blob: bdaaa7d32d552adccbe835af9b1666fdf81a5e48 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/system_wrappers/include/rtp_to_ntp.h"
#include "webrtc/test/gtest.h"
namespace webrtc {
namespace {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
} // namespace
TEST(WrapAroundTests, NoWrap) {
EXPECT_EQ(0, CheckForWrapArounds(0xFFFFFFFF, 0xFFFFFFFE));
EXPECT_EQ(0, CheckForWrapArounds(1, 0));
EXPECT_EQ(0, CheckForWrapArounds(0x00010000, 0x0000FFFF));
}
TEST(WrapAroundTests, ForwardWrap) {
EXPECT_EQ(1, CheckForWrapArounds(0, 0xFFFFFFFF));
EXPECT_EQ(1, CheckForWrapArounds(0, 0xFFFF0000));
EXPECT_EQ(1, CheckForWrapArounds(0x0000FFFF, 0xFFFFFFFF));
EXPECT_EQ(1, CheckForWrapArounds(0x0000FFFF, 0xFFFF0000));
}
TEST(WrapAroundTests, BackwardWrap) {
EXPECT_EQ(-1, CheckForWrapArounds(0xFFFFFFFF, 0));
EXPECT_EQ(-1, CheckForWrapArounds(0xFFFF0000, 0));
EXPECT_EQ(-1, CheckForWrapArounds(0xFFFFFFFF, 0x0000FFFF));
EXPECT_EQ(-1, CheckForWrapArounds(0xFFFF0000, 0x0000FFFF));
}
TEST(WrapAroundTests, OldRtcpWrapped_OldRtpTimestamp) {
RtcpMeasurements rtcp;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
// Expected to fail since the older RTCP has a smaller RTP timestamp than the
// newer (old:0, new:4294967206).
EXPECT_FALSE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
}
TEST(WrapAroundTests, NewRtcpWrapped) {
RtcpMeasurements rtcp;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0xFFFFFFFF;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
int64_t timestamp_ms = -1;
EXPECT_TRUE(RtpToNtpMs(rtcp.list.back().rtp_timestamp, rtcp, &timestamp_ms));
// Since this RTP packet has the same timestamp as the RTCP packet constructed
// at time 0 it should be mapped to 0 as well.
EXPECT_EQ(0, timestamp_ms);
}
TEST(WrapAroundTests, RtpWrapped) {
RtcpMeasurements rtcp;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0xFFFFFFFF - 2 * kTimestampTicksPerMs;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
int64_t timestamp_ms = -1;
EXPECT_TRUE(RtpToNtpMs(rtcp.list.back().rtp_timestamp, rtcp, &timestamp_ms));
// Since this RTP packet has the same timestamp as the RTCP packet constructed
// at time 0 it should be mapped to 0 as well.
EXPECT_EQ(0, timestamp_ms);
// Two kTimestampTicksPerMs advanced.
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(RtpToNtpMs(timestamp, rtcp, &timestamp_ms));
EXPECT_EQ(2, timestamp_ms);
// Wrapped rtp.
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(RtpToNtpMs(timestamp, rtcp, &timestamp_ms));
EXPECT_EQ(3, timestamp_ms);
}
TEST(WrapAroundTests, OldRtp_RtcpsWrapped) {
RtcpMeasurements rtcp;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
timestamp -= 2*kTimestampTicksPerMs;
int64_t timestamp_ms = -1;
EXPECT_FALSE(RtpToNtpMs(timestamp, rtcp, &timestamp_ms));
}
TEST(WrapAroundTests, OldRtp_NewRtcpWrapped) {
RtcpMeasurements rtcp;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0xFFFFFFFF;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
timestamp -= kTimestampTicksPerMs;
int64_t timestamp_ms = -1;
EXPECT_TRUE(RtpToNtpMs(timestamp, rtcp, &timestamp_ms));
// Constructed at the same time as the first RTCP and should therefore be
// mapped to zero.
EXPECT_EQ(0, timestamp_ms);
}
TEST(UpdateRtcpListTests, InjectRtcpSr) {
const uint32_t kNtpSec = 10;
const uint32_t kNtpFrac = 12345;
const uint32_t kTs = 0x12345678;
bool new_sr;
RtcpMeasurements rtcp;
EXPECT_TRUE(UpdateRtcpList(kNtpSec, kNtpFrac, kTs, &rtcp, &new_sr));
EXPECT_TRUE(new_sr);
EXPECT_EQ(1u, rtcp.list.size());
EXPECT_EQ(kNtpSec, rtcp.list.front().ntp_time.seconds());
EXPECT_EQ(kNtpFrac, rtcp.list.front().ntp_time.fractions());
EXPECT_EQ(kTs, rtcp.list.front().rtp_timestamp);
// Add second report.
EXPECT_TRUE(UpdateRtcpList(kNtpSec, kNtpFrac + kOneMsInNtpFrac, kTs + 1,
&rtcp, &new_sr));
EXPECT_EQ(2u, rtcp.list.size());
EXPECT_EQ(kTs + 1, rtcp.list.front().rtp_timestamp);
EXPECT_EQ(kTs + 0, rtcp.list.back().rtp_timestamp);
// List should contain last two reports.
EXPECT_TRUE(UpdateRtcpList(kNtpSec, kNtpFrac + 2 * kOneMsInNtpFrac, kTs + 2,
&rtcp, &new_sr));
EXPECT_EQ(2u, rtcp.list.size());
EXPECT_EQ(kTs + 2, rtcp.list.front().rtp_timestamp);
EXPECT_EQ(kTs + 1, rtcp.list.back().rtp_timestamp);
}
TEST(UpdateRtcpListTests, FailsForZeroNtp) {
RtcpMeasurements rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_FALSE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_FALSE(new_sr);
EXPECT_EQ(0u, rtcp.list.size());
}
TEST(UpdateRtcpListTests, FailsForEqualNtp) {
RtcpMeasurements rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 699925050;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_TRUE(new_sr);
EXPECT_EQ(1u, rtcp.list.size());
// Ntp time already added, list not updated.
++timestamp;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_FALSE(new_sr);
EXPECT_EQ(1u, rtcp.list.size());
}
TEST(UpdateRtcpListTests, FailsForOldNtp) {
RtcpMeasurements rtcp;
uint32_t ntp_sec = 1;
uint32_t ntp_frac = 699925050;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_TRUE(new_sr);
EXPECT_EQ(1u, rtcp.list.size());
// Old ntp time, list not updated.
ntp_frac -= kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_FALSE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_EQ(1u, rtcp.list.size());
}
TEST(UpdateRtcpListTests, FailsForEqualTimestamp) {
RtcpMeasurements rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 2;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_TRUE(new_sr);
EXPECT_EQ(1u, rtcp.list.size());
// Timestamp already added, list not updated.
++ntp_frac;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_FALSE(new_sr);
EXPECT_EQ(1u, rtcp.list.size());
}
TEST(UpdateRtcpListTests, FailsForOldRtpTimestamp) {
RtcpMeasurements rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 2;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_TRUE(new_sr);
EXPECT_EQ(1u, rtcp.list.size());
// Old timestamp, list not updated.
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
EXPECT_FALSE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_FALSE(new_sr);
EXPECT_EQ(1u, rtcp.list.size());
}
TEST(UpdateRtcpListTests, VerifyParameters) {
RtcpMeasurements rtcp;
uint32_t ntp_sec = 1;
uint32_t ntp_frac = 2;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_TRUE(new_sr);
EXPECT_FALSE(rtcp.params.calculated);
// Add second report, parameters should be calculated.
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_TRUE(rtcp.params.calculated);
EXPECT_DOUBLE_EQ(90.0, rtcp.params.frequency_khz);
EXPECT_NE(0.0, rtcp.params.offset_ms);
}
TEST(RtpToNtpTests, FailsForEmptyList) {
RtcpMeasurements rtcp;
rtcp.params.calculated = true;
// List is empty, conversion of RTP to NTP time should fail.
EXPECT_EQ(0u, rtcp.list.size());
int64_t timestamp_ms = -1;
EXPECT_FALSE(RtpToNtpMs(0, rtcp, &timestamp_ms));
}
TEST(RtpToNtpTests, FailsForNoParameters) {
RtcpMeasurements rtcp;
uint32_t ntp_sec = 1;
uint32_t ntp_frac = 2;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(UpdateRtcpList(ntp_sec, ntp_frac, timestamp, &rtcp, &new_sr));
EXPECT_EQ(1u, rtcp.list.size());
// Parameters are not calculated, conversion of RTP to NTP time should fail.
EXPECT_FALSE(rtcp.params.calculated);
int64_t timestamp_ms = -1;
EXPECT_FALSE(RtpToNtpMs(timestamp, rtcp, &timestamp_ms));
}
}; // namespace webrtc