terelius | 84e78f9 | 2015-12-10 09:50:55 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
Jonas Olsson | a4d8737 | 2019-07-05 17:08:33 | [diff] [blame] | 11 | #include "rtc_base/random.h" |
| 12 | |
terelius | 84e78f9 | 2015-12-10 09:50:55 | [diff] [blame] | 13 | #include <math.h> |
| 14 | |
| 15 | #include <limits> |
| 16 | #include <vector> |
| 17 | |
Steve Anton | 10542f2 | 2019-01-11 17:11:00 | [diff] [blame] | 18 | #include "rtc_base/numerics/math_utils.h" // unsigned difference |
Mirko Bonadei | 92ea95e | 2017-09-15 04:47:31 | [diff] [blame] | 19 | #include "test/gtest.h" |
terelius | 84e78f9 | 2015-12-10 09:50:55 | [diff] [blame] | 20 | |
| 21 | namespace webrtc { |
| 22 | |
| 23 | namespace { |
| 24 | // Computes the positive remainder of x/n. |
| 25 | template <typename T> |
| 26 | T fdiv_remainder(T x, T n) { |
kwiberg | 352444f | 2016-11-28 23:58:53 | [diff] [blame] | 27 | RTC_CHECK_GE(n, 0); |
terelius | 84e78f9 | 2015-12-10 09:50:55 | [diff] [blame] | 28 | T remainder = x % n; |
| 29 | if (remainder < 0) |
| 30 | remainder += n; |
| 31 | return remainder; |
| 32 | } |
| 33 | } // namespace |
| 34 | |
| 35 | // Sample a number of random integers of type T. Divide them into buckets |
| 36 | // based on the remainder when dividing by bucket_count and check that each |
| 37 | // bucket gets roughly the expected number of elements. |
| 38 | template <typename T> |
| 39 | void UniformBucketTest(T bucket_count, int samples, Random* prng) { |
| 40 | std::vector<int> buckets(bucket_count, 0); |
| 41 | |
| 42 | uint64_t total_values = 1ull << (std::numeric_limits<T>::digits + |
| 43 | std::numeric_limits<T>::is_signed); |
| 44 | T upper_limit = |
| 45 | std::numeric_limits<T>::max() - |
| 46 | static_cast<T>(total_values % static_cast<uint64_t>(bucket_count)); |
| 47 | ASSERT_GT(upper_limit, std::numeric_limits<T>::max() / 2); |
| 48 | |
| 49 | for (int i = 0; i < samples; i++) { |
| 50 | T sample; |
| 51 | do { |
| 52 | // We exclude a few numbers from the range so that it is divisible by |
| 53 | // the number of buckets. If we are unlucky and hit one of the excluded |
| 54 | // numbers we just resample. Note that if the number of buckets is a |
| 55 | // power of 2, then we don't have to exclude anything. |
| 56 | sample = prng->Rand<T>(); |
| 57 | } while (sample > upper_limit); |
| 58 | buckets[fdiv_remainder(sample, bucket_count)]++; |
| 59 | } |
| 60 | |
| 61 | for (T i = 0; i < bucket_count; i++) { |
| 62 | // Expect the result to be within 3 standard deviations of the mean. |
| 63 | EXPECT_NEAR(buckets[i], samples / bucket_count, |
| 64 | 3 * sqrt(samples / bucket_count)); |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | TEST(RandomNumberGeneratorTest, BucketTestSignedChar) { |
| 69 | Random prng(7297352569824ull); |
| 70 | UniformBucketTest<signed char>(64, 640000, &prng); |
| 71 | UniformBucketTest<signed char>(11, 440000, &prng); |
| 72 | UniformBucketTest<signed char>(3, 270000, &prng); |
| 73 | } |
| 74 | |
| 75 | TEST(RandomNumberGeneratorTest, BucketTestUnsignedChar) { |
| 76 | Random prng(7297352569824ull); |
| 77 | UniformBucketTest<unsigned char>(64, 640000, &prng); |
| 78 | UniformBucketTest<unsigned char>(11, 440000, &prng); |
| 79 | UniformBucketTest<unsigned char>(3, 270000, &prng); |
| 80 | } |
| 81 | |
| 82 | TEST(RandomNumberGeneratorTest, BucketTestSignedShort) { |
| 83 | Random prng(7297352569824ull); |
| 84 | UniformBucketTest<int16_t>(64, 640000, &prng); |
| 85 | UniformBucketTest<int16_t>(11, 440000, &prng); |
| 86 | UniformBucketTest<int16_t>(3, 270000, &prng); |
| 87 | } |
| 88 | |
| 89 | TEST(RandomNumberGeneratorTest, BucketTestUnsignedShort) { |
| 90 | Random prng(7297352569824ull); |
| 91 | UniformBucketTest<uint16_t>(64, 640000, &prng); |
| 92 | UniformBucketTest<uint16_t>(11, 440000, &prng); |
| 93 | UniformBucketTest<uint16_t>(3, 270000, &prng); |
| 94 | } |
| 95 | |
| 96 | TEST(RandomNumberGeneratorTest, BucketTestSignedInt) { |
| 97 | Random prng(7297352569824ull); |
| 98 | UniformBucketTest<signed int>(64, 640000, &prng); |
| 99 | UniformBucketTest<signed int>(11, 440000, &prng); |
| 100 | UniformBucketTest<signed int>(3, 270000, &prng); |
| 101 | } |
| 102 | |
| 103 | TEST(RandomNumberGeneratorTest, BucketTestUnsignedInt) { |
| 104 | Random prng(7297352569824ull); |
| 105 | UniformBucketTest<unsigned int>(64, 640000, &prng); |
| 106 | UniformBucketTest<unsigned int>(11, 440000, &prng); |
| 107 | UniformBucketTest<unsigned int>(3, 270000, &prng); |
| 108 | } |
| 109 | |
| 110 | // The range of the random numbers is divided into bucket_count intervals |
| 111 | // of consecutive numbers. Check that approximately equally many numbers |
| 112 | // from each inteval are generated. |
| 113 | void BucketTestSignedInterval(unsigned int bucket_count, |
| 114 | unsigned int samples, |
| 115 | int32_t low, |
| 116 | int32_t high, |
| 117 | int sigma_level, |
| 118 | Random* prng) { |
| 119 | std::vector<unsigned int> buckets(bucket_count, 0); |
| 120 | |
| 121 | ASSERT_GE(high, low); |
| 122 | ASSERT_GE(bucket_count, 2u); |
Artem Titov | 9d77762 | 2020-09-18 16:23:08 | [diff] [blame] | 123 | uint32_t interval = webrtc_impl::unsigned_difference<int32_t>(high, low) + 1; |
terelius | 84e78f9 | 2015-12-10 09:50:55 | [diff] [blame] | 124 | uint32_t numbers_per_bucket; |
| 125 | if (interval == 0) { |
| 126 | // The computation high - low + 1 should be 2^32 but overflowed |
| 127 | // Hence, bucket_count must be a power of 2 |
| 128 | ASSERT_EQ(bucket_count & (bucket_count - 1), 0u); |
| 129 | numbers_per_bucket = (0x80000000u / bucket_count) * 2; |
| 130 | } else { |
| 131 | ASSERT_EQ(interval % bucket_count, 0u); |
| 132 | numbers_per_bucket = interval / bucket_count; |
| 133 | } |
| 134 | |
| 135 | for (unsigned int i = 0; i < samples; i++) { |
| 136 | int32_t sample = prng->Rand(low, high); |
| 137 | EXPECT_LE(low, sample); |
| 138 | EXPECT_GE(high, sample); |
Artem Titov | 9d77762 | 2020-09-18 16:23:08 | [diff] [blame] | 139 | buckets[webrtc_impl::unsigned_difference<int32_t>(sample, low) / |
| 140 | numbers_per_bucket]++; |
terelius | 84e78f9 | 2015-12-10 09:50:55 | [diff] [blame] | 141 | } |
| 142 | |
| 143 | for (unsigned int i = 0; i < bucket_count; i++) { |
| 144 | // Expect the result to be within 3 standard deviations of the mean, |
| 145 | // or more generally, within sigma_level standard deviations of the mean. |
| 146 | double mean = static_cast<double>(samples) / bucket_count; |
| 147 | EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | // The range of the random numbers is divided into bucket_count intervals |
| 152 | // of consecutive numbers. Check that approximately equally many numbers |
| 153 | // from each inteval are generated. |
| 154 | void BucketTestUnsignedInterval(unsigned int bucket_count, |
| 155 | unsigned int samples, |
| 156 | uint32_t low, |
| 157 | uint32_t high, |
| 158 | int sigma_level, |
| 159 | Random* prng) { |
| 160 | std::vector<unsigned int> buckets(bucket_count, 0); |
| 161 | |
| 162 | ASSERT_GE(high, low); |
| 163 | ASSERT_GE(bucket_count, 2u); |
terelius | d802b5b | 2016-03-01 19:07:34 | [diff] [blame] | 164 | uint32_t interval = high - low + 1; |
terelius | 84e78f9 | 2015-12-10 09:50:55 | [diff] [blame] | 165 | uint32_t numbers_per_bucket; |
| 166 | if (interval == 0) { |
| 167 | // The computation high - low + 1 should be 2^32 but overflowed |
| 168 | // Hence, bucket_count must be a power of 2 |
| 169 | ASSERT_EQ(bucket_count & (bucket_count - 1), 0u); |
| 170 | numbers_per_bucket = (0x80000000u / bucket_count) * 2; |
| 171 | } else { |
| 172 | ASSERT_EQ(interval % bucket_count, 0u); |
| 173 | numbers_per_bucket = interval / bucket_count; |
| 174 | } |
| 175 | |
| 176 | for (unsigned int i = 0; i < samples; i++) { |
| 177 | uint32_t sample = prng->Rand(low, high); |
| 178 | EXPECT_LE(low, sample); |
| 179 | EXPECT_GE(high, sample); |
terelius | d802b5b | 2016-03-01 19:07:34 | [diff] [blame] | 180 | buckets[(sample - low) / numbers_per_bucket]++; |
terelius | 84e78f9 | 2015-12-10 09:50:55 | [diff] [blame] | 181 | } |
| 182 | |
| 183 | for (unsigned int i = 0; i < bucket_count; i++) { |
| 184 | // Expect the result to be within 3 standard deviations of the mean, |
| 185 | // or more generally, within sigma_level standard deviations of the mean. |
| 186 | double mean = static_cast<double>(samples) / bucket_count; |
| 187 | EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | TEST(RandomNumberGeneratorTest, UniformUnsignedInterval) { |
| 192 | Random prng(299792458ull); |
| 193 | BucketTestUnsignedInterval(2, 100000, 0, 1, 3, &prng); |
| 194 | BucketTestUnsignedInterval(7, 100000, 1, 14, 3, &prng); |
| 195 | BucketTestUnsignedInterval(11, 100000, 1000, 1010, 3, &prng); |
| 196 | BucketTestUnsignedInterval(100, 100000, 0, 99, 3, &prng); |
| 197 | BucketTestUnsignedInterval(2, 100000, 0, 4294967295, 3, &prng); |
| 198 | BucketTestUnsignedInterval(17, 100000, 455, 2147484110, 3, &prng); |
| 199 | // 99.7% of all samples will be within 3 standard deviations of the mean, |
| 200 | // but since we test 1000 buckets we allow an interval of 4 sigma. |
| 201 | BucketTestUnsignedInterval(1000, 1000000, 0, 2147483999, 4, &prng); |
| 202 | } |
| 203 | |
oprypin | 8ad0e58 | 2017-09-05 10:00:37 | [diff] [blame] | 204 | TEST(RandomNumberGeneratorTest, UniformSignedInterval) { |
terelius | 84e78f9 | 2015-12-10 09:50:55 | [diff] [blame] | 205 | Random prng(66260695729ull); |
| 206 | BucketTestSignedInterval(2, 100000, 0, 1, 3, &prng); |
| 207 | BucketTestSignedInterval(7, 100000, -2, 4, 3, &prng); |
| 208 | BucketTestSignedInterval(11, 100000, 1000, 1010, 3, &prng); |
| 209 | BucketTestSignedInterval(100, 100000, 0, 99, 3, &prng); |
| 210 | BucketTestSignedInterval(2, 100000, std::numeric_limits<int32_t>::min(), |
| 211 | std::numeric_limits<int32_t>::max(), 3, &prng); |
| 212 | BucketTestSignedInterval(17, 100000, -1073741826, 1073741829, 3, &prng); |
| 213 | // 99.7% of all samples will be within 3 standard deviations of the mean, |
| 214 | // but since we test 1000 buckets we allow an interval of 4 sigma. |
| 215 | BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng); |
| 216 | } |
| 217 | |
| 218 | // The range of the random numbers is divided into bucket_count intervals |
| 219 | // of consecutive numbers. Check that approximately equally many numbers |
| 220 | // from each inteval are generated. |
| 221 | void BucketTestFloat(unsigned int bucket_count, |
| 222 | unsigned int samples, |
| 223 | int sigma_level, |
| 224 | Random* prng) { |
| 225 | ASSERT_GE(bucket_count, 2u); |
| 226 | std::vector<unsigned int> buckets(bucket_count, 0); |
| 227 | |
| 228 | for (unsigned int i = 0; i < samples; i++) { |
| 229 | uint32_t sample = bucket_count * prng->Rand<float>(); |
| 230 | EXPECT_LE(0u, sample); |
| 231 | EXPECT_GE(bucket_count - 1, sample); |
| 232 | buckets[sample]++; |
| 233 | } |
| 234 | |
| 235 | for (unsigned int i = 0; i < bucket_count; i++) { |
| 236 | // Expect the result to be within 3 standard deviations of the mean, |
| 237 | // or more generally, within sigma_level standard deviations of the mean. |
| 238 | double mean = static_cast<double>(samples) / bucket_count; |
| 239 | EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | TEST(RandomNumberGeneratorTest, UniformFloatInterval) { |
| 244 | Random prng(1380648813ull); |
| 245 | BucketTestFloat(100, 100000, 3, &prng); |
| 246 | // 99.7% of all samples will be within 3 standard deviations of the mean, |
| 247 | // but since we test 1000 buckets we allow an interval of 4 sigma. |
| 248 | // BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng); |
| 249 | } |
| 250 | |
| 251 | TEST(RandomNumberGeneratorTest, SignedHasSameBitPattern) { |
| 252 | Random prng_signed(66738480ull), prng_unsigned(66738480ull); |
| 253 | |
| 254 | for (int i = 0; i < 1000; i++) { |
| 255 | signed int s = prng_signed.Rand<signed int>(); |
| 256 | unsigned int u = prng_unsigned.Rand<unsigned int>(); |
| 257 | EXPECT_EQ(u, static_cast<unsigned int>(s)); |
| 258 | } |
| 259 | |
| 260 | for (int i = 0; i < 1000; i++) { |
| 261 | int16_t s = prng_signed.Rand<int16_t>(); |
| 262 | uint16_t u = prng_unsigned.Rand<uint16_t>(); |
| 263 | EXPECT_EQ(u, static_cast<uint16_t>(s)); |
| 264 | } |
| 265 | |
| 266 | for (int i = 0; i < 1000; i++) { |
| 267 | signed char s = prng_signed.Rand<signed char>(); |
| 268 | unsigned char u = prng_unsigned.Rand<unsigned char>(); |
| 269 | EXPECT_EQ(u, static_cast<unsigned char>(s)); |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | TEST(RandomNumberGeneratorTest, Gaussian) { |
| 274 | const int kN = 100000; |
| 275 | const int kBuckets = 100; |
| 276 | const double kMean = 49; |
| 277 | const double kStddev = 10; |
| 278 | |
| 279 | Random prng(1256637061); |
| 280 | |
| 281 | std::vector<unsigned int> buckets(kBuckets, 0); |
| 282 | for (int i = 0; i < kN; i++) { |
| 283 | int index = prng.Gaussian(kMean, kStddev) + 0.5; |
| 284 | if (index >= 0 && index < kBuckets) { |
| 285 | buckets[index]++; |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | const double kPi = 3.14159265358979323846; |
| 290 | const double kScale = 1 / (kStddev * sqrt(2.0 * kPi)); |
| 291 | const double kDiv = -2.0 * kStddev * kStddev; |
| 292 | for (int n = 0; n < kBuckets; ++n) { |
| 293 | // Use Simpsons rule to estimate the probability that a random gaussian |
| 294 | // sample is in the interval [n-0.5, n+0.5]. |
| 295 | double f_left = kScale * exp((n - kMean - 0.5) * (n - kMean - 0.5) / kDiv); |
| 296 | double f_mid = kScale * exp((n - kMean) * (n - kMean) / kDiv); |
| 297 | double f_right = kScale * exp((n - kMean + 0.5) * (n - kMean + 0.5) / kDiv); |
| 298 | double normal_dist = (f_left + 4 * f_mid + f_right) / 6; |
| 299 | // Expect the number of samples to be within 3 standard deviations |
| 300 | // (rounded up) of the expected number of samples in the bucket. |
| 301 | EXPECT_NEAR(buckets[n], kN * normal_dist, 3 * sqrt(kN * normal_dist) + 1); |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | } // namespace webrtc |