
}
TEST(FrameCadenceAdapterTest, RepeatsFramesDelayed) {
// Logic in the frame cadence adapter avoids modifying frame NTP and render
// timestamps if these timestamps looks unset, which is the case when the
// clock is initialized running from 0. For this reason we choose the
// `time_controller` initialization constant to something arbitrary which is
// not 0.
MockCallback callback;
GlobalSimulatedTimeController time_controller(Timestamp::Millis(47892223));
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 1});
NtpTime original_ntp_time = time_controller.GetClock()->CurrentNtpTime();
// Send one frame, expect 2 subsequent repeats.
auto frame = CreateFrameWithTimestamps(&time_controller);
int64_t original_timestamp_us = frame.timestamp_us();
adapter->OnFrame(frame);
EXPECT_CALL(callback, OnFrame)
.WillOnce(Invoke([&](Timestamp post_time, bool, const VideoFrame& frame) {
EXPECT_EQ(post_time, time_controller.GetClock()->CurrentTime());
EXPECT_EQ(frame.timestamp_us(), original_timestamp_us);
EXPECT_EQ(frame.ntp_time_ms(), original_ntp_time.ToMs());
}));
time_controller.AdvanceTime(TimeDelta::Seconds(1));
Mock::VerifyAndClearExpectations(&callback);
EXPECT_CALL(callback, OnFrame)
.WillOnce(Invoke([&](Timestamp post_time, bool, const VideoFrame& frame) {
EXPECT_EQ(post_time, time_controller.GetClock()->CurrentTime());
EXPECT_EQ(frame.timestamp_us(),
original_timestamp_us + rtc::kNumMicrosecsPerSec);
EXPECT_EQ(frame.ntp_time_ms(),
original_ntp_time.ToMs() + rtc::kNumMillisecsPerSec);
}));
time_controller.AdvanceTime(TimeDelta::Seconds(1));
Mock::VerifyAndClearExpectations(&callback);
EXPECT_CALL(callback, OnFrame)
.WillOnce(Invoke([&](Timestamp post_time, bool, const VideoFrame& frame) {
EXPECT_EQ(post_time, time_controller.GetClock()->CurrentTime());
EXPECT_EQ(frame.timestamp_us(),
original_timestamp_us + 2 * rtc::kNumMicrosecsPerSec);
EXPECT_EQ(frame.ntp_time_ms(),
original_ntp_time.ToMs() + 2 * rtc::kNumMillisecsPerSec);
}));
time_controller.AdvanceTime(TimeDelta::Seconds(1));
}
TEST(FrameCadenceAdapterTest,
RepeatsFramesWithoutTimestampsWithUnsetTimestamps) {
// Logic in the frame cadence adapter avoids modifying frame NTP and render
// timestamps if these timestamps looks unset, which is the case when the
// clock is initialized running from 0. In this test we deliberately don't set
// it to zero, but select unset timestamps in the frames (via CreateFrame())
// and verify that the timestamp modifying logic doesn't depend on the current
// time.
MockCallback callback;
GlobalSimulatedTimeController time_controller(Timestamp::Millis(4711));
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 1});
// Send one frame, expect a repeat.
adapter->OnFrame(CreateFrame());
EXPECT_CALL(callback, OnFrame)
.WillOnce(Invoke([&](Timestamp post_time, bool, const VideoFrame& frame) {
EXPECT_EQ(post_time, time_controller.GetClock()->CurrentTime());
EXPECT_EQ(frame.timestamp_us(), 0);
EXPECT_EQ(frame.ntp_time_ms(), 0);
}));
time_controller.AdvanceTime(TimeDelta::Seconds(1));
Mock::VerifyAndClearExpectations(&callback);
EXPECT_CALL(callback, OnFrame)
.WillOnce(Invoke([&](Timestamp post_time, bool, const VideoFrame& frame) {
EXPECT_EQ(post_time, time_controller.GetClock()->CurrentTime());
EXPECT_EQ(frame.timestamp_us(), 0);
EXPECT_EQ(frame.ntp_time_ms(), 0);
}));
time_controller.AdvanceTime(TimeDelta::Seconds(1));
}
TEST(FrameCadenceAdapterTest, StopsRepeatingFramesDelayed) {
// At 1s, the initially scheduled frame appears.
// At 2s, the repeated initial frame appears.
// At 2.5s, we schedule another new frame.
// At 3.5s, we receive this frame.
MockCallback callback;
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 1});
NtpTime original_ntp_time = time_controller.GetClock()->CurrentNtpTime();
// Send one frame, expect 1 subsequent repeat.
adapter->OnFrame(CreateFrameWithTimestamps(&time_controller));
EXPECT_CALL(callback, OnFrame).Times(2);
time_controller.AdvanceTime(TimeDelta::Seconds(2.5));
Mock::VerifyAndClearExpectations(&callback);
// Send the new frame at 2.5s, which should appear after 3.5s.
adapter->OnFrame(CreateFrameWithTimestamps(&time_controller));
EXPECT_CALL(callback, OnFrame)
.WillOnce(Invoke([&](Timestamp, bool, const VideoFrame& frame) {
EXPECT_EQ(frame.timestamp_us(), 5 * rtc::kNumMicrosecsPerSec / 2);
EXPECT_EQ(frame.ntp_time_ms(),
original_ntp_time.ToMs() + 5u * rtc::kNumMillisecsPerSec / 2);
}));
time_controller.AdvanceTime(TimeDelta::Seconds(1));
}
TEST(FrameCadenceAdapterTest, RequestsRefreshFrameOnKeyFrameRequestWhenNew) {
MockCallback callback;
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
constexpr int kMaxFps = 10;
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, kMaxFps});
EXPECT_CALL(callback, RequestRefreshFrame);
time_controller.AdvanceTime(
TimeDelta::Seconds(1) *
FrameCadenceAdapterInterface::kOnDiscardedFrameRefreshFramePeriod /
kMaxFps);
adapter->ProcessKeyFrameRequest();
}
TEST(FrameCadenceAdapterTest, IgnoresKeyFrameRequestShortlyAfterFrame) {
MockCallback callback;
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 10});
adapter->OnFrame(CreateFrame());
time_controller.AdvanceTime(TimeDelta::Zero());
EXPECT_CALL(callback, RequestRefreshFrame).Times(0);
adapter->ProcessKeyFrameRequest();
}
TEST(FrameCadenceAdapterTest, RequestsRefreshFramesUntilArrival) {
MockCallback callback;
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
constexpr int kMaxFps = 10;
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, kMaxFps});
// We should see max_fps + 1 -
// FrameCadenceAdapterInterface::kOnDiscardedFrameRefreshFramePeriod refresh
// frame requests during the one second we wait until we send a single frame,
// after which refresh frame requests should cease (we should see no such
// requests during a second).
EXPECT_CALL(callback, RequestRefreshFrame)
.Times(kMaxFps + 1 -
FrameCadenceAdapterInterface::kOnDiscardedFrameRefreshFramePeriod);
time_controller.AdvanceTime(TimeDelta::Seconds(1));
Mock::VerifyAndClearExpectations(&callback);
adapter->OnFrame(CreateFrame());
EXPECT_CALL(callback, RequestRefreshFrame).Times(0);
time_controller.AdvanceTime(TimeDelta::Seconds(1));
}
TEST(FrameCadenceAdapterTest, RequestsRefreshAfterFrameDrop) {
MockCallback callback;
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
constexpr int kMaxFps = 10;
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, kMaxFps});
EXPECT_CALL(callback, RequestRefreshFrame).Times(0);
// Send a frame through to cancel the initial delayed timer waiting for first
// frame entry.
adapter->OnFrame(CreateFrame());
time_controller.AdvanceTime(TimeDelta::Seconds(1));
Mock::VerifyAndClearExpectations(&callback);
// Send a dropped frame indication without any following frames received.
// After FrameCadenceAdapterInterface::kOnDiscardedFrameRefreshFramePeriod
// frame periods, we should receive a first refresh request.
adapter->OnDiscardedFrame();
EXPECT_CALL(callback, RequestRefreshFrame);
time_controller.AdvanceTime(
TimeDelta::Seconds(1) *
FrameCadenceAdapterInterface::kOnDiscardedFrameRefreshFramePeriod /
kMaxFps);
Mock::VerifyAndClearExpectations(&callback);
// We will now receive a refresh frame request for every frame period.
EXPECT_CALL(callback, RequestRefreshFrame).Times(kMaxFps);
time_controller.AdvanceTime(TimeDelta::Seconds(1));
Mock::VerifyAndClearExpectations(&callback);
// After a frame is passed the requests will cease.
EXPECT_CALL(callback, RequestRefreshFrame).Times(0);
adapter->OnFrame(CreateFrame());
time_controller.AdvanceTime(TimeDelta::Seconds(1));
}
TEST(FrameCadenceAdapterTest, OmitsRefreshAfterFrameDropWithTimelyFrameEntry) {
MockCallback callback;
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
constexpr int kMaxFps = 10;
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, kMaxFps});
// Send a frame through to cancel the initial delayed timer waiting for first
// frame entry.
EXPECT_CALL(callback, RequestRefreshFrame).Times(0);
adapter->OnFrame(CreateFrame());
time_controller.AdvanceTime(TimeDelta::Seconds(1));
Mock::VerifyAndClearExpectations(&callback);
// Send a frame drop indication. No refresh frames should be requested
// until FrameCadenceAdapterInterface::kOnDiscardedFrameRefreshFramePeriod
// intervals pass. Stop short of this.
EXPECT_CALL(callback, RequestRefreshFrame).Times(0);
adapter->OnDiscardedFrame();
time_controller.AdvanceTime(
TimeDelta::Seconds(1) *
FrameCadenceAdapterInterface::kOnDiscardedFrameRefreshFramePeriod /
kMaxFps -
TimeDelta::Micros(1));
Mock::VerifyAndClearExpectations(&callback);
// Send a frame. The timer to request the refresh frame should be cancelled by
// the reception, so no refreshes should be requested.
EXPECT_CALL(callback, RequestRefreshFrame).Times(0);
adapter->OnFrame(CreateFrame());
time_controller.AdvanceTime(TimeDelta::Seconds(1));
Mock::VerifyAndClearExpectations(&callback);
}
TEST(FrameCadenceAdapterTest, AcceptsUnconfiguredLayerFeedback) {
// This is a regression test for bugs.webrtc.org/14417.
MockCallback callback;
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{.num_simulcast_layers =
1});
constexpr int kMaxFps = 10;
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, kMaxFps});
time_controller.AdvanceTime(TimeDelta::Zero());
adapter->UpdateLayerQualityConvergence(2, false);
adapter->UpdateLayerStatus(2, false);
}
TEST(FrameCadenceAdapterTest, IgnoresDropInducedCallbacksPostDestruction) {
auto callback = std::make_unique<MockCallback>();
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
auto queue = time_controller.GetTaskQueueFactory()->CreateTaskQueue(
"queue", TaskQueueFactory::Priority::NORMAL);
test::ScopedKeyValueConfig no_field_trials;
auto adapter = FrameCadenceAdapterInterface::Create(
time_controller.GetClock(), queue.get(), /*metronome=*/nullptr,
/*worker_queue=*/nullptr, no_field_trials);
queue->PostTask([&adapter, &callback] {
adapter->Initialize(callback.get());
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
});
time_controller.AdvanceTime(TimeDelta::Zero());
constexpr int kMaxFps = 10;
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, kMaxFps});
adapter->OnDiscardedFrame();
time_controller.AdvanceTime(TimeDelta::Zero());
callback = nullptr;
queue->PostTask([adapter = std::move(adapter)]() mutable {});
time_controller.AdvanceTime(3 * TimeDelta::Seconds(1) / kMaxFps);
}
TEST(FrameCadenceAdapterTest, EncodeFramesAreAlignedWithMetronomeTick) {
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
// Here the metronome interval is 33ms, because the metronome is not
// infrequent then the encode tasks are aligned with the tick period.
static constexpr TimeDelta kTickPeriod = TimeDelta::Millis(33);
auto queue = time_controller.GetTaskQueueFactory()->CreateTaskQueue(
"queue", TaskQueueFactory::Priority::NORMAL);
auto worker_queue = time_controller.GetTaskQueueFactory()->CreateTaskQueue(
"work_queue", TaskQueueFactory::Priority::NORMAL);
test::FakeMetronome metronome(kTickPeriod);
test::ScopedKeyValueConfig no_field_trials;
auto adapter = FrameCadenceAdapterInterface::Create(
time_controller.GetClock(), queue.get(), &metronome, worker_queue.get(),
no_field_trials);
MockCallback callback;
adapter->Initialize(&callback);
auto frame = CreateFrame();
// `callback->OnFrame()` would not be called if only 32ms went by after
// `adapter->OnFrame()`.
EXPECT_CALL(callback, OnFrame(_, false, _)).Times(0);
adapter->OnFrame(frame);
time_controller.AdvanceTime(TimeDelta::Millis(32));
Mock::VerifyAndClearExpectations(&callback);
// `callback->OnFrame()` should be called if 33ms went by after
// `adapter->OnFrame()`.
EXPECT_CALL(callback, OnFrame(_, false, _)).Times(1);
time_controller.AdvanceTime(TimeDelta::Millis(1));
Mock::VerifyAndClearExpectations(&callback);
// `callback->OnFrame()` would not be called if only 32ms went by after
// `adapter->OnFrame()`.
EXPECT_CALL(callback, OnFrame(_, false, _)).Times(0);
// Send two frame before next tick.
adapter->OnFrame(frame);
adapter->OnFrame(frame);
time_controller.AdvanceTime(TimeDelta::Millis(32));
Mock::VerifyAndClearExpectations(&callback);
// `callback->OnFrame()` should be called if 33ms went by after
// `adapter->OnFrame()`.
EXPECT_CALL(callback, OnFrame(_, false, _)).Times(2);
time_controller.AdvanceTime(TimeDelta::Millis(1));
Mock::VerifyAndClearExpectations(&callback);
// Change the metronome tick period to 67ms (15Hz).
metronome.SetTickPeriod(TimeDelta::Millis(67));
// Expect the encode would happen immediately.
EXPECT_CALL(callback, OnFrame(_, false, _)).Times(1);
adapter->OnFrame(frame);
time_controller.AdvanceTime(TimeDelta::Zero());
Mock::VerifyAndClearExpectations(&callback);
// Change the metronome tick period to 16ms (60Hz).
metronome.SetTickPeriod(TimeDelta::Millis(16));
// Expect the encode would not happen if only 15ms went by after
// `adapter->OnFrame()`.
EXPECT_CALL(callback, OnFrame(_, false, _)).Times(0);
adapter->OnFrame(frame);
time_controller.AdvanceTime(TimeDelta::Millis(15));
Mock::VerifyAndClearExpectations(&callback);
// `callback->OnFrame()` should be called if 16ms went by after
// `adapter->OnFrame()`.
EXPECT_CALL(callback, OnFrame(_, false, _)).Times(1);
time_controller.AdvanceTime(TimeDelta::Millis(1));
Mock::VerifyAndClearExpectations(&callback);
rtc::Event finalized;
queue->PostTask([&] {
adapter = nullptr;
finalized.Set();
});
finalized.Wait(rtc::Event::kForever);
}
TEST(FrameCadenceAdapterTest, ShutdownUnderMetronome) {
// Regression test for crbug.com/356423094.
// The current thread takes the role of worker queue.
GlobalSimulatedTimeController time_controller(Timestamp::Zero());
static constexpr TimeDelta kTickPeriod = TimeDelta::Millis(100);
auto queue = time_controller.GetTaskQueueFactory()->CreateTaskQueue(
"queue", TaskQueueFactory::Priority::NORMAL);
test::FakeMetronome metronome(kTickPeriod);
test::ScopedKeyValueConfig no_field_trials;
auto adapter = FrameCadenceAdapterInterface::Create(
time_controller.GetClock(), queue.get(), &metronome,
TaskQueueBase::Current(), no_field_trials);
MockCallback callback;
EXPECT_CALL(callback, OnFrame).Times(0);
adapter->Initialize(&callback);
// Pass a frame, this is expected to trigger an encode call in the future.
adapter->OnFrame(CreateFrame());
// Then post destruction of the adapter and destroy the encode queue from the
// worker (i.e. current).
SendTask(queue.get(), [&] { adapter = nullptr; });
queue = nullptr;
// Now that we advance time, there should be no encoding happening.
time_controller.AdvanceTime(TimeDelta::Millis(100));
}
class FrameCadenceAdapterSimulcastLayersParamTest
: public ::testing::TestWithParam<int> {
public:
static constexpr int kMaxFpsHz = 8;
static constexpr TimeDelta kMinFrameDelay =
TimeDelta::Millis(1000 / kMaxFpsHz);
static constexpr TimeDelta kIdleFrameDelay =
FrameCadenceAdapterInterface::kZeroHertzIdleRepeatRatePeriod;
FrameCadenceAdapterSimulcastLayersParamTest() {
adapter_->Initialize(&callback_);
adapter_->OnConstraintsChanged(VideoTrackSourceConstraints{0, kMaxFpsHz});
time_controller_.AdvanceTime(TimeDelta::Zero());
adapter_->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
const size_t num_spatial_layers = GetParam();
adapter_->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{num_spatial_layers});
}
int NumSpatialLayers() const { return GetParam(); }
protected:
test::ScopedKeyValueConfig no_field_trials_;
MockCallback callback_;
GlobalSimulatedTimeController time_controller_{Timestamp::Zero()};
const std::unique_ptr<FrameCadenceAdapterInterface> adapter_{
CreateAdapter(no_field_trials_, time_controller_.GetClock())};
};
TEST_P(FrameCadenceAdapterSimulcastLayersParamTest,
LayerReconfigurationResetsConvergenceInfo) {
// Assumes layer reconfiguration has just happened.
// Verify the state is unconverged.
adapter_->OnFrame(CreateFrame());
EXPECT_CALL(callback_, OnFrame).Times(kMaxFpsHz);
time_controller_.AdvanceTime(kMaxFpsHz * kMinFrameDelay);
}
TEST_P(FrameCadenceAdapterSimulcastLayersParamTest,
IgnoresKeyFrameRequestWhileShortRepeating) {
// Plot:
// 1. 0 * kMinFrameDelay: Start unconverged. Frame -> adapter.
// 2. 1 * kMinFrameDelay: Frame -> callback.
// 3. 2 * kMinFrameDelay: 1st short repeat.
// Since we're unconverged we assume the process continues.
adapter_->OnFrame(CreateFrame());
time_controller_.AdvanceTime(2 * kMinFrameDelay);
EXPECT_CALL(callback_, RequestRefreshFrame).Times(0);
adapter_->ProcessKeyFrameRequest();
// Expect short repeating as ususal.
EXPECT_CALL(callback_, OnFrame).Times(8);
time_controller_.AdvanceTime(8 * kMinFrameDelay);
}
TEST_P(FrameCadenceAdapterSimulcastLayersParamTest,
IgnoresKeyFrameRequestJustBeforeIdleRepeating) {
// (Only for > 0 spatial layers as we assume not converged with 0 layers)
if (NumSpatialLayers() == 0)
return;
// Plot:
// 1. 0 * kMinFrameDelay: Start converged. Frame -> adapter.
// 2. 1 * kMinFrameDelay: Frame -> callback. New repeat scheduled at
// (kMaxFpsHz + 1) * kMinFrameDelay.
// 3. kMaxFpsHz * kMinFrameDelay: Process keyframe.
// 4. (kMaxFpsHz + N) * kMinFrameDelay (1 <= N <= kMaxFpsHz): Short repeats
// due to not converged.
for (int i = 0; i != NumSpatialLayers(); i++) {
adapter_->UpdateLayerStatus(i, /*enabled=*/true);
adapter_->UpdateLayerQualityConvergence(i, /*converged=*/true);
}
adapter_->OnFrame(CreateFrame());
time_controller_.AdvanceTime(kIdleFrameDelay);
// We process the key frame request kMinFrameDelay before the first idle
// repeat should happen. The resulting repeats should happen spaced by
// kMinFrameDelay before we get new convergence info.
EXPECT_CALL(callback_, RequestRefreshFrame).Times(0);
adapter_->ProcessKeyFrameRequest();
EXPECT_CALL(callback_, OnFrame).Times(kMaxFpsHz);
time_controller_.AdvanceTime(kMaxFpsHz * kMinFrameDelay);
}
TEST_P(FrameCadenceAdapterSimulcastLayersParamTest,
IgnoresKeyFrameRequestShortRepeatsBeforeIdleRepeat) {
// (Only for > 0 spatial layers as we assume not converged with 0 layers)
if (NumSpatialLayers() == 0)
return;
// Plot:
// 1. 0 * kMinFrameDelay: Start converged. Frame -> adapter.
// 2. 1 * kMinFrameDelay: Frame -> callback. New repeat scheduled at
// (kMaxFpsHz + 1) * kMinFrameDelay.
// 3. 2 * kMinFrameDelay: Process keyframe.
// 4. (2 + N) * kMinFrameDelay (1 <= N <= kMaxFpsHz): Short repeats due to not
// converged.
for (int i = 0; i != NumSpatialLayers(); i++) {
adapter_->UpdateLayerStatus(i, /*enabled=*/true);
adapter_->UpdateLayerQualityConvergence(i, /*converged=*/true);
}
adapter_->OnFrame(CreateFrame());
time_controller_.AdvanceTime(2 * kMinFrameDelay);
// We process the key frame request (kMaxFpsHz - 1) * kMinFrameDelay before
// the first idle repeat should happen. The resulting repeats should happen
// spaced kMinFrameDelay before we get new convergence info.
EXPECT_CALL(callback_, RequestRefreshFrame).Times(0);
adapter_->ProcessKeyFrameRequest();
EXPECT_CALL(callback_, OnFrame).Times(kMaxFpsHz);
time_controller_.AdvanceTime(kMaxFpsHz * kMinFrameDelay);
}
INSTANTIATE_TEST_SUITE_P(,
FrameCadenceAdapterSimulcastLayersParamTest,
Values(0, 1, 2));
class ZeroHertzLayerQualityConvergenceTest : public ::testing::Test {
public:
static constexpr TimeDelta kMinFrameDelay = TimeDelta::Millis(100);
static constexpr TimeDelta kIdleFrameDelay =
FrameCadenceAdapterInterface::kZeroHertzIdleRepeatRatePeriod;
// Restricts non-idle repeat rate to 5 fps (default is 10 fps);
static constexpr int kRestrictedMaxFps = 5;
ZeroHertzLayerQualityConvergenceTest() {
adapter_->Initialize(&callback_);
adapter_->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{
/*num_simulcast_layers=*/2});
adapter_->OnConstraintsChanged(VideoTrackSourceConstraints{
/*min_fps=*/0, /*max_fps=*/TimeDelta::Seconds(1) / kMinFrameDelay});
time_controller_.AdvanceTime(TimeDelta::Zero());
}
void PassFrame() { adapter_->OnFrame(CreateFrame()); }
void ExpectFrameEntriesAtDelaysFromNow(
std::initializer_list<TimeDelta> list) {
Timestamp origin = time_controller_.GetClock()->CurrentTime();
for (auto delay : list) {
EXPECT_CALL(callback_, OnFrame(origin + delay, false, _));
time_controller_.AdvanceTime(origin + delay -
time_controller_.GetClock()->CurrentTime());
}
}
void ScheduleDelayed(TimeDelta delay, absl::AnyInvocable<void() &&> task) {
TaskQueueBase::Current()->PostDelayedTask(std::move(task), delay);
}
protected:
test::ScopedKeyValueConfig no_field_trials_;
MockCallback callback_;
GlobalSimulatedTimeController time_controller_{Timestamp::Zero()};
std::unique_ptr<FrameCadenceAdapterInterface> adapter_{
CreateAdapter(no_field_trials_, time_controller_.GetClock())};
};
TEST_F(ZeroHertzLayerQualityConvergenceTest, InitialStateUnconverged) {
// As the layer count is just configured, assume we start out as unconverged.
PassFrame();
ExpectFrameEntriesAtDelaysFromNow({
1 * kMinFrameDelay, // Original frame emitted
2 * kMinFrameDelay, // Short repeats.
3 * kMinFrameDelay, // ...
});
}
TEST_F(ZeroHertzLayerQualityConvergenceTest, UnconvergedAfterLayersEnabled) {
// With newly enabled layers we assume quality is unconverged.
adapter_->UpdateLayerStatus(0, /*enabled=*/true);
adapter_->UpdateLayerStatus(1, /*enabled=*/true);
PassFrame();
ExpectFrameEntriesAtDelaysFromNow({
kMinFrameDelay, // Original frame emitted
2 * kMinFrameDelay, // Unconverged repeats.
3 * kMinFrameDelay, // ...
});
}
TEST_F(ZeroHertzLayerQualityConvergenceTest,
RepeatsPassedFramesUntilConvergence) {
ScheduleDelayed(TimeDelta::Zero(), [&] {
adapter_->UpdateLayerStatus(0, /*enabled=*/true);
adapter_->UpdateLayerStatus(1, /*enabled=*/true);
PassFrame();
});
ScheduleDelayed(2.5 * kMinFrameDelay, [&] {
adapter_->UpdateLayerQualityConvergence(/*spatial_index=*/1, true);
});
ScheduleDelayed(3.5 * kMinFrameDelay, [&] {
adapter_->UpdateLayerQualityConvergence(/*spatial_index=*/0, true);
});
ScheduleDelayed(8 * kMinFrameDelay, [&] { PassFrame(); });
ScheduleDelayed(9.5 * kMinFrameDelay, [&] {
adapter_->UpdateLayerQualityConvergence(/*spatial_index=*/0, true);
});
ScheduleDelayed(10.5 * kMinFrameDelay, [&] {
adapter_->UpdateLayerQualityConvergence(/*spatial_index=*/1, true);
});
ExpectFrameEntriesAtDelaysFromNow({
kMinFrameDelay, // Original frame emitted
2 * kMinFrameDelay, // Repeat from kMinFrameDelay.
// 2.5 * kMinFrameDelay: Converged in layer 1, layer 0 still unconverged.
3 * kMinFrameDelay, // Repeat from 2 * kMinFrameDelay.
// 3.5 * kMinFrameDelay: Converged in layer 0 as well.
4 * kMinFrameDelay, // Repeat from 3 * kMinFrameDelay. An idle repeat is
// scheduled for kIdleFrameDelay + 3 *
// kMinFrameDelay.
// A new frame is passed at 8 * kMinFrameDelay.
9 * kMinFrameDelay, // Original frame emitted
// 9.5 * kMinFrameDelay: Converged in layer 0, layer 1 still unconverged.
10 * kMinFrameDelay, // Repeat from 9 * kMinFrameDelay.
// 10.5 * kMinFrameDelay: Converged in layer 0 as well.
11 * kMinFrameDelay, // Idle repeats from 1000.
11 * kMinFrameDelay + kIdleFrameDelay, // ...
11 * kMinFrameDelay + 2 * kIdleFrameDelay, // ...
// ...
});
}
TEST_F(ZeroHertzLayerQualityConvergenceTest,
UnconvergedRepeatRateAdaptsDownWhenRestricted) {
PassFrame();
ScheduleDelayed(1.5 * kMinFrameDelay, [&] {
adapter_->UpdateVideoSourceRestrictions(kRestrictedMaxFps);
});
ExpectFrameEntriesAtDelaysFromNow({
1 * kMinFrameDelay, // Original frame emitted at non-restricted rate.
// 1.5 * kMinFrameDelay: restricts max fps to 5 fps which should result
// in a new non-idle repeat delay of 2 * kMinFrameDelay.
2 * kMinFrameDelay, // Unconverged repeat at non-restricted rate.
4 * kMinFrameDelay, // Unconverged repeats at restricted rate. This
// happens 2 * kMinFrameDelay after the last frame.
6 * kMinFrameDelay, // ...
});
}
TEST_F(ZeroHertzLayerQualityConvergenceTest,
UnconvergedRepeatRateAdaptsUpWhenGoingFromRestrictedToUnrestricted) {
PassFrame();
ScheduleDelayed(1.5 * kMinFrameDelay, [&] {
adapter_->UpdateVideoSourceRestrictions(kRestrictedMaxFps);
});
ScheduleDelayed(5.5 * kMinFrameDelay, [&] {
adapter_->UpdateVideoSourceRestrictions(std::nullopt);
});
ExpectFrameEntriesAtDelaysFromNow({
1 * kMinFrameDelay, // Original frame emitted at non-restricted rate.
// 1.5 * kMinFrameDelay: restricts max fps to 5 fps which should result
// in a new non-idle repeat delay of 2 * kMinFrameDelay.
2 * kMinFrameDelay, // Unconverged repeat at non-restricted rate.
4 * kMinFrameDelay, // Unconverged repeat at restricted rate.
// 5.5 * kMinFrameDelay: removes frame-rate restriction and we should
// then go back to 10 fps as unconverged repeat rate.
6 * kMinFrameDelay, // Last unconverged repeat at restricted rate.
7 * kMinFrameDelay, // Back to unconverged repeat at non-restricted rate.
8 * kMinFrameDelay, // We are now unrestricted.
9 * kMinFrameDelay, // ...
});
}
TEST_F(ZeroHertzLayerQualityConvergenceTest,
UnconvergedRepeatRateMaintainsRestrictionOnReconfigureToHigherMaxFps) {
PassFrame();
ScheduleDelayed(1.5 * kMinFrameDelay, [&] {
adapter_->UpdateVideoSourceRestrictions(kRestrictedMaxFps);
});
ScheduleDelayed(2.5 * kMinFrameDelay, [&] {
adapter_->OnConstraintsChanged(VideoTrackSourceConstraints{
/*min_fps=*/0, /*max_fps=*/2 * TimeDelta::Seconds(1) / kMinFrameDelay});
});
ScheduleDelayed(3 * kMinFrameDelay, [&] { PassFrame(); });
ScheduleDelayed(8 * kMinFrameDelay, [&] {
adapter_->OnConstraintsChanged(VideoTrackSourceConstraints{
/*min_fps=*/0,
/*max_fps=*/0.2 * TimeDelta::Seconds(1) / kMinFrameDelay});
});
ScheduleDelayed(9 * kMinFrameDelay, [&] { PassFrame(); });
ExpectFrameEntriesAtDelaysFromNow({
1 * kMinFrameDelay, // Original frame emitted at non-restricted rate.
// 1.5 * kMinFrameDelay: restricts max fps to 5 fps which should result
// in a new non-idle repeat delay of 2 * kMinFrameDelay.
2 * kMinFrameDelay, // Unconverged repeat at non-restricted rate.
// 2.5 * kMinFrameDelay: new constraint asks for max rate of 20 fps.
// The 0Hz adapter is reconstructed for 20 fps but inherits the current
// restriction for rate of non-converged frames of 5 fps.
// A new frame is passed at 3 * kMinFrameDelay. The previous repeat
// cadence was stopped by the change in constraints.
3.5 * kMinFrameDelay, // Original frame emitted at non-restricted 20 fps.
// The delay is 0.5 * kMinFrameDelay.
5.5 * kMinFrameDelay, // Unconverged repeat at restricted rate.
// The delay is 2 * kMinFrameDelay when restricted.
7.5 * kMinFrameDelay, // ...
// 8 * kMinFrameDelay: new constraint asks for max rate of 2 fps.
// The 0Hz adapter is reconstructed for 2 fps and will therefore not obey
// the current restriction for rate of non-converged frames of 5 fps
// since the new max rate is lower.
// A new frame is passed at 9 * kMinFrameDelay. The previous repeat
// cadence was stopped by the change in constraints.
14 * kMinFrameDelay, // Original frame emitted at non-restricted 2 fps.
// The delay is 5 * kMinFrameDelay.
19 * kMinFrameDelay, // Unconverged repeat at non-restricted rate.
24 * kMinFrameDelay, // ...
});
}
class FrameCadenceAdapterMetricsTest : public ::testing::Test {
public:
FrameCadenceAdapterMetricsTest() : time_controller_(Timestamp::Millis(1)) {
metrics::Reset();
}
void DepleteTaskQueues() { time_controller_.AdvanceTime(TimeDelta::Zero()); }
protected:
GlobalSimulatedTimeController time_controller_;
};
TEST_F(FrameCadenceAdapterMetricsTest, RecordsTimeUntilFirstFrame) {
MockCallback callback;
test::ScopedKeyValueConfig no_field_trials;
auto adapter = CreateAdapter(no_field_trials, time_controller_.GetClock());
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 5.0});
time_controller_.AdvanceTime(TimeDelta::Millis(666));
adapter->OnFrame(CreateFrame());
DepleteTaskQueues();
EXPECT_THAT(
metrics::Samples("WebRTC.Screenshare.ZeroHz.TimeUntilFirstFrameMs"),
ElementsAre(Pair(666, 1)));
}
TEST_F(FrameCadenceAdapterMetricsTest,
RecordsFrameTimestampMonotonicallyIncreasing) {
MockCallback callback;
test::ScopedKeyValueConfig no_field_trials;
std::unique_ptr<FrameCadenceAdapterInterface> adapter =
CreateAdapter(no_field_trials, time_controller_.GetClock());
adapter->Initialize(&callback);
time_controller_.AdvanceTime(TimeDelta::Millis(666));
adapter->OnFrame(CreateFrameWithTimestamps(&time_controller_));
adapter->OnFrame(CreateFrameWithTimestamps(&time_controller_));
time_controller_.AdvanceTime(TimeDelta::Zero());
adapter = nullptr;
DepleteTaskQueues();
EXPECT_THAT(metrics::Samples(
"WebRTC.Video.InputFrameTimestampMonotonicallyIncreasing"),
ElementsAre(Pair(false, 1)));
}
TEST(FrameCadenceAdapterRealTimeTest, TimestampsDoNotDrift) {
// This regression test must be performed in realtime because of limitations
// in GlobalSimulatedTimeController.
//
// We sleep for a long while in OnFrame when a repeat was scheduled which
// should reflect in accordingly increased ntp_time_ms() and timestamp_us() in
// the repeated frames.
auto factory = CreateDefaultTaskQueueFactory();
auto queue =
factory->CreateTaskQueue("test", TaskQueueFactory::Priority::NORMAL);
MockCallback callback;
Clock* clock = Clock::GetRealTimeClock();
std::unique_ptr<FrameCadenceAdapterInterface> adapter;
int frame_counter = 0;
int64_t original_ntp_time_ms;
int64_t original_timestamp_us;
rtc::Event event;
test::ScopedKeyValueConfig no_field_trials;
queue->PostTask([&] {
adapter = CreateAdapter(no_field_trials, clock);
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 30});
auto frame = CreateFrame();
original_ntp_time_ms = clock->CurrentNtpInMilliseconds();
frame.set_ntp_time_ms(original_ntp_time_ms);
original_timestamp_us = clock->CurrentTime().us();
frame.set_timestamp_us(original_timestamp_us);
constexpr int kSleepMs = rtc::kNumMillisecsPerSec / 2;
EXPECT_CALL(callback, OnFrame)
.WillRepeatedly(
Invoke([&](Timestamp, bool, const VideoFrame& incoming_frame) {
++frame_counter;
// Avoid the first OnFrame and sleep on the second.
if (frame_counter == 2) {
SleepMs(kSleepMs);
} else if (frame_counter == 3) {
EXPECT_GE(incoming_frame.ntp_time_ms(),
original_ntp_time_ms + kSleepMs);
EXPECT_GE(incoming_frame.timestamp_us(),
original_timestamp_us + kSleepMs);
event.Set();
}
}));
adapter->OnFrame(frame);
});
event.Wait(rtc::Event::kForever);
rtc::Event finalized;
queue->PostTask([&] {
adapter = nullptr;
finalized.Set();
});
finalized.Wait(rtc::Event::kForever);
}
// TODO(bugs.webrtc.org/15462) Disable ScheduledRepeatAllowsForSlowEncode for
// TaskQueueLibevent.
#if defined(WEBRTC_ENABLE_LIBEVENT)
#define MAYBE_ScheduledRepeatAllowsForSlowEncode \
DISABLED_ScheduledRepeatAllowsForSlowEncode
#else
#define MAYBE_ScheduledRepeatAllowsForSlowEncode \
ScheduledRepeatAllowsForSlowEncode
#endif
TEST(FrameCadenceAdapterRealTimeTest,
MAYBE_ScheduledRepeatAllowsForSlowEncode) {
// This regression test must be performed in realtime because of limitations
// in GlobalSimulatedTimeController.
//
// We sleep for a long while (but less than max fps) in the first repeated
// OnFrame (frame 2). This should not lead to a belated second repeated
// OnFrame (frame 3).
auto factory = CreateDefaultTaskQueueFactory();
auto queue =
factory->CreateTaskQueue("test", TaskQueueFactory::Priority::NORMAL);
MockCallback callback;
Clock* clock = Clock::GetRealTimeClock();
std::unique_ptr<FrameCadenceAdapterInterface> adapter;
int frame_counter = 0;
rtc::Event event;
std::optional<Timestamp> start_time;
test::ScopedKeyValueConfig no_field_trials;
queue->PostTask([&] {
adapter = CreateAdapter(no_field_trials, clock);
adapter->Initialize(&callback);
adapter->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
adapter->OnConstraintsChanged(VideoTrackSourceConstraints{0, 2});
auto frame = CreateFrame();
constexpr int kSleepMs = 400;
constexpr TimeDelta kAllowedBelate = TimeDelta::Millis(150);
EXPECT_CALL(callback, OnFrame)
.WillRepeatedly(InvokeWithoutArgs([&, kAllowedBelate] {
++frame_counter;
// Avoid the first OnFrame and sleep on the second.
if (frame_counter == 2) {
start_time = clock->CurrentTime();
SleepMs(kSleepMs);
} else if (frame_counter == 3) {
TimeDelta diff =
clock->CurrentTime() - (*start_time + TimeDelta::Millis(500));
RTC_LOG(LS_ERROR)
<< "Difference in when frame should vs is appearing: " << diff;
EXPECT_LT(diff, kAllowedBelate);
event.Set();
}
}));
adapter->OnFrame(frame);
});
event.Wait(rtc::Event::kForever);
rtc::Event finalized;
queue->PostTask([&] {
adapter = nullptr;
finalized.Set();
});
finalized.Wait(rtc::Event::kForever);
}
class ZeroHertzQueueOverloadTest : public ::testing::Test {
public:
static constexpr int kMaxFps = 10;
ZeroHertzQueueOverloadTest() {
Initialize();
metrics::Reset();
}
void Initialize() {
adapter_->Initialize(&callback_);
adapter_->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{
/*num_simulcast_layers=*/1});
adapter_->OnConstraintsChanged(
VideoTrackSourceConstraints{/*min_fps=*/0, kMaxFps});
time_controller_.AdvanceTime(TimeDelta::Zero());
}
void ScheduleDelayed(TimeDelta delay, absl::AnyInvocable<void() &&> task) {
TaskQueueBase::Current()->PostDelayedTask(std::move(task), delay);
}
void PassFrame() { adapter_->OnFrame(CreateFrame()); }
void AdvanceTime(TimeDelta duration) {
time_controller_.AdvanceTime(duration);
}
void SkipForwardBy(TimeDelta duration) {
time_controller_.SkipForwardBy(duration);
}
Timestamp CurrentTime() { return time_controller_.GetClock()->CurrentTime(); }
protected:
test::ScopedKeyValueConfig field_trials_;
NiceMock<MockCallback> callback_;
GlobalSimulatedTimeController time_controller_{Timestamp::Zero()};
std::unique_ptr<FrameCadenceAdapterInterface> adapter_{
CreateAdapter(field_trials_, time_controller_.GetClock())};
};
TEST_F(ZeroHertzQueueOverloadTest,
ForwardedFramesDuringTooLongEncodeTimeAreFlaggedWithQueueOverload) {
InSequence s;
PassFrame();
EXPECT_CALL(callback_, OnFrame(_, false, _)).WillOnce(InvokeWithoutArgs([&] {
PassFrame();
PassFrame();
PassFrame();
SkipForwardBy(TimeDelta::Millis(301));
}));
EXPECT_CALL(callback_, OnFrame(_, true, _)).Times(3);
AdvanceTime(TimeDelta::Millis(100));
EXPECT_THAT(metrics::Samples("WebRTC.Screenshare.ZeroHz.QueueOverload"),
ElementsAre(Pair(false, 1), Pair(true, 3)));
}
TEST_F(ZeroHertzQueueOverloadTest,
ForwardedFramesAfterOverloadBurstAreNotFlaggedWithQueueOverload) {
InSequence s;
PassFrame();
EXPECT_CALL(callback_, OnFrame(_, false, _)).WillOnce(InvokeWithoutArgs([&] {
PassFrame();
PassFrame();
PassFrame();
SkipForwardBy(TimeDelta::Millis(301));
}));
EXPECT_CALL(callback_, OnFrame(_, true, _)).Times(3);
AdvanceTime(TimeDelta::Millis(100));
EXPECT_CALL(callback_, OnFrame(_, false, _)).Times(2);
PassFrame();
PassFrame();
AdvanceTime(TimeDelta::Millis(100));
EXPECT_THAT(metrics::Samples("WebRTC.Screenshare.ZeroHz.QueueOverload"),
ElementsAre(Pair(false, 3), Pair(true, 3)));
}
TEST_F(ZeroHertzQueueOverloadTest,
ForwardedFramesDuringNormalEncodeTimeAreNotFlaggedWithQueueOverload) {
InSequence s;
PassFrame();
EXPECT_CALL(callback_, OnFrame(_, false, _)).WillOnce(InvokeWithoutArgs([&] {
PassFrame();
PassFrame();
PassFrame();
// Long but not too long encode time.
SkipForwardBy(TimeDelta::Millis(99));
}));
EXPECT_CALL(callback_, OnFrame(_, false, _)).Times(3);
AdvanceTime(TimeDelta::Millis(199));
EXPECT_THAT(metrics::Samples("WebRTC.Screenshare.ZeroHz.QueueOverload"),
ElementsAre(Pair(false, 4)));
}
TEST_F(
ZeroHertzQueueOverloadTest,
AvoidSettingQueueOverloadAndSendRepeatWhenNoNewPacketsWhileTooLongEncode) {
// Receive one frame only and let OnFrame take such a long time that an
// overload normally is warranted. But the fact that no new frames arrive
// while being blocked should trigger a non-idle repeat to ensure that the
// video stream does not freeze and queue overload should be false.
PassFrame();
EXPECT_CALL(callback_, OnFrame(_, false, _))
.WillOnce(
InvokeWithoutArgs([&] { SkipForwardBy(TimeDelta::Millis(101)); }))
.WillOnce(InvokeWithoutArgs([&] {
// Non-idle repeat.
EXPECT_EQ(CurrentTime(), Timestamp::Zero() + TimeDelta::Millis(201));
}));
AdvanceTime(TimeDelta::Millis(100));
EXPECT_THAT(metrics::Samples("WebRTC.Screenshare.ZeroHz.QueueOverload"),
ElementsAre(Pair(false, 2)));
}
TEST_F(ZeroHertzQueueOverloadTest,
EnterFastRepeatAfterQueueOverloadWhenReceivedOnlyOneFrameDuringEncode) {
InSequence s;
// - Forward one frame frame during high load which triggers queue overload.
// - Receive only one new frame while being blocked and verify that the
// cancelled repeat was for the first frame and not the second.
// - Fast repeat mode should happen after second frame.
PassFrame();
EXPECT_CALL(callback_, OnFrame(_, false, _)).WillOnce(InvokeWithoutArgs([&] {
PassFrame();
SkipForwardBy(TimeDelta::Millis(101));
}));
EXPECT_CALL(callback_, OnFrame(_, true, _));
AdvanceTime(TimeDelta::Millis(100));
// Fast repeats should take place from here on.
EXPECT_CALL(callback_, OnFrame(_, false, _)).Times(5);
AdvanceTime(TimeDelta::Millis(500));
EXPECT_THAT(metrics::Samples("WebRTC.Screenshare.ZeroHz.QueueOverload"),
ElementsAre(Pair(false, 6), Pair(true, 1)));
}
TEST_F(ZeroHertzQueueOverloadTest,
QueueOverloadIsDisabledForZeroHerzWhenKillSwitchIsEnabled) {
webrtc::test::ScopedKeyValueConfig field_trials(
field_trials_, "WebRTC-ZeroHertzQueueOverload/Disabled/");
adapter_.reset();
adapter_ = CreateAdapter(field_trials, time_controller_.GetClock());
Initialize();
// Same as ForwardedFramesDuringTooLongEncodeTimeAreFlaggedWithQueueOverload
// but this time the queue overload mechanism is disabled.
InSequence s;
PassFrame();
EXPECT_CALL(callback_, OnFrame(_, false, _)).WillOnce(InvokeWithoutArgs([&] {
PassFrame();
PassFrame();
PassFrame();
SkipForwardBy(TimeDelta::Millis(301));
}));
EXPECT_CALL(callback_, OnFrame(_, false, _)).Times(3);
AdvanceTime(TimeDelta::Millis(100));
EXPECT_EQ(metrics::NumSamples("WebRTC.Screenshare.ZeroHz.QueueOverload"), 0);
}
} // namespace
} // namespace webrtc