tommi | c06b133 | 2016-05-14 18:31:40 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2016 The WebRTC Project Authors. All rights reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #ifndef WEBRTC_BASE_TASK_QUEUE_H_ |
| 12 | #define WEBRTC_BASE_TASK_QUEUE_H_ |
| 13 | |
| 14 | #include <list> |
| 15 | #include <memory> |
tommi | b89257a | 2016-07-12 08:24:36 | [diff] [blame] | 16 | #include <unordered_map> |
tommi | c06b133 | 2016-05-14 18:31:40 | [diff] [blame] | 17 | |
| 18 | #if defined(WEBRTC_MAC) && !defined(WEBRTC_BUILD_LIBEVENT) |
| 19 | #include <dispatch/dispatch.h> |
| 20 | #endif |
| 21 | |
| 22 | #include "webrtc/base/constructormagic.h" |
| 23 | #include "webrtc/base/criticalsection.h" |
| 24 | |
| 25 | #if defined(WEBRTC_WIN) || defined(WEBRTC_BUILD_LIBEVENT) |
| 26 | #include "webrtc/base/platform_thread.h" |
| 27 | #endif |
| 28 | |
| 29 | #if defined(WEBRTC_BUILD_LIBEVENT) |
| 30 | struct event_base; |
| 31 | struct event; |
| 32 | #endif |
| 33 | |
| 34 | namespace rtc { |
| 35 | |
| 36 | // Base interface for asynchronously executed tasks. |
| 37 | // The interface basically consists of a single function, Run(), that executes |
| 38 | // on the target queue. For more details see the Run() method and TaskQueue. |
| 39 | class QueuedTask { |
| 40 | public: |
| 41 | QueuedTask() {} |
| 42 | virtual ~QueuedTask() {} |
| 43 | |
| 44 | // Main routine that will run when the task is executed on the desired queue. |
| 45 | // The task should return |true| to indicate that it should be deleted or |
| 46 | // |false| to indicate that the queue should consider ownership of the task |
| 47 | // having been transferred. Returning |false| can be useful if a task has |
| 48 | // re-posted itself to a different queue or is otherwise being re-used. |
| 49 | virtual bool Run() = 0; |
| 50 | |
| 51 | private: |
| 52 | RTC_DISALLOW_COPY_AND_ASSIGN(QueuedTask); |
| 53 | }; |
| 54 | |
| 55 | // Simple implementation of QueuedTask for use with rtc::Bind and lambdas. |
| 56 | template <class Closure> |
| 57 | class ClosureTask : public QueuedTask { |
| 58 | public: |
| 59 | explicit ClosureTask(const Closure& closure) : closure_(closure) {} |
| 60 | |
| 61 | private: |
| 62 | bool Run() override { |
| 63 | closure_(); |
| 64 | return true; |
| 65 | } |
| 66 | |
| 67 | Closure closure_; |
| 68 | }; |
| 69 | |
| 70 | // Extends ClosureTask to also allow specifying cleanup code. |
| 71 | // This is useful when using lambdas if guaranteeing cleanup, even if a task |
| 72 | // was dropped (queue is too full), is required. |
| 73 | template <class Closure, class Cleanup> |
| 74 | class ClosureTaskWithCleanup : public ClosureTask<Closure> { |
| 75 | public: |
| 76 | ClosureTaskWithCleanup(const Closure& closure, Cleanup cleanup) |
| 77 | : ClosureTask<Closure>(closure), cleanup_(cleanup) {} |
| 78 | ~ClosureTaskWithCleanup() { cleanup_(); } |
| 79 | |
| 80 | private: |
| 81 | Cleanup cleanup_; |
| 82 | }; |
| 83 | |
| 84 | // Convenience function to construct closures that can be passed directly |
| 85 | // to methods that support std::unique_ptr<QueuedTask> but not template |
| 86 | // based parameters. |
| 87 | template <class Closure> |
| 88 | static std::unique_ptr<QueuedTask> NewClosure(const Closure& closure) { |
| 89 | return std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure)); |
| 90 | } |
| 91 | |
| 92 | template <class Closure, class Cleanup> |
| 93 | static std::unique_ptr<QueuedTask> NewClosure(const Closure& closure, |
| 94 | const Cleanup& cleanup) { |
| 95 | return std::unique_ptr<QueuedTask>( |
| 96 | new ClosureTaskWithCleanup<Closure, Cleanup>(closure, cleanup)); |
| 97 | } |
| 98 | |
| 99 | // Implements a task queue that asynchronously executes tasks in a way that |
| 100 | // guarantees that they're executed in FIFO order and that tasks never overlap. |
| 101 | // Tasks may always execute on the same worker thread and they may not. |
| 102 | // To DCHECK that tasks are executing on a known task queue, use IsCurrent(). |
| 103 | // |
| 104 | // Here are some usage examples: |
| 105 | // |
| 106 | // 1) Asynchronously running a lambda: |
| 107 | // |
| 108 | // class MyClass { |
| 109 | // ... |
| 110 | // TaskQueue queue_("MyQueue"); |
| 111 | // }; |
| 112 | // |
| 113 | // void MyClass::StartWork() { |
| 114 | // queue_.PostTask([]() { Work(); }); |
| 115 | // ... |
| 116 | // |
| 117 | // 2) Doing work asynchronously on a worker queue and providing a notification |
| 118 | // callback on the current queue, when the work has been done: |
| 119 | // |
| 120 | // void MyClass::StartWorkAndLetMeKnowWhenDone( |
| 121 | // std::unique_ptr<QueuedTask> callback) { |
| 122 | // DCHECK(TaskQueue::Current()) << "Need to be running on a queue"; |
| 123 | // queue_.PostTaskAndReply([]() { Work(); }, std::move(callback)); |
| 124 | // } |
| 125 | // ... |
| 126 | // my_class->StartWorkAndLetMeKnowWhenDone( |
| 127 | // NewClosure([]() { LOG(INFO) << "The work is done!";})); |
| 128 | // |
| 129 | // 3) Posting a custom task on a timer. The task posts itself again after |
| 130 | // every running: |
| 131 | // |
| 132 | // class TimerTask : public QueuedTask { |
| 133 | // public: |
| 134 | // TimerTask() {} |
| 135 | // private: |
| 136 | // bool Run() override { |
| 137 | // ++count_; |
| 138 | // TaskQueue::Current()->PostDelayedTask( |
| 139 | // std::unique_ptr<QueuedTask>(this), 1000); |
| 140 | // // Ownership has been transferred to the next occurance, |
| 141 | // // so return false to prevent from being deleted now. |
| 142 | // return false; |
| 143 | // } |
| 144 | // int count_ = 0; |
| 145 | // }; |
| 146 | // ... |
| 147 | // queue_.PostDelayedTask( |
| 148 | // std::unique_ptr<QueuedTask>(new TimerTask()), 1000); |
| 149 | // |
| 150 | // For more examples, see task_queue_unittests.cc. |
| 151 | // |
| 152 | // A note on destruction: |
| 153 | // |
| 154 | // When a TaskQueue is deleted, pending tasks will not be executed but they will |
| 155 | // be deleted. The deletion of tasks may happen asynchronously after the |
| 156 | // TaskQueue itself has been deleted or it may happen synchronously while the |
| 157 | // TaskQueue instance is being deleted. This may vary from one OS to the next |
| 158 | // so assumptions about lifetimes of pending tasks should not be made. |
danilchap | 8e572f0 | 2016-05-19 13:49:03 | [diff] [blame] | 159 | class LOCKABLE TaskQueue { |
tommi | c06b133 | 2016-05-14 18:31:40 | [diff] [blame] | 160 | public: |
| 161 | explicit TaskQueue(const char* queue_name); |
| 162 | // TODO(tommi): Implement move semantics? |
| 163 | ~TaskQueue(); |
| 164 | |
| 165 | static TaskQueue* Current(); |
| 166 | |
| 167 | // Used for DCHECKing the current queue. |
| 168 | static bool IsCurrent(const char* queue_name); |
| 169 | bool IsCurrent() const; |
| 170 | |
Taylor Brandstetter | 5d97a9a | 2016-06-10 21:17:27 | [diff] [blame] | 171 | // TODO(tommi): For better debuggability, implement RTC_FROM_HERE. |
tommi | c06b133 | 2016-05-14 18:31:40 | [diff] [blame] | 172 | |
| 173 | // Ownership of the task is passed to PostTask. |
| 174 | void PostTask(std::unique_ptr<QueuedTask> task); |
| 175 | void PostTaskAndReply(std::unique_ptr<QueuedTask> task, |
| 176 | std::unique_ptr<QueuedTask> reply, |
| 177 | TaskQueue* reply_queue); |
| 178 | void PostTaskAndReply(std::unique_ptr<QueuedTask> task, |
| 179 | std::unique_ptr<QueuedTask> reply); |
| 180 | |
| 181 | void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds); |
| 182 | |
| 183 | template <class Closure> |
| 184 | void PostTask(const Closure& closure) { |
| 185 | PostTask(std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure))); |
| 186 | } |
| 187 | |
| 188 | template <class Closure> |
| 189 | void PostDelayedTask(const Closure& closure, uint32_t milliseconds) { |
| 190 | PostDelayedTask( |
| 191 | std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure)), |
| 192 | milliseconds); |
| 193 | } |
| 194 | |
| 195 | template <class Closure1, class Closure2> |
| 196 | void PostTaskAndReply(const Closure1& task, |
| 197 | const Closure2& reply, |
| 198 | TaskQueue* reply_queue) { |
| 199 | PostTaskAndReply( |
| 200 | std::unique_ptr<QueuedTask>(new ClosureTask<Closure1>(task)), |
| 201 | std::unique_ptr<QueuedTask>(new ClosureTask<Closure2>(reply)), |
| 202 | reply_queue); |
| 203 | } |
| 204 | |
| 205 | template <class Closure> |
| 206 | void PostTaskAndReply(std::unique_ptr<QueuedTask> task, |
| 207 | const Closure& reply) { |
| 208 | PostTaskAndReply(std::move(task), std::unique_ptr<QueuedTask>( |
| 209 | new ClosureTask<Closure>(reply))); |
| 210 | } |
| 211 | |
| 212 | template <class Closure> |
| 213 | void PostTaskAndReply(const Closure& task, |
| 214 | std::unique_ptr<QueuedTask> reply) { |
| 215 | PostTaskAndReply( |
| 216 | std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(task)), |
| 217 | std::move(reply)); |
| 218 | } |
| 219 | |
| 220 | template <class Closure1, class Closure2> |
| 221 | void PostTaskAndReply(const Closure1& task, const Closure2& reply) { |
| 222 | PostTaskAndReply( |
| 223 | std::unique_ptr<QueuedTask>(new ClosureTask<Closure1>(task)), |
| 224 | std::unique_ptr<QueuedTask>(new ClosureTask<Closure2>(reply))); |
| 225 | } |
| 226 | |
| 227 | private: |
| 228 | #if defined(WEBRTC_BUILD_LIBEVENT) |
| 229 | static bool ThreadMain(void* context); |
| 230 | static void OnWakeup(int socket, short flags, void* context); // NOLINT |
| 231 | static void RunTask(int fd, short flags, void* context); // NOLINT |
| 232 | static void RunTimer(int fd, short flags, void* context); // NOLINT |
| 233 | |
| 234 | class PostAndReplyTask; |
| 235 | class SetTimerTask; |
| 236 | |
| 237 | void PrepareReplyTask(PostAndReplyTask* reply_task); |
| 238 | void ReplyTaskDone(PostAndReplyTask* reply_task); |
| 239 | |
| 240 | struct QueueContext; |
| 241 | |
| 242 | int wakeup_pipe_in_ = -1; |
| 243 | int wakeup_pipe_out_ = -1; |
| 244 | event_base* event_base_; |
| 245 | std::unique_ptr<event> wakeup_event_; |
| 246 | PlatformThread thread_; |
| 247 | rtc::CriticalSection pending_lock_; |
| 248 | std::list<std::unique_ptr<QueuedTask>> pending_ GUARDED_BY(pending_lock_); |
| 249 | std::list<PostAndReplyTask*> pending_replies_ GUARDED_BY(pending_lock_); |
| 250 | #elif defined(WEBRTC_MAC) |
| 251 | struct QueueContext; |
| 252 | struct TaskContext; |
| 253 | struct PostTaskAndReplyContext; |
| 254 | dispatch_queue_t queue_; |
| 255 | QueueContext* const context_; |
| 256 | #elif defined(WEBRTC_WIN) |
tommi | b89257a | 2016-07-12 08:24:36 | [diff] [blame] | 257 | typedef std::unordered_map<UINT_PTR, std::unique_ptr<QueuedTask>> |
| 258 | DelayedTasks; |
tommi | c06b133 | 2016-05-14 18:31:40 | [diff] [blame] | 259 | static bool ThreadMain(void* context); |
tommi | b89257a | 2016-07-12 08:24:36 | [diff] [blame] | 260 | static bool ProcessQueuedMessages(DelayedTasks* delayed_tasks); |
tommi | c06b133 | 2016-05-14 18:31:40 | [diff] [blame] | 261 | |
| 262 | class WorkerThread : public PlatformThread { |
| 263 | public: |
| 264 | WorkerThread(ThreadRunFunction func, void* obj, const char* thread_name) |
| 265 | : PlatformThread(func, obj, thread_name) {} |
| 266 | |
| 267 | bool QueueAPC(PAPCFUNC apc_function, ULONG_PTR data) { |
| 268 | return PlatformThread::QueueAPC(apc_function, data); |
| 269 | } |
| 270 | }; |
| 271 | WorkerThread thread_; |
| 272 | #else |
| 273 | #error not supported. |
| 274 | #endif |
| 275 | |
| 276 | RTC_DISALLOW_COPY_AND_ASSIGN(TaskQueue); |
| 277 | }; |
| 278 | |
| 279 | } // namespace rtc |
| 280 | |
| 281 | #endif // WEBRTC_BASE_TASK_QUEUE_H_ |