| /* |
| * Copyright 2020 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "pc/sctp_data_channel.h" |
| |
| #include <limits> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| |
| #include "media/sctp/sctp_transport_internal.h" |
| #include "pc/proxy.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/system/unused.h" |
| #include "rtc_base/thread.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| static size_t kMaxQueuedReceivedDataBytes = 16 * 1024 * 1024; |
| |
| static std::atomic<int> g_unique_id{0}; |
| |
| int GenerateUniqueId() { |
| return ++g_unique_id; |
| } |
| |
| // Define proxy for DataChannelInterface. |
| BEGIN_PROXY_MAP(DataChannel) |
| PROXY_PRIMARY_THREAD_DESTRUCTOR() |
| BYPASS_PROXY_METHOD1(void, RegisterObserver, DataChannelObserver*) |
| BYPASS_PROXY_METHOD0(void, UnregisterObserver) |
| BYPASS_PROXY_CONSTMETHOD0(std::string, label) |
| BYPASS_PROXY_CONSTMETHOD0(bool, reliable) |
| BYPASS_PROXY_CONSTMETHOD0(bool, ordered) |
| BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmitTime) |
| BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmits) |
| BYPASS_PROXY_CONSTMETHOD0(absl::optional<int>, maxRetransmitsOpt) |
| BYPASS_PROXY_CONSTMETHOD0(absl::optional<int>, maxPacketLifeTime) |
| BYPASS_PROXY_CONSTMETHOD0(std::string, protocol) |
| BYPASS_PROXY_CONSTMETHOD0(bool, negotiated) |
| // Can't bypass the proxy since the id may change. |
| PROXY_SECONDARY_CONSTMETHOD0(int, id) |
| BYPASS_PROXY_CONSTMETHOD0(Priority, priority) |
| BYPASS_PROXY_CONSTMETHOD0(DataState, state) |
| BYPASS_PROXY_CONSTMETHOD0(RTCError, error) |
| PROXY_SECONDARY_CONSTMETHOD0(uint32_t, messages_sent) |
| PROXY_SECONDARY_CONSTMETHOD0(uint64_t, bytes_sent) |
| PROXY_SECONDARY_CONSTMETHOD0(uint32_t, messages_received) |
| PROXY_SECONDARY_CONSTMETHOD0(uint64_t, bytes_received) |
| PROXY_SECONDARY_CONSTMETHOD0(uint64_t, buffered_amount) |
| PROXY_SECONDARY_METHOD0(void, Close) |
| PROXY_SECONDARY_METHOD1(bool, Send, const DataBuffer&) |
| BYPASS_PROXY_METHOD2(void, |
| SendAsync, |
| DataBuffer, |
| absl::AnyInvocable<void(RTCError) &&>) |
| END_PROXY_MAP(DataChannel) |
| } // namespace |
| |
| InternalDataChannelInit::InternalDataChannelInit(const DataChannelInit& base) |
| : DataChannelInit(base), open_handshake_role(kOpener) { |
| // If the channel is externally negotiated, do not send the OPEN message. |
| if (base.negotiated) { |
| open_handshake_role = kNone; |
| } else { |
| // Datachannel is externally negotiated. Ignore the id value. |
| // Specified in createDataChannel, WebRTC spec section 6.1 bullet 13. |
| id = -1; |
| } |
| // Backwards compatibility: If maxRetransmits or maxRetransmitTime |
| // are negative, the feature is not enabled. |
| // Values are clamped to a 16bit range. |
| if (maxRetransmits) { |
| if (*maxRetransmits < 0) { |
| RTC_LOG(LS_ERROR) |
| << "Accepting maxRetransmits < 0 for backwards compatibility"; |
| maxRetransmits = absl::nullopt; |
| } else if (*maxRetransmits > std::numeric_limits<uint16_t>::max()) { |
| maxRetransmits = std::numeric_limits<uint16_t>::max(); |
| } |
| } |
| |
| if (maxRetransmitTime) { |
| if (*maxRetransmitTime < 0) { |
| RTC_LOG(LS_ERROR) |
| << "Accepting maxRetransmitTime < 0 for backwards compatibility"; |
| maxRetransmitTime = absl::nullopt; |
| } else if (*maxRetransmitTime > std::numeric_limits<uint16_t>::max()) { |
| maxRetransmitTime = std::numeric_limits<uint16_t>::max(); |
| } |
| } |
| } |
| |
| bool InternalDataChannelInit::IsValid() const { |
| if (id < -1) |
| return false; |
| |
| if (maxRetransmits.has_value() && maxRetransmits.value() < 0) |
| return false; |
| |
| if (maxRetransmitTime.has_value() && maxRetransmitTime.value() < 0) |
| return false; |
| |
| // Only one of these can be set. |
| if (maxRetransmits.has_value() && maxRetransmitTime.has_value()) |
| return false; |
| |
| return true; |
| } |
| |
| absl::optional<StreamId> SctpSidAllocator::AllocateSid(rtc::SSLRole role) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| int potential_sid = (role == rtc::SSL_CLIENT) ? 0 : 1; |
| while (potential_sid <= static_cast<int>(cricket::kMaxSctpSid)) { |
| StreamId sid(potential_sid); |
| if (used_sids_.insert(sid).second) |
| return sid; |
| potential_sid += 2; |
| } |
| RTC_LOG(LS_ERROR) << "SCTP sid allocation pool exhausted."; |
| return absl::nullopt; |
| } |
| |
| bool SctpSidAllocator::ReserveSid(StreamId sid) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| return used_sids_.insert(sid).second; |
| } |
| |
| void SctpSidAllocator::ReleaseSid(StreamId sid) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| used_sids_.erase(sid); |
| } |
| |
| // A DataChannelObserver implementation that offers backwards compatibility with |
| // implementations that aren't yet ready to be called back on the network |
| // thread. This implementation posts events to the signaling thread where |
| // events are delivered. |
| // In the class, and together with the `SctpDataChannel` implementation, there's |
| // special handling for the `state()` property whereby if that property is |
| // queried on the channel object while inside an event callback, we return |
| // the state that was active at the time the event was issued. This is to avoid |
| // a problem with calling the `state()` getter on the proxy, which would do |
| // a blocking call to the network thread, effectively flushing operations on |
| // the network thread that could cause the state to change and eventually return |
| // a misleading or arguably, wrong, state value to the callback implementation. |
| // As a future improvement to the ObserverAdapter, we could do the same for |
| // other properties that need to be read on the network thread. Eventually |
| // all implementations should expect to be called on the network thread though |
| // and the ObserverAdapter no longer be necessary. |
| class SctpDataChannel::ObserverAdapter : public DataChannelObserver { |
| public: |
| explicit ObserverAdapter( |
| SctpDataChannel* channel, |
| rtc::scoped_refptr<PendingTaskSafetyFlag> signaling_safety) |
| : channel_(channel), signaling_safety_(std::move(signaling_safety)) {} |
| |
| bool IsInsideCallback() const { |
| RTC_DCHECK_RUN_ON(signaling_thread()); |
| return cached_getters_ != nullptr; |
| } |
| |
| DataChannelInterface::DataState cached_state() const { |
| RTC_DCHECK_RUN_ON(signaling_thread()); |
| RTC_DCHECK(IsInsideCallback()); |
| return cached_getters_->state(); |
| } |
| |
| RTCError cached_error() const { |
| RTC_DCHECK_RUN_ON(signaling_thread()); |
| RTC_DCHECK(IsInsideCallback()); |
| return cached_getters_->error(); |
| } |
| |
| void SetDelegate(DataChannelObserver* delegate) { |
| RTC_DCHECK_RUN_ON(signaling_thread()); |
| delegate_ = delegate; |
| safety_.reset(PendingTaskSafetyFlag::CreateDetached()); |
| } |
| |
| static void DeleteOnSignalingThread( |
| std::unique_ptr<ObserverAdapter> observer) { |
| auto* signaling_thread = observer->signaling_thread(); |
| if (!signaling_thread->IsCurrent()) |
| signaling_thread->PostTask([observer = std::move(observer)]() {}); |
| } |
| |
| private: |
| class CachedGetters { |
| public: |
| explicit CachedGetters(ObserverAdapter* adapter) |
| : adapter_(adapter), |
| cached_state_(adapter_->channel_->state()), |
| cached_error_(adapter_->channel_->error()) { |
| RTC_DCHECK_RUN_ON(adapter->network_thread()); |
| } |
| |
| ~CachedGetters() { |
| if (!was_dropped_) { |
| RTC_DCHECK_RUN_ON(adapter_->signaling_thread()); |
| RTC_DCHECK_EQ(adapter_->cached_getters_, this); |
| adapter_->cached_getters_ = nullptr; |
| } |
| } |
| |
| bool PrepareForCallback() { |
| RTC_DCHECK_RUN_ON(adapter_->signaling_thread()); |
| RTC_DCHECK(was_dropped_); |
| was_dropped_ = false; |
| adapter_->cached_getters_ = this; |
| return adapter_->delegate_ && adapter_->signaling_safety_->alive(); |
| } |
| |
| RTCError error() { return cached_error_; } |
| DataChannelInterface::DataState state() { return cached_state_; } |
| |
| private: |
| ObserverAdapter* const adapter_; |
| bool was_dropped_ = true; |
| const DataChannelInterface::DataState cached_state_; |
| const RTCError cached_error_; |
| }; |
| |
| void OnStateChange() override { |
| RTC_DCHECK_RUN_ON(network_thread()); |
| signaling_thread()->PostTask( |
| SafeTask(safety_.flag(), |
| [this, cached_state = std::make_unique<CachedGetters>(this)] { |
| RTC_DCHECK_RUN_ON(signaling_thread()); |
| if (cached_state->PrepareForCallback()) |
| delegate_->OnStateChange(); |
| })); |
| } |
| |
| void OnMessage(const DataBuffer& buffer) override { |
| RTC_DCHECK_RUN_ON(network_thread()); |
| signaling_thread()->PostTask(SafeTask( |
| safety_.flag(), [this, buffer = buffer, |
| cached_state = std::make_unique<CachedGetters>(this)] { |
| RTC_DCHECK_RUN_ON(signaling_thread()); |
| if (cached_state->PrepareForCallback()) |
| delegate_->OnMessage(buffer); |
| })); |
| } |
| |
| void OnBufferedAmountChange(uint64_t sent_data_size) override { |
| RTC_DCHECK_RUN_ON(network_thread()); |
| signaling_thread()->PostTask(SafeTask( |
| safety_.flag(), [this, sent_data_size, |
| cached_state = std::make_unique<CachedGetters>(this)] { |
| RTC_DCHECK_RUN_ON(signaling_thread()); |
| if (cached_state->PrepareForCallback()) |
| delegate_->OnBufferedAmountChange(sent_data_size); |
| })); |
| } |
| |
| bool IsOkToCallOnTheNetworkThread() override { return true; } |
| |
| rtc::Thread* signaling_thread() const { return signaling_thread_; } |
| rtc::Thread* network_thread() const { return channel_->network_thread_; } |
| |
| DataChannelObserver* delegate_ RTC_GUARDED_BY(signaling_thread()) = nullptr; |
| SctpDataChannel* const channel_; |
| // Make sure to keep our own signaling_thread_ pointer to avoid dereferencing |
| // `channel_` in the `RTC_DCHECK_RUN_ON` checks on the signaling thread. |
| rtc::Thread* const signaling_thread_{channel_->signaling_thread_}; |
| ScopedTaskSafety safety_; |
| rtc::scoped_refptr<PendingTaskSafetyFlag> signaling_safety_; |
| CachedGetters* cached_getters_ RTC_GUARDED_BY(signaling_thread()) = nullptr; |
| }; |
| |
| // static |
| rtc::scoped_refptr<SctpDataChannel> SctpDataChannel::Create( |
| rtc::WeakPtr<SctpDataChannelControllerInterface> controller, |
| const std::string& label, |
| bool connected_to_transport, |
| const InternalDataChannelInit& config, |
| rtc::Thread* signaling_thread, |
| rtc::Thread* network_thread) { |
| RTC_DCHECK(config.IsValid()); |
| return rtc::make_ref_counted<SctpDataChannel>( |
| config, std::move(controller), label, connected_to_transport, |
| signaling_thread, network_thread); |
| } |
| |
| // static |
| rtc::scoped_refptr<DataChannelInterface> SctpDataChannel::CreateProxy( |
| rtc::scoped_refptr<SctpDataChannel> channel, |
| rtc::scoped_refptr<PendingTaskSafetyFlag> signaling_safety) { |
| // Copy thread params to local variables before `std::move()`. |
| auto* signaling_thread = channel->signaling_thread_; |
| auto* network_thread = channel->network_thread_; |
| channel->observer_adapter_ = std::make_unique<ObserverAdapter>( |
| channel.get(), std::move(signaling_safety)); |
| return DataChannelProxy::Create(signaling_thread, network_thread, |
| std::move(channel)); |
| } |
| |
| SctpDataChannel::SctpDataChannel( |
| const InternalDataChannelInit& config, |
| rtc::WeakPtr<SctpDataChannelControllerInterface> controller, |
| const std::string& label, |
| bool connected_to_transport, |
| rtc::Thread* signaling_thread, |
| rtc::Thread* network_thread) |
| : signaling_thread_(signaling_thread), |
| network_thread_(network_thread), |
| id_n_(config.id == -1 ? absl::nullopt : absl::make_optional(config.id)), |
| internal_id_(GenerateUniqueId()), |
| label_(label), |
| protocol_(config.protocol), |
| max_retransmit_time_(config.maxRetransmitTime), |
| max_retransmits_(config.maxRetransmits), |
| priority_(config.priority), |
| negotiated_(config.negotiated), |
| ordered_(config.ordered), |
| observer_(nullptr), |
| controller_(std::move(controller)) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| // Since we constructed on the network thread we can't (yet) check the |
| // `controller_` pointer since doing so will trigger a thread check. |
| RTC_UNUSED(network_thread_); |
| RTC_DCHECK(config.IsValid()); |
| |
| if (connected_to_transport) |
| network_safety_->SetAlive(); |
| |
| switch (config.open_handshake_role) { |
| case InternalDataChannelInit::kNone: // pre-negotiated |
| handshake_state_ = kHandshakeReady; |
| break; |
| case InternalDataChannelInit::kOpener: |
| handshake_state_ = kHandshakeShouldSendOpen; |
| break; |
| case InternalDataChannelInit::kAcker: |
| handshake_state_ = kHandshakeShouldSendAck; |
| break; |
| } |
| } |
| |
| SctpDataChannel::~SctpDataChannel() { |
| if (observer_adapter_) |
| ObserverAdapter::DeleteOnSignalingThread(std::move(observer_adapter_)); |
| } |
| |
| void SctpDataChannel::RegisterObserver(DataChannelObserver* observer) { |
| // Note: at this point, we do not know on which thread we're being called |
| // from since this method bypasses the proxy. On Android in particular, |
| // registration methods are called from unknown threads. |
| |
| // Check if we should set up an observer adapter that will make sure that |
| // callbacks are delivered on the signaling thread rather than directly |
| // on the network thread. |
| const auto* current_thread = rtc::Thread::Current(); |
| // TODO(webrtc:11547): Eventually all DataChannelObserver implementations |
| // should be called on the network thread and IsOkToCallOnTheNetworkThread(). |
| if (!observer->IsOkToCallOnTheNetworkThread()) { |
| RTC_LOG(LS_WARNING) << "DataChannelObserver - adapter needed"; |
| auto prepare_observer = [&]() { |
| RTC_DCHECK(observer_adapter_) << "CreateProxy hasn't been called"; |
| observer_adapter_->SetDelegate(observer); |
| return observer_adapter_.get(); |
| }; |
| // Instantiate the adapter in the right context and then substitute the |
| // observer pointer the SctpDataChannel will call back on, with the adapter. |
| if (signaling_thread_ == current_thread) { |
| observer = prepare_observer(); |
| } else { |
| observer = signaling_thread_->BlockingCall(std::move(prepare_observer)); |
| } |
| } |
| |
| // Now do the observer registration on the network thread. In the common case, |
| // we'll do this asynchronously via `PostTask()`. For that reason we grab |
| // a reference to ourselves while the task is in flight. We can't use |
| // `SafeTask(network_safety_, ...)` for this since we can't assume that we |
| // have a transport (network_safety_ represents the transport connection). |
| rtc::scoped_refptr<SctpDataChannel> me(this); |
| auto register_observer = [me = std::move(me), observer = observer] { |
| RTC_DCHECK_RUN_ON(me->network_thread_); |
| me->observer_ = observer; |
| me->DeliverQueuedReceivedData(); |
| }; |
| |
| if (network_thread_ == current_thread) { |
| register_observer(); |
| } else { |
| network_thread_->BlockingCall(std::move(register_observer)); |
| } |
| } |
| |
| void SctpDataChannel::UnregisterObserver() { |
| // Note: As with `RegisterObserver`, the proxy is being bypassed. |
| const auto* current_thread = rtc::Thread::Current(); |
| // Callers must not be invoking the unregistration from the network thread |
| // (assuming a multi-threaded environment where we have a dedicated network |
| // thread). That would indicate non-network related work happening on the |
| // network thread or that unregistration is being done from within a callback |
| // (without unwinding the stack, which is a requirement). |
| // The network thread is not allowed to make blocking calls to the signaling |
| // thread, so that would blow up if attempted. Since we support an adapter |
| // for observers that are not safe to call on the network thread, we do |
| // need to check+free it on the signaling thread. |
| RTC_DCHECK(current_thread != network_thread_ || |
| network_thread_ == signaling_thread_); |
| |
| auto unregister_observer = [&] { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| observer_ = nullptr; |
| }; |
| |
| if (current_thread == network_thread_) { |
| unregister_observer(); |
| } else { |
| network_thread_->BlockingCall(std::move(unregister_observer)); |
| } |
| |
| auto clear_observer = [&]() { |
| if (observer_adapter_) |
| observer_adapter_->SetDelegate(nullptr); |
| }; |
| |
| if (current_thread != signaling_thread_) { |
| signaling_thread_->BlockingCall(std::move(clear_observer)); |
| } else { |
| clear_observer(); |
| } |
| } |
| |
| std::string SctpDataChannel::label() const { |
| return label_; |
| } |
| |
| bool SctpDataChannel::reliable() const { |
| // May be called on any thread. |
| return !max_retransmits_ && !max_retransmit_time_; |
| } |
| |
| bool SctpDataChannel::ordered() const { |
| return ordered_; |
| } |
| |
| uint16_t SctpDataChannel::maxRetransmitTime() const { |
| return max_retransmit_time_ ? *max_retransmit_time_ |
| : static_cast<uint16_t>(-1); |
| } |
| |
| uint16_t SctpDataChannel::maxRetransmits() const { |
| return max_retransmits_ ? *max_retransmits_ : static_cast<uint16_t>(-1); |
| } |
| |
| absl::optional<int> SctpDataChannel::maxPacketLifeTime() const { |
| return max_retransmit_time_; |
| } |
| |
| absl::optional<int> SctpDataChannel::maxRetransmitsOpt() const { |
| return max_retransmits_; |
| } |
| |
| std::string SctpDataChannel::protocol() const { |
| return protocol_; |
| } |
| |
| bool SctpDataChannel::negotiated() const { |
| return negotiated_; |
| } |
| |
| int SctpDataChannel::id() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return id_n_.has_value() ? id_n_->stream_id_int() : -1; |
| } |
| |
| Priority SctpDataChannel::priority() const { |
| return priority_ ? *priority_ : Priority::kLow; |
| } |
| |
| uint64_t SctpDataChannel::buffered_amount() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| if (controller_ != nullptr && id_n_.has_value()) { |
| return controller_->buffered_amount(*id_n_); |
| } |
| return 0u; |
| } |
| |
| void SctpDataChannel::Close() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| if (state_ == kClosing || state_ == kClosed) |
| return; |
| SetState(kClosing); |
| // Will send queued data before beginning the underlying closing procedure. |
| UpdateState(); |
| } |
| |
| SctpDataChannel::DataState SctpDataChannel::state() const { |
| // Note: The proxy is bypassed for the `state()` accessor. This is to allow |
| // observer callbacks to query what the new state is from within a state |
| // update notification without having to do a blocking call to the network |
| // thread from within a callback. This also makes it so that the returned |
| // state is guaranteed to be the new state that provoked the state change |
| // notification, whereby a blocking call to the network thread might end up |
| // getting put behind other messages on the network thread and eventually |
| // fetch a different state value (since pending messages might cause the |
| // state to change in the meantime). |
| const auto* current_thread = rtc::Thread::Current(); |
| if (current_thread == signaling_thread_ && observer_adapter_ && |
| observer_adapter_->IsInsideCallback()) { |
| return observer_adapter_->cached_state(); |
| } |
| |
| auto return_state = [&] { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return state_; |
| }; |
| |
| return current_thread == network_thread_ |
| ? return_state() |
| : network_thread_->BlockingCall(std::move(return_state)); |
| } |
| |
| RTCError SctpDataChannel::error() const { |
| const auto* current_thread = rtc::Thread::Current(); |
| if (current_thread == signaling_thread_ && observer_adapter_ && |
| observer_adapter_->IsInsideCallback()) { |
| return observer_adapter_->cached_error(); |
| } |
| |
| auto return_error = [&] { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return error_; |
| }; |
| |
| return current_thread == network_thread_ |
| ? return_error() |
| : network_thread_->BlockingCall(std::move(return_error)); |
| } |
| |
| uint32_t SctpDataChannel::messages_sent() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return messages_sent_; |
| } |
| |
| uint64_t SctpDataChannel::bytes_sent() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return bytes_sent_; |
| } |
| |
| uint32_t SctpDataChannel::messages_received() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return messages_received_; |
| } |
| |
| uint64_t SctpDataChannel::bytes_received() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return bytes_received_; |
| } |
| |
| bool SctpDataChannel::Send(const DataBuffer& buffer) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTCError err = SendImpl(buffer); |
| if (err.type() == RTCErrorType::INVALID_STATE || |
| err.type() == RTCErrorType::RESOURCE_EXHAUSTED) { |
| return false; |
| } |
| |
| // Always return true for SCTP DataChannel per the spec. |
| return true; |
| } |
| |
| // RTC_RUN_ON(network_thread_); |
| RTCError SctpDataChannel::SendImpl(DataBuffer buffer) { |
| // The caller increases the cached `bufferedAmount` even if there are errors. |
| expected_buffer_amount_ += buffer.size(); |
| |
| if (state_ != kOpen) { |
| error_ = RTCError(RTCErrorType::INVALID_STATE); |
| return error_; |
| } |
| |
| return SendDataMessage(buffer, true); |
| } |
| |
| void SctpDataChannel::SendAsync( |
| DataBuffer buffer, |
| absl::AnyInvocable<void(RTCError) &&> on_complete) { |
| // Note: at this point, we do not know on which thread we're being called |
| // since this method bypasses the proxy. On Android the thread might be VM |
| // owned, on other platforms it might be the signaling thread, or in Chrome |
| // it can be the JS thread. We also don't know if it's consistently the same |
| // thread. So we always post to the network thread (even if the current thread |
| // might be the network thread - in theory a call could even come from within |
| // the `on_complete` callback). |
| network_thread_->PostTask(SafeTask( |
| network_safety_, [this, buffer = std::move(buffer), |
| on_complete = std::move(on_complete)]() mutable { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTCError err = SendImpl(std::move(buffer)); |
| if (on_complete) |
| std::move(on_complete)(err); |
| })); |
| } |
| |
| void SctpDataChannel::SetSctpSid_n(StreamId sid) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTC_DCHECK(!id_n_.has_value()); |
| RTC_DCHECK_NE(handshake_state_, kHandshakeWaitingForAck); |
| RTC_DCHECK_EQ(state_, kConnecting); |
| id_n_ = sid; |
| } |
| |
| void SctpDataChannel::OnClosingProcedureStartedRemotely() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| if (state_ != kClosing && state_ != kClosed) { |
| // Don't bother sending queued data since the side that initiated the |
| // closure wouldn't receive it anyway. See crbug.com/559394 for a lengthy |
| // discussion about this. |
| |
| // Note that this is handled by the SctpTransport, when an incoming stream |
| // reset notification comes in, the outgoing stream is closed, which |
| // discards data. |
| |
| // Just need to change state to kClosing, SctpTransport will handle the |
| // rest of the closing procedure and OnClosingProcedureComplete will be |
| // called later. |
| started_closing_procedure_ = true; |
| SetState(kClosing); |
| } |
| } |
| |
| void SctpDataChannel::OnClosingProcedureComplete() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| // If the closing procedure is complete, we should have finished sending |
| // all pending data and transitioned to kClosing already. |
| RTC_DCHECK_EQ(state_, kClosing); |
| if (controller_ && id_n_.has_value()) { |
| RTC_DCHECK_EQ(controller_->buffered_amount(*id_n_), 0); |
| } |
| SetState(kClosed); |
| } |
| |
| void SctpDataChannel::OnTransportChannelCreated() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| network_safety_->SetAlive(); |
| } |
| |
| void SctpDataChannel::OnTransportChannelClosed(RTCError error) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| // The SctpTransport is unusable, which could come from multiple reasons: |
| // - the SCTP m= section was rejected |
| // - the DTLS transport is closed |
| // - the SCTP transport is closed |
| CloseAbruptlyWithError(std::move(error)); |
| } |
| |
| void SctpDataChannel::OnBufferedAmountLow() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| MaybeSendOnBufferedAmountChanged(); |
| |
| if (state_ == DataChannelInterface::kClosing && !started_closing_procedure_ && |
| id_n_.has_value() && buffered_amount() == 0) { |
| started_closing_procedure_ = true; |
| controller_->RemoveSctpDataStream(*id_n_); |
| } |
| } |
| |
| DataChannelStats SctpDataChannel::GetStats() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| DataChannelStats stats{internal_id_, id(), label(), |
| protocol(), state(), messages_sent(), |
| messages_received(), bytes_sent(), bytes_received()}; |
| return stats; |
| } |
| |
| void SctpDataChannel::OnDataReceived(DataMessageType type, |
| const rtc::CopyOnWriteBuffer& payload) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTC_DCHECK(id_n_.has_value()); |
| |
| if (type == DataMessageType::kControl) { |
| if (handshake_state_ != kHandshakeWaitingForAck) { |
| // Ignore it if we are not expecting an ACK message. |
| RTC_LOG(LS_WARNING) |
| << "DataChannel received unexpected CONTROL message, sid = " |
| << id_n_->stream_id_int(); |
| return; |
| } |
| if (ParseDataChannelOpenAckMessage(payload)) { |
| // We can send unordered as soon as we receive the ACK message. |
| handshake_state_ = kHandshakeReady; |
| RTC_LOG(LS_INFO) << "DataChannel received OPEN_ACK message, sid = " |
| << id_n_->stream_id_int(); |
| } else { |
| RTC_LOG(LS_WARNING) |
| << "DataChannel failed to parse OPEN_ACK message, sid = " |
| << id_n_->stream_id_int(); |
| } |
| return; |
| } |
| |
| RTC_DCHECK(type == DataMessageType::kBinary || |
| type == DataMessageType::kText); |
| |
| RTC_DLOG(LS_VERBOSE) << "DataChannel received DATA message, sid = " |
| << id_n_->stream_id_int(); |
| // We can send unordered as soon as we receive any DATA message since the |
| // remote side must have received the OPEN (and old clients do not send |
| // OPEN_ACK). |
| if (handshake_state_ == kHandshakeWaitingForAck) { |
| handshake_state_ = kHandshakeReady; |
| } |
| |
| bool binary = (type == DataMessageType::kBinary); |
| auto buffer = std::make_unique<DataBuffer>(payload, binary); |
| if (state_ == kOpen && observer_) { |
| ++messages_received_; |
| bytes_received_ += buffer->size(); |
| observer_->OnMessage(*buffer.get()); |
| } else { |
| if (queued_received_data_.byte_count() + payload.size() > |
| kMaxQueuedReceivedDataBytes) { |
| RTC_LOG(LS_ERROR) << "Queued received data exceeds the max buffer size."; |
| |
| queued_received_data_.Clear(); |
| CloseAbruptlyWithError( |
| RTCError(RTCErrorType::RESOURCE_EXHAUSTED, |
| "Queued received data exceeds the max buffer size.")); |
| |
| return; |
| } |
| queued_received_data_.PushBack(std::move(buffer)); |
| } |
| } |
| |
| void SctpDataChannel::OnTransportReady() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTC_DCHECK(connected_to_transport()); |
| RTC_DCHECK(id_n_.has_value()); |
| |
| UpdateState(); |
| } |
| |
| void SctpDataChannel::CloseAbruptlyWithError(RTCError error) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| |
| if (state_ == kClosed) { |
| return; |
| } |
| |
| network_safety_->SetNotAlive(); |
| |
| // Still go to "kClosing" before "kClosed", since observers may be expecting |
| // that. |
| SetState(kClosing); |
| error_ = std::move(error); |
| SetState(kClosed); |
| } |
| |
| void SctpDataChannel::CloseAbruptlyWithDataChannelFailure( |
| const std::string& message) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTCError error(RTCErrorType::OPERATION_ERROR_WITH_DATA, message); |
| error.set_error_detail(RTCErrorDetailType::DATA_CHANNEL_FAILURE); |
| CloseAbruptlyWithError(std::move(error)); |
| } |
| |
| // RTC_RUN_ON(network_thread_). |
| void SctpDataChannel::UpdateState() { |
| // UpdateState determines what to do from a few state variables. Include |
| // all conditions required for each state transition here for |
| // clarity. OnTransportReady(true) will send any queued data and then invoke |
| // UpdateState(). |
| |
| switch (state_) { |
| case kConnecting: { |
| if (connected_to_transport() && controller_) { |
| if (handshake_state_ == kHandshakeShouldSendOpen) { |
| rtc::CopyOnWriteBuffer payload; |
| WriteDataChannelOpenMessage(label_, protocol_, priority_, ordered_, |
| max_retransmits_, max_retransmit_time_, |
| &payload); |
| SendControlMessage(payload); |
| } else if (handshake_state_ == kHandshakeShouldSendAck) { |
| rtc::CopyOnWriteBuffer payload; |
| WriteDataChannelOpenAckMessage(&payload); |
| SendControlMessage(payload); |
| } |
| if (handshake_state_ == kHandshakeReady || |
| handshake_state_ == kHandshakeWaitingForAck) { |
| SetState(kOpen); |
| // If we have received buffers before the channel got writable. |
| // Deliver them now. |
| DeliverQueuedReceivedData(); |
| } |
| } else { |
| RTC_DCHECK(!id_n_.has_value()); |
| } |
| break; |
| } |
| case kOpen: { |
| break; |
| } |
| case kClosing: { |
| if (connected_to_transport() && controller_ && id_n_.has_value()) { |
| // Wait for all queued data to be sent before beginning the closing |
| // procedure. |
| if (controller_->buffered_amount(*id_n_) == 0) { |
| // For SCTP data channels, we need to wait for the closing procedure |
| // to complete; after calling RemoveSctpDataStream, |
| // OnClosingProcedureComplete will end up called asynchronously |
| // afterwards. |
| if (!started_closing_procedure_ && id_n_.has_value()) { |
| started_closing_procedure_ = true; |
| controller_->RemoveSctpDataStream(*id_n_); |
| } |
| } |
| } else { |
| // When we're not connected to a transport, we'll transition |
| // directly to the `kClosed` state from here. |
| SetState(kClosed); |
| } |
| break; |
| } |
| case kClosed: |
| break; |
| } |
| } |
| |
| // RTC_RUN_ON(network_thread_). |
| void SctpDataChannel::SetState(DataState state) { |
| if (state_ == state) { |
| return; |
| } |
| |
| state_ = state; |
| if (observer_) { |
| observer_->OnStateChange(); |
| } |
| |
| if (controller_) |
| controller_->OnChannelStateChanged(this, state_); |
| } |
| |
| // RTC_RUN_ON(network_thread_). |
| void SctpDataChannel::DeliverQueuedReceivedData() { |
| if (!observer_ || state_ != kOpen) { |
| return; |
| } |
| |
| while (!queued_received_data_.Empty()) { |
| std::unique_ptr<DataBuffer> buffer = queued_received_data_.PopFront(); |
| ++messages_received_; |
| bytes_received_ += buffer->size(); |
| observer_->OnMessage(*buffer); |
| } |
| } |
| |
| // RTC_RUN_ON(network_thread_) |
| void SctpDataChannel::MaybeSendOnBufferedAmountChanged() { |
| // The `buffered_amount` in the signaling thread (RTCDataChannel in Blink) |
| // has a cached variant of the SCTP socket's buffered_amount, which it |
| // increases for every data sent and decreased when `OnBufferedAmountChange` |
| // is sent. |
| // |
| // To ensure it's consistent, this object maintains its own view of that value |
| // and if it changes with a reasonable amount (10kb, or down to zero), send |
| // the `OnBufferedAmountChange` to update the caller's cached variable. |
| if (!controller_ || !id_n_.has_value() || !observer_) { |
| return; |
| } |
| |
| // This becomes the resolution of how often the bufferedAmount is updated on |
| // the signaling thread and exists to avoid doing cross-thread communication |
| // too often. On benchmarks, Chrome handle around 300Mbps, which with this |
| // size results in a rate of ~400 updates per second - a reasonable number. |
| static constexpr int64_t kMinBufferedAmountDiffToTriggerCallback = 100 * 1024; |
| size_t actual_buffer_amount = controller_->buffered_amount(*id_n_); |
| if (actual_buffer_amount > expected_buffer_amount_) { |
| RTC_DLOG(LS_ERROR) << "Actual buffer_amount larger than expected"; |
| return; |
| } |
| |
| // Fire OnBufferedAmountChange to decrease the cached view if it represents a |
| // big enough change (to reduce the frequency of cross-thread communication), |
| // or if it reaches zero. |
| if ((actual_buffer_amount == 0 && expected_buffer_amount_ != 0) || |
| (expected_buffer_amount_ - actual_buffer_amount > |
| kMinBufferedAmountDiffToTriggerCallback)) { |
| uint64_t diff = expected_buffer_amount_ - actual_buffer_amount; |
| expected_buffer_amount_ = actual_buffer_amount; |
| observer_->OnBufferedAmountChange(diff); |
| } |
| |
| // The threshold is always updated to ensure it's lower than what it's now. |
| // This ensures that this function will be called again, until the channel is |
| // completely drained. |
| controller_->SetBufferedAmountLowThreshold( |
| *id_n_, |
| actual_buffer_amount > kMinBufferedAmountDiffToTriggerCallback |
| ? actual_buffer_amount - kMinBufferedAmountDiffToTriggerCallback |
| : 0); |
| } |
| |
| // RTC_RUN_ON(network_thread_). |
| RTCError SctpDataChannel::SendDataMessage(const DataBuffer& buffer, |
| bool queue_if_blocked) { |
| SendDataParams send_params; |
| if (!controller_ || !id_n_.has_value()) { |
| error_ = RTCError(RTCErrorType::INVALID_STATE); |
| return error_; |
| } |
| |
| send_params.ordered = ordered_; |
| // Send as ordered if it is still going through OPEN/ACK signaling. |
| if (handshake_state_ != kHandshakeReady && !ordered_) { |
| send_params.ordered = true; |
| RTC_DLOG(LS_VERBOSE) |
| << "Sending data as ordered for unordered DataChannel " |
| "because the OPEN_ACK message has not been received."; |
| } |
| |
| send_params.max_rtx_count = max_retransmits_; |
| send_params.max_rtx_ms = max_retransmit_time_; |
| send_params.type = |
| buffer.binary ? DataMessageType::kBinary : DataMessageType::kText; |
| |
| error_ = controller_->SendData(*id_n_, send_params, buffer.data); |
| MaybeSendOnBufferedAmountChanged(); |
| if (error_.ok()) { |
| ++messages_sent_; |
| bytes_sent_ += buffer.size(); |
| return error_; |
| } |
| |
| // Close the channel if the error is not SDR_BLOCK, or if queuing the |
| // message failed. |
| RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send data, " |
| "send_result = " |
| << ToString(error_.type()) << ":" << error_.message(); |
| CloseAbruptlyWithError( |
| RTCError(RTCErrorType::NETWORK_ERROR, "Failure to send data")); |
| |
| return error_; |
| } |
| |
| // RTC_RUN_ON(network_thread_). |
| bool SctpDataChannel::SendControlMessage(const rtc::CopyOnWriteBuffer& buffer) { |
| RTC_DCHECK(connected_to_transport()); |
| RTC_DCHECK(id_n_.has_value()); |
| RTC_DCHECK(controller_); |
| |
| bool is_open_message = handshake_state_ == kHandshakeShouldSendOpen; |
| RTC_DCHECK(!is_open_message || !negotiated_); |
| |
| SendDataParams send_params; |
| // Send data as ordered before we receive any message from the remote peer to |
| // make sure the remote peer will not receive any data before it receives the |
| // OPEN message. |
| send_params.ordered = ordered_ || is_open_message; |
| send_params.type = DataMessageType::kControl; |
| |
| RTCError err = controller_->SendData(*id_n_, send_params, buffer); |
| if (err.ok()) { |
| RTC_DLOG(LS_VERBOSE) << "Sent CONTROL message on channel " |
| << id_n_->stream_id_int(); |
| |
| if (handshake_state_ == kHandshakeShouldSendAck) { |
| handshake_state_ = kHandshakeReady; |
| } else if (handshake_state_ == kHandshakeShouldSendOpen) { |
| handshake_state_ = kHandshakeWaitingForAck; |
| } |
| } else { |
| RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send" |
| " the CONTROL message, send_result = " |
| << ToString(err.type()); |
| err.set_message("Failed to send a CONTROL message"); |
| CloseAbruptlyWithError(err); |
| } |
| return err.ok(); |
| } |
| |
| // static |
| void SctpDataChannel::ResetInternalIdAllocatorForTesting(int new_value) { |
| g_unique_id = new_value; |
| } |
| |
| } // namespace webrtc |