blob: 67dd3bb6872228e8bf70fbb18470ac9b7b36cce3 [file] [log] [blame]
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/ns/signal_model_estimator.h"
#include "modules/audio_processing/ns/fast_math.h"
namespace webrtc {
namespace {
constexpr float kOneByFftSizeBy2Plus1 = 1.f / kFftSizeBy2Plus1;
// Computes the difference measure between input spectrum and a template/learned
// noise spectrum.
float ComputeSpectralDiff(
rtc::ArrayView<const float, kFftSizeBy2Plus1> conservative_noise_spectrum,
rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum,
float signal_spectral_sum,
float diff_normalization) {
// spectral_diff = var(signal_spectrum) - cov(signal_spectrum, magnAvgPause)^2
// / var(magnAvgPause)
// Compute average quantities.
float noise_average = 0.f;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
// Conservative smooth noise spectrum from pause frames.
noise_average += conservative_noise_spectrum[i];
}
noise_average = noise_average * kOneByFftSizeBy2Plus1;
float signal_average = signal_spectral_sum * kOneByFftSizeBy2Plus1;
// Compute variance and covariance quantities.
float covariance = 0.f;
float noise_variance = 0.f;
float signal_variance = 0.f;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
float signal_diff = signal_spectrum[i] - signal_average;
float noise_diff = conservative_noise_spectrum[i] - noise_average;
covariance += signal_diff * noise_diff;
noise_variance += noise_diff * noise_diff;
signal_variance += signal_diff * signal_diff;
}
covariance *= kOneByFftSizeBy2Plus1;
noise_variance *= kOneByFftSizeBy2Plus1;
signal_variance *= kOneByFftSizeBy2Plus1;
// Update of average magnitude spectrum.
float spectral_diff =
signal_variance - (covariance * covariance) / (noise_variance + 0.0001f);
// Normalize.
return spectral_diff / (diff_normalization + 0.0001f);
}
// Updates the spectral flatness based on the input spectrum.
void UpdateSpectralFlatness(
rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum,
float signal_spectral_sum,
float* spectral_flatness) {
RTC_DCHECK(spectral_flatness);
// Compute log of ratio of the geometric to arithmetic mean (handle the log(0)
// separately).
constexpr float kAveraging = 0.3f;
float avg_spect_flatness_num = 0.f;
for (size_t i = 1; i < kFftSizeBy2Plus1; ++i) {
if (signal_spectrum[i] == 0.f) {
*spectral_flatness -= kAveraging * (*spectral_flatness);
return;
}
}
for (size_t i = 1; i < kFftSizeBy2Plus1; ++i) {
avg_spect_flatness_num += LogApproximation(signal_spectrum[i]);
}
float avg_spect_flatness_denom = signal_spectral_sum - signal_spectrum[0];
avg_spect_flatness_denom = avg_spect_flatness_denom * kOneByFftSizeBy2Plus1;
avg_spect_flatness_num = avg_spect_flatness_num * kOneByFftSizeBy2Plus1;
float spectral_tmp =
ExpApproximation(avg_spect_flatness_num) / avg_spect_flatness_denom;
// Time-avg update of spectral flatness feature.
*spectral_flatness += kAveraging * (spectral_tmp - *spectral_flatness);
}
// Updates the log LRT measures.
void UpdateSpectralLrt(rtc::ArrayView<const float, kFftSizeBy2Plus1> prior_snr,
rtc::ArrayView<const float, kFftSizeBy2Plus1> post_snr,
rtc::ArrayView<float, kFftSizeBy2Plus1> avg_log_lrt,
float* lrt) {
RTC_DCHECK(lrt);
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
float tmp1 = 1.f + 2.f * prior_snr[i];
float tmp2 = 2.f * prior_snr[i] / (tmp1 + 0.0001f);
float bessel_tmp = (post_snr[i] + 1.f) * tmp2;
avg_log_lrt[i] +=
.5f * (bessel_tmp - LogApproximation(tmp1) - avg_log_lrt[i]);
}
float log_lrt_time_avg_k_sum = 0.f;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
log_lrt_time_avg_k_sum += avg_log_lrt[i];
}
*lrt = log_lrt_time_avg_k_sum * kOneByFftSizeBy2Plus1;
}
} // namespace
SignalModelEstimator::SignalModelEstimator()
: prior_model_estimator_(kLtrFeatureThr) {}
void SignalModelEstimator::AdjustNormalization(int32_t num_analyzed_frames,
float signal_energy) {
diff_normalization_ *= num_analyzed_frames;
diff_normalization_ += signal_energy;
diff_normalization_ /= (num_analyzed_frames + 1);
}
// Update the noise features.
void SignalModelEstimator::Update(
rtc::ArrayView<const float, kFftSizeBy2Plus1> prior_snr,
rtc::ArrayView<const float, kFftSizeBy2Plus1> post_snr,
rtc::ArrayView<const float, kFftSizeBy2Plus1> conservative_noise_spectrum,
rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum,
float signal_spectral_sum,
float signal_energy) {
// Compute spectral flatness on input spectrum.
UpdateSpectralFlatness(signal_spectrum, signal_spectral_sum,
&features_.spectral_flatness);
// Compute difference of input spectrum with learned/estimated noise spectrum.
float spectral_diff =
ComputeSpectralDiff(conservative_noise_spectrum, signal_spectrum,
signal_spectral_sum, diff_normalization_);
// Compute time-avg update of difference feature.
features_.spectral_diff += 0.3f * (spectral_diff - features_.spectral_diff);
signal_energy_sum_ += signal_energy;
// Compute histograms for parameter decisions (thresholds and weights for
// features). Parameters are extracted periodically.
if (--histogram_analysis_counter_ > 0) {
histograms_.Update(features_);
} else {
// Compute model parameters.
prior_model_estimator_.Update(histograms_);
// Clear histograms for next update.
histograms_.Clear();
histogram_analysis_counter_ = kFeatureUpdateWindowSize;
// Update every window:
// Compute normalization for the spectral difference for next estimation.
signal_energy_sum_ = signal_energy_sum_ / kFeatureUpdateWindowSize;
diff_normalization_ = 0.5f * (signal_energy_sum_ + diff_normalization_);
signal_energy_sum_ = 0.f;
}
// Compute the LRT.
UpdateSpectralLrt(prior_snr, post_snr, features_.avg_log_lrt, &features_.lrt);
}
} // namespace webrtc