blob: 38f003d555f5bf3da3c40dd5448fbab004efccda [file] [log] [blame]
/*
* Copyright 2014 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/deprecated/recursive_critical_section.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <set>
#include <type_traits>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/thread.h"
#include "test/gtest.h"
namespace rtc {
namespace {
constexpr webrtc::TimeDelta kLongTime = webrtc::TimeDelta::Seconds(10);
constexpr int kNumThreads = 16;
constexpr int kOperationsToRun = 1000;
class UniqueValueVerifier {
public:
void Verify(const std::vector<int>& values) {
for (size_t i = 0; i < values.size(); ++i) {
std::pair<std::set<int>::iterator, bool> result =
all_values_.insert(values[i]);
// Each value should only be taken by one thread, so if this value
// has already been added, something went wrong.
EXPECT_TRUE(result.second)
<< " Thread=" << Thread::Current() << " value=" << values[i];
}
}
void Finalize() {}
private:
std::set<int> all_values_;
};
class CompareAndSwapVerifier {
public:
CompareAndSwapVerifier() : zero_count_(0) {}
void Verify(const std::vector<int>& values) {
for (auto v : values) {
if (v == 0) {
EXPECT_EQ(0, zero_count_) << "Thread=" << Thread::Current();
++zero_count_;
} else {
EXPECT_EQ(1, v) << " Thread=" << Thread::Current();
}
}
}
void Finalize() { EXPECT_EQ(1, zero_count_); }
private:
int zero_count_;
};
class RunnerBase {
public:
explicit RunnerBase(int value)
: threads_active_(0),
start_event_(true, false),
done_event_(true, false),
shared_value_(value) {}
bool Run() {
// Signal all threads to start.
start_event_.Set();
// Wait for all threads to finish.
return done_event_.Wait(kLongTime);
}
void SetExpectedThreadCount(int count) { threads_active_.store(count); }
int shared_value() const { return shared_value_; }
protected:
void BeforeStart() { ASSERT_TRUE(start_event_.Wait(kLongTime)); }
// Returns true if all threads have finished.
bool AfterEnd() {
if (threads_active_.fetch_sub(1) == 1) {
done_event_.Set();
return true;
}
return false;
}
std::atomic<int> threads_active_;
Event start_event_;
Event done_event_;
int shared_value_;
};
class RTC_LOCKABLE CriticalSectionLock {
public:
void Lock() RTC_EXCLUSIVE_LOCK_FUNCTION() { cs_.Enter(); }
void Unlock() RTC_UNLOCK_FUNCTION() { cs_.Leave(); }
private:
RecursiveCriticalSection cs_;
};
template <class Lock>
class LockRunner : public RunnerBase {
public:
LockRunner() : RunnerBase(0) {}
void Loop() {
BeforeStart();
lock_.Lock();
EXPECT_EQ(0, shared_value_);
int old = shared_value_;
// Use a loop to increase the chance of race.
for (int i = 0; i < kOperationsToRun; ++i) {
++shared_value_;
}
EXPECT_EQ(old + kOperationsToRun, shared_value_);
shared_value_ = 0;
lock_.Unlock();
AfterEnd();
}
private:
Lock lock_;
};
template <typename Runner>
void StartThreads(std::vector<std::unique_ptr<Thread>>* threads,
Runner* handler) {
for (int i = 0; i < kNumThreads; ++i) {
std::unique_ptr<Thread> thread(Thread::Create());
thread->Start();
thread->PostTask([handler] { handler->Loop(); });
threads->push_back(std::move(thread));
}
}
} // namespace
TEST(RecursiveCriticalSectionTest, Basic) {
// Create and start lots of threads.
LockRunner<CriticalSectionLock> runner;
std::vector<std::unique_ptr<Thread>> threads;
StartThreads(&threads, &runner);
runner.SetExpectedThreadCount(kNumThreads);
// Release the hounds!
EXPECT_TRUE(runner.Run());
EXPECT_EQ(0, runner.shared_value());
}
class PerfTestData {
public:
PerfTestData(int expected_count, Event* event)
: cache_line_barrier_1_(),
cache_line_barrier_2_(),
expected_count_(expected_count),
event_(event) {
cache_line_barrier_1_[0]++; // Avoid 'is not used'.
cache_line_barrier_2_[0]++; // Avoid 'is not used'.
}
~PerfTestData() {}
void AddToCounter(int add) {
rtc::CritScope cs(&lock_);
my_counter_ += add;
if (my_counter_ == expected_count_)
event_->Set();
}
int64_t total() const {
// Assume that only one thread is running now.
return my_counter_;
}
private:
uint8_t cache_line_barrier_1_[64];
RecursiveCriticalSection lock_;
uint8_t cache_line_barrier_2_[64];
int64_t my_counter_ = 0;
const int expected_count_;
Event* const event_;
};
class PerfTestThread {
public:
void Start(PerfTestData* data, int repeats, int id) {
RTC_DCHECK(!data_);
data_ = data;
repeats_ = repeats;
my_id_ = id;
thread_ = PlatformThread::SpawnJoinable(
[this] {
for (int i = 0; i < repeats_; ++i)
data_->AddToCounter(my_id_);
},
"CsPerf");
}
void Stop() {
RTC_DCHECK(data_);
thread_.Finalize();
repeats_ = 0;
data_ = nullptr;
my_id_ = 0;
}
private:
PlatformThread thread_;
PerfTestData* data_ = nullptr;
int repeats_ = 0;
int my_id_ = 0;
};
// Comparison of output of this test as tested on a MacBook Pro, 13-inch,
// 2017, 3,5 GHz Intel Core i7, 16 GB 2133 MHz LPDDR3,
// running macOS Mojave, 10.14.3.
//
// Native mutex implementation using fair policy (previously macOS default):
// Approximate CPU usage:
// real 4m54.612s
// user 1m20.575s
// sys 3m48.872s
// Unit test output:
// [ OK ] RecursiveCriticalSectionTest.Performance (294375 ms)
//
// Native mutex implementation using first fit policy (current macOS default):
// Approximate CPU usage:
// real 0m11.535s
// user 0m12.738s
// sys 0m31.207s
// Unit test output:
// [ OK ] RecursiveCriticalSectionTest.Performance (11444 ms)
//
// Special partially spin lock based implementation:
// Approximate CPU usage:
// real 0m2.113s
// user 0m3.014s
// sys 0m4.495s
// Unit test output:
// [ OK ] RecursiveCriticalSectionTest.Performance (1885 ms)
//
// The test is disabled by default to avoid unecessarily loading the bots.
TEST(RecursiveCriticalSectionTest, DISABLED_Performance) {
PerfTestThread threads[8];
Event event;
static const int kThreadRepeats = 10000000;
static const int kExpectedCount = kThreadRepeats * arraysize(threads);
PerfTestData test_data(kExpectedCount, &event);
for (auto& t : threads)
t.Start(&test_data, kThreadRepeats, 1);
event.Wait(Event::kForever);
for (auto& t : threads)
t.Stop();
}
} // namespace rtc