|  | /* | 
|  | *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" | 
|  |  | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  |  | 
|  | #include "webrtc/base/arraysize.h" | 
|  | #include "webrtc/base/bitbuffer.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | // Example SPS can be generated with ffmpeg. Here's an example set of commands, | 
|  | // runnable on OS X: | 
|  | // 1) Generate a video, from the camera: | 
|  | // ffmpeg -f avfoundation -i "0" -video_size 640x360 camera.mov | 
|  | // | 
|  | // 2) Scale the video to the desired size: | 
|  | // ffmpeg -i camera.mov -vf scale=640x360 scaled.mov | 
|  | // | 
|  | // 3) Get just the H.264 bitstream in AnnexB: | 
|  | // ffmpeg -i scaled.mov -vcodec copy -vbsf h264_mp4toannexb -an out.h264 | 
|  | // | 
|  | // 4) Open out.h264 and find the SPS, generally everything between the first | 
|  | // two start codes (0 0 0 1 or 0 0 1). The first byte should be 0x67, | 
|  | // which should be stripped out before being passed to the parser. | 
|  |  | 
|  | static const size_t kSpsBufferMaxSize = 256; | 
|  |  | 
|  | // Generates a fake SPS with basically everything empty but the width/height. | 
|  | // Pass in a buffer of at least kSpsBufferMaxSize. | 
|  | // The fake SPS that this generates also always has at least one emulation byte | 
|  | // at offset 2, since the first two bytes are always 0, and has a 0x3 as the | 
|  | // level_idc, to make sure the parser doesn't eat all 0x3 bytes. | 
|  | void GenerateFakeSps(uint16_t width, uint16_t height, uint8_t buffer[]) { | 
|  | uint8_t rbsp[kSpsBufferMaxSize] = {0}; | 
|  | rtc::BitBufferWriter writer(rbsp, kSpsBufferMaxSize); | 
|  | // Profile byte. | 
|  | writer.WriteUInt8(0); | 
|  | // Constraint sets and reserved zero bits. | 
|  | writer.WriteUInt8(0); | 
|  | // level_idc. | 
|  | writer.WriteUInt8(0x3u); | 
|  | // seq_paramter_set_id. | 
|  | writer.WriteExponentialGolomb(0); | 
|  | // Profile is not special, so we skip all the chroma format settings. | 
|  |  | 
|  | // Now some bit magic. | 
|  | // log2_max_frame_num_minus4: ue(v). 0 is fine. | 
|  | writer.WriteExponentialGolomb(0); | 
|  | // pic_order_cnt_type: ue(v). 0 is the type we want. | 
|  | writer.WriteExponentialGolomb(0); | 
|  | // log2_max_pic_order_cnt_lsb_minus4: ue(v). 0 is fine. | 
|  | writer.WriteExponentialGolomb(0); | 
|  | // max_num_ref_frames: ue(v). 0 is fine. | 
|  | writer.WriteExponentialGolomb(0); | 
|  | // gaps_in_frame_num_value_allowed_flag: u(1). | 
|  | writer.WriteBits(0, 1); | 
|  | // Next are width/height. First, calculate the mbs/map_units versions. | 
|  | uint16_t width_in_mbs_minus1 = (width + 15) / 16 - 1; | 
|  |  | 
|  | // For the height, we're going to define frame_mbs_only_flag, so we need to | 
|  | // divide by 2. See the parser for the full calculation. | 
|  | uint16_t height_in_map_units_minus1 = ((height + 15) / 16 - 1) / 2; | 
|  | // Write each as ue(v). | 
|  | writer.WriteExponentialGolomb(width_in_mbs_minus1); | 
|  | writer.WriteExponentialGolomb(height_in_map_units_minus1); | 
|  | // frame_mbs_only_flag: u(1). Needs to be false. | 
|  | writer.WriteBits(0, 1); | 
|  | // mb_adaptive_frame_field_flag: u(1). | 
|  | writer.WriteBits(0, 1); | 
|  | // direct_8x8_inferene_flag: u(1). | 
|  | writer.WriteBits(0, 1); | 
|  | // frame_cropping_flag: u(1). 1, so we can supply crop. | 
|  | writer.WriteBits(1, 1); | 
|  | // Now we write the left/right/top/bottom crop. For simplicity, we'll put all | 
|  | // the crop at the left/top. | 
|  | // We picked a 4:2:0 format, so the crops are 1/2 the pixel crop values. | 
|  | // Left/right. | 
|  | writer.WriteExponentialGolomb(((16 - (width % 16)) % 16) / 2); | 
|  | writer.WriteExponentialGolomb(0); | 
|  | // Top/bottom. | 
|  | writer.WriteExponentialGolomb(((16 - (height % 16)) % 16) / 2); | 
|  | writer.WriteExponentialGolomb(0); | 
|  |  | 
|  | // Get the number of bytes written (including the last partial byte). | 
|  | size_t byte_count, bit_offset; | 
|  | writer.GetCurrentOffset(&byte_count, &bit_offset); | 
|  | if (bit_offset > 0) { | 
|  | byte_count++; | 
|  | } | 
|  |  | 
|  | // Now, we need to write the rbsp into bytes. To do that, we'll need to add | 
|  | // emulation 0x03 bytes if there's ever a sequence of 00 00 01 or 00 00 00 01. | 
|  | // To be simple, just add a 0x03 after every 0x00. Extra emulation doesn't | 
|  | // hurt. | 
|  | for (size_t i = 0; i < byte_count;) { | 
|  | // The -3 is intentional; we never need to write an emulation byte if the 00 | 
|  | // is at the end. | 
|  | if (i < byte_count - 3 && rbsp[i] == 0 && rbsp[i + 1] == 0) { | 
|  | *buffer++ = rbsp[i]; | 
|  | *buffer++ = rbsp[i + 1]; | 
|  | *buffer++ = 0x3u; | 
|  | i += 2; | 
|  | } else { | 
|  | *buffer++ = rbsp[i]; | 
|  | ++i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(H264SpsParserTest, TestSampleSPSHdLandscape) { | 
|  | // SPS for a 1280x720 camera capture from ffmpeg on osx. Contains | 
|  | // emulation bytes but no cropping. | 
|  | const uint8_t buffer[] = {0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, 0x05, | 
|  | 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, 0x00, | 
|  | 0x00, 0x2A, 0xE0, 0xF1, 0x83, 0x19, 0x60}; | 
|  | H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); | 
|  | EXPECT_TRUE(parser.Parse()); | 
|  | EXPECT_EQ(1280u, parser.width()); | 
|  | EXPECT_EQ(720u, parser.height()); | 
|  | } | 
|  |  | 
|  | TEST(H264SpsParserTest, TestSampleSPSVgaLandscape) { | 
|  | // SPS for a 640x360 camera capture from ffmpeg on osx. Contains emulation | 
|  | // bytes and cropping (360 isn't divisible by 16). | 
|  | const uint8_t buffer[] = {0x7A, 0x00, 0x1E, 0xBC, 0xD9, 0x40, 0xA0, 0x2F, | 
|  | 0xF8, 0x98, 0x40, 0x00, 0x00, 0x03, 0x01, 0x80, | 
|  | 0x00, 0x00, 0x56, 0x83, 0xC5, 0x8B, 0x65, 0x80}; | 
|  | H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); | 
|  | EXPECT_TRUE(parser.Parse()); | 
|  | EXPECT_EQ(640u, parser.width()); | 
|  | EXPECT_EQ(360u, parser.height()); | 
|  | } | 
|  |  | 
|  | TEST(H264SpsParserTest, TestSampleSPSWeirdResolution) { | 
|  | // SPS for a 200x400 camera capture from ffmpeg on osx. Horizontal and | 
|  | // veritcal crop (neither dimension is divisible by 16). | 
|  | const uint8_t buffer[] = {0x7A, 0x00, 0x0D, 0xBC, 0xD9, 0x43, 0x43, 0x3E, | 
|  | 0x5E, 0x10, 0x00, 0x00, 0x03, 0x00, 0x60, 0x00, | 
|  | 0x00, 0x15, 0xA0, 0xF1, 0x42, 0x99, 0x60}; | 
|  | H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); | 
|  | EXPECT_TRUE(parser.Parse()); | 
|  | EXPECT_EQ(200u, parser.width()); | 
|  | EXPECT_EQ(400u, parser.height()); | 
|  | } | 
|  |  | 
|  | TEST(H264SpsParserTest, TestSyntheticSPSQvgaLandscape) { | 
|  | uint8_t buffer[kSpsBufferMaxSize] = {0}; | 
|  | GenerateFakeSps(320u, 180u, buffer); | 
|  | H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); | 
|  | EXPECT_TRUE(parser.Parse()); | 
|  | EXPECT_EQ(320u, parser.width()); | 
|  | EXPECT_EQ(180u, parser.height()); | 
|  | } | 
|  |  | 
|  | TEST(H264SpsParserTest, TestSyntheticSPSWeirdResolution) { | 
|  | uint8_t buffer[kSpsBufferMaxSize] = {0}; | 
|  | GenerateFakeSps(156u, 122u, buffer); | 
|  | H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); | 
|  | EXPECT_TRUE(parser.Parse()); | 
|  | EXPECT_EQ(156u, parser.width()); | 
|  | EXPECT_EQ(122u, parser.height()); | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |