henrike@webrtc.org | f048872 | 2014-05-13 18:00:26 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2011 The WebRTC Project Authors. All rights reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
Steve Anton | 10542f2 | 2019-01-11 17:11:00 | [diff] [blame] | 11 | #include "rtc_base/rolling_accumulator.h" |
Yves Gerey | 3e70781 | 2018-11-28 15:47:49 | [diff] [blame] | 12 | |
Jonas Olsson | a4d8737 | 2019-07-05 17:08:33 | [diff] [blame] | 13 | #include <random> |
| 14 | |
Yves Gerey | 3e70781 | 2018-11-28 15:47:49 | [diff] [blame] | 15 | #include "test/gtest.h" |
henrike@webrtc.org | f048872 | 2014-05-13 18:00:26 | [diff] [blame] | 16 | |
| 17 | namespace rtc { |
| 18 | |
| 19 | namespace { |
| 20 | |
| 21 | const double kLearningRate = 0.5; |
| 22 | |
Artem Titov | 96e3b99 | 2021-07-26 14:03:14 | [diff] [blame] | 23 | // Add `n` samples drawn from uniform distribution in [a;b]. |
Yves Gerey | 3dfb680 | 2019-05-13 15:01:32 | [diff] [blame] | 24 | void FillStatsFromUniformDistribution(RollingAccumulator<double>& stats, |
| 25 | int n, |
| 26 | double a, |
| 27 | double b) { |
| 28 | std::mt19937 gen{std::random_device()()}; |
| 29 | std::uniform_real_distribution<> dis(a, b); |
| 30 | |
| 31 | for (int i = 1; i <= n; i++) { |
| 32 | stats.AddSample(dis(gen)); |
| 33 | } |
| 34 | } |
henrike@webrtc.org | f048872 | 2014-05-13 18:00:26 | [diff] [blame] | 35 | } // namespace |
| 36 | |
| 37 | TEST(RollingAccumulatorTest, ZeroSamples) { |
| 38 | RollingAccumulator<int> accum(10); |
| 39 | |
| 40 | EXPECT_EQ(0U, accum.count()); |
| 41 | EXPECT_DOUBLE_EQ(0.0, accum.ComputeMean()); |
| 42 | EXPECT_DOUBLE_EQ(0.0, accum.ComputeVariance()); |
| 43 | EXPECT_EQ(0, accum.ComputeMin()); |
| 44 | EXPECT_EQ(0, accum.ComputeMax()); |
| 45 | } |
| 46 | |
| 47 | TEST(RollingAccumulatorTest, SomeSamples) { |
| 48 | RollingAccumulator<int> accum(10); |
| 49 | for (int i = 0; i < 4; ++i) { |
| 50 | accum.AddSample(i); |
| 51 | } |
| 52 | |
| 53 | EXPECT_EQ(4U, accum.count()); |
henrike@webrtc.org | f048872 | 2014-05-13 18:00:26 | [diff] [blame] | 54 | EXPECT_DOUBLE_EQ(1.5, accum.ComputeMean()); |
| 55 | EXPECT_NEAR(2.26666, accum.ComputeWeightedMean(kLearningRate), 0.01); |
| 56 | EXPECT_DOUBLE_EQ(1.25, accum.ComputeVariance()); |
| 57 | EXPECT_EQ(0, accum.ComputeMin()); |
| 58 | EXPECT_EQ(3, accum.ComputeMax()); |
| 59 | } |
| 60 | |
| 61 | TEST(RollingAccumulatorTest, RollingSamples) { |
| 62 | RollingAccumulator<int> accum(10); |
| 63 | for (int i = 0; i < 12; ++i) { |
| 64 | accum.AddSample(i); |
| 65 | } |
| 66 | |
| 67 | EXPECT_EQ(10U, accum.count()); |
henrike@webrtc.org | f048872 | 2014-05-13 18:00:26 | [diff] [blame] | 68 | EXPECT_DOUBLE_EQ(6.5, accum.ComputeMean()); |
| 69 | EXPECT_NEAR(10.0, accum.ComputeWeightedMean(kLearningRate), 0.01); |
| 70 | EXPECT_NEAR(9.0, accum.ComputeVariance(), 1.0); |
| 71 | EXPECT_EQ(2, accum.ComputeMin()); |
| 72 | EXPECT_EQ(11, accum.ComputeMax()); |
| 73 | } |
| 74 | |
| 75 | TEST(RollingAccumulatorTest, ResetSamples) { |
| 76 | RollingAccumulator<int> accum(10); |
| 77 | |
| 78 | for (int i = 0; i < 10; ++i) { |
| 79 | accum.AddSample(100); |
| 80 | } |
| 81 | EXPECT_EQ(10U, accum.count()); |
| 82 | EXPECT_DOUBLE_EQ(100.0, accum.ComputeMean()); |
| 83 | EXPECT_EQ(100, accum.ComputeMin()); |
| 84 | EXPECT_EQ(100, accum.ComputeMax()); |
| 85 | |
| 86 | accum.Reset(); |
| 87 | EXPECT_EQ(0U, accum.count()); |
| 88 | |
| 89 | for (int i = 0; i < 5; ++i) { |
| 90 | accum.AddSample(i); |
| 91 | } |
| 92 | |
| 93 | EXPECT_EQ(5U, accum.count()); |
henrike@webrtc.org | f048872 | 2014-05-13 18:00:26 | [diff] [blame] | 94 | EXPECT_DOUBLE_EQ(2.0, accum.ComputeMean()); |
| 95 | EXPECT_EQ(0, accum.ComputeMin()); |
| 96 | EXPECT_EQ(4, accum.ComputeMax()); |
| 97 | } |
| 98 | |
| 99 | TEST(RollingAccumulatorTest, RollingSamplesDouble) { |
| 100 | RollingAccumulator<double> accum(10); |
| 101 | for (int i = 0; i < 23; ++i) { |
| 102 | accum.AddSample(5 * i); |
| 103 | } |
| 104 | |
| 105 | EXPECT_EQ(10u, accum.count()); |
henrike@webrtc.org | f048872 | 2014-05-13 18:00:26 | [diff] [blame] | 106 | EXPECT_DOUBLE_EQ(87.5, accum.ComputeMean()); |
| 107 | EXPECT_NEAR(105.049, accum.ComputeWeightedMean(kLearningRate), 0.1); |
| 108 | EXPECT_NEAR(229.166667, accum.ComputeVariance(), 25); |
| 109 | EXPECT_DOUBLE_EQ(65.0, accum.ComputeMin()); |
| 110 | EXPECT_DOUBLE_EQ(110.0, accum.ComputeMax()); |
| 111 | } |
| 112 | |
| 113 | TEST(RollingAccumulatorTest, ComputeWeightedMeanCornerCases) { |
| 114 | RollingAccumulator<int> accum(10); |
| 115 | EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(kLearningRate)); |
| 116 | EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(0.0)); |
| 117 | EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(1.1)); |
| 118 | |
| 119 | for (int i = 0; i < 8; ++i) { |
| 120 | accum.AddSample(i); |
| 121 | } |
| 122 | |
| 123 | EXPECT_DOUBLE_EQ(3.5, accum.ComputeMean()); |
| 124 | EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(0)); |
| 125 | EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(1.1)); |
| 126 | EXPECT_NEAR(6.0, accum.ComputeWeightedMean(kLearningRate), 0.1); |
| 127 | } |
| 128 | |
Yves Gerey | 3dfb680 | 2019-05-13 15:01:32 | [diff] [blame] | 129 | TEST(RollingAccumulatorTest, VarianceFromUniformDistribution) { |
| 130 | // Check variance converge to 1/12 for [0;1) uniform distribution. |
| 131 | // Acts as a sanity check for NumericStabilityForVariance test. |
| 132 | RollingAccumulator<double> stats(/*max_count=*/0.5e6); |
| 133 | FillStatsFromUniformDistribution(stats, 1e6, 0, 1); |
| 134 | |
| 135 | EXPECT_NEAR(stats.ComputeVariance(), 1. / 12, 1e-3); |
| 136 | } |
| 137 | |
| 138 | TEST(RollingAccumulatorTest, NumericStabilityForVariance) { |
| 139 | // Same test as VarianceFromUniformDistribution, |
| 140 | // except the range is shifted to [1e9;1e9+1). |
| 141 | // Variance should also converge to 1/12. |
| 142 | // NB: Although we lose precision for the samples themselves, the fractional |
| 143 | // part still enjoys 22 bits of mantissa and errors should even out, |
| 144 | // so that couldn't explain a mismatch. |
| 145 | RollingAccumulator<double> stats(/*max_count=*/0.5e6); |
| 146 | FillStatsFromUniformDistribution(stats, 1e6, 1e9, 1e9 + 1); |
| 147 | |
| 148 | EXPECT_NEAR(stats.ComputeVariance(), 1. / 12, 1e-3); |
| 149 | } |
henrike@webrtc.org | f048872 | 2014-05-13 18:00:26 | [diff] [blame] | 150 | } // namespace rtc |