| /* |
| * Copyright 2020 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "rtc_base/boringssl_certificate.h" |
| |
| #include "absl/strings/string_view.h" |
| |
| #if defined(WEBRTC_WIN) |
| // Must be included first before openssl headers. |
| #include "rtc_base/win32.h" // NOLINT |
| #endif // WEBRTC_WIN |
| |
| #include <openssl/asn1.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/digest.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| #include <openssl/pool.h> |
| #include <openssl/rand.h> |
| #include <time.h> |
| |
| #include <cstring> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/helpers.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/message_digest.h" |
| #include "rtc_base/openssl_digest.h" |
| #include "rtc_base/openssl_key_pair.h" |
| #include "rtc_base/openssl_utility.h" |
| |
| namespace rtc { |
| namespace { |
| |
| // List of OIDs of signature algorithms accepted by WebRTC. |
| // Taken from openssl/nid.h. |
| static const uint8_t kMD5WithRSA[] = {0x2b, 0x0e, 0x03, 0x02, 0x03}; |
| static const uint8_t kMD5WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x01, 0x04}; |
| static const uint8_t kECDSAWithSHA1[] = {0x2a, 0x86, 0x48, 0xce, |
| 0x3d, 0x04, 0x01}; |
| static const uint8_t kDSAWithSHA1[] = {0x2a, 0x86, 0x48, 0xce, |
| 0x38, 0x04, 0x03}; |
| static const uint8_t kDSAWithSHA1_2[] = {0x2b, 0x0e, 0x03, 0x02, 0x1b}; |
| static const uint8_t kSHA1WithRSA[] = {0x2b, 0x0e, 0x03, 0x02, 0x1d}; |
| static const uint8_t kSHA1WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x01, 0x05}; |
| static const uint8_t kECDSAWithSHA224[] = {0x2a, 0x86, 0x48, 0xce, |
| 0x3d, 0x04, 0x03, 0x01}; |
| static const uint8_t kSHA224WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x01, 0x0e}; |
| static const uint8_t kDSAWithSHA224[] = {0x60, 0x86, 0x48, 0x01, 0x65, |
| 0x03, 0x04, 0x03, 0x01}; |
| static const uint8_t kECDSAWithSHA256[] = {0x2a, 0x86, 0x48, 0xce, |
| 0x3d, 0x04, 0x03, 0x02}; |
| static const uint8_t kSHA256WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x01, 0x0b}; |
| static const uint8_t kDSAWithSHA256[] = {0x60, 0x86, 0x48, 0x01, 0x65, |
| 0x03, 0x04, 0x03, 0x02}; |
| static const uint8_t kECDSAWithSHA384[] = {0x2a, 0x86, 0x48, 0xce, |
| 0x3d, 0x04, 0x03, 0x03}; |
| static const uint8_t kSHA384WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x01, 0x0c}; |
| static const uint8_t kECDSAWithSHA512[] = {0x2a, 0x86, 0x48, 0xce, |
| 0x3d, 0x04, 0x03, 0x04}; |
| static const uint8_t kSHA512WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x01, 0x0d}; |
| |
| #if !defined(NDEBUG) |
| // Print a certificate to the log, for debugging. |
| static void PrintCert(BoringSSLCertificate* cert) { |
| // Since we're using CRYPTO_BUFFER, we can't use X509_print_ex, so we'll just |
| // print the PEM string. |
| RTC_DLOG(LS_VERBOSE) << "PEM representation of certificate:\n" |
| << cert->ToPEMString(); |
| } |
| #endif |
| |
| bool AddSHA256SignatureAlgorithm(CBB* cbb, KeyType key_type) { |
| // An AlgorithmIdentifier is described in RFC 5280, 4.1.1.2. |
| CBB sequence, oid, params; |
| if (!CBB_add_asn1(cbb, &sequence, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&sequence, &oid, CBS_ASN1_OBJECT)) { |
| return false; |
| } |
| |
| switch (key_type) { |
| case KT_RSA: |
| if (!CBB_add_bytes(&oid, kSHA256WithRSAEncryption, |
| sizeof(kSHA256WithRSAEncryption)) || |
| !CBB_add_asn1(&sequence, ¶ms, CBS_ASN1_NULL)) { |
| return false; |
| } |
| break; |
| case KT_ECDSA: |
| if (!CBB_add_bytes(&oid, kECDSAWithSHA256, sizeof(kECDSAWithSHA256))) { |
| return false; |
| } |
| break; |
| default: |
| RTC_DCHECK_NOTREACHED(); |
| return false; |
| } |
| if (!CBB_flush(cbb)) { |
| return false; |
| } |
| return true; |
| } |
| |
| // Adds an X.509 Common Name to `cbb`. |
| bool AddCommonName(CBB* cbb, absl::string_view common_name) { |
| // See RFC 4519. |
| static const uint8_t kCommonName[] = {0x55, 0x04, 0x03}; |
| |
| if (common_name.empty()) { |
| RTC_LOG(LS_ERROR) << "Common name cannot be empty."; |
| return false; |
| } |
| |
| // See RFC 5280, section 4.1.2.4. |
| CBB rdns; |
| if (!CBB_add_asn1(cbb, &rdns, CBS_ASN1_SEQUENCE)) { |
| return false; |
| } |
| |
| CBB rdn, attr, type, value; |
| if (!CBB_add_asn1(&rdns, &rdn, CBS_ASN1_SET) || |
| !CBB_add_asn1(&rdn, &attr, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&attr, &type, CBS_ASN1_OBJECT) || |
| !CBB_add_bytes(&type, kCommonName, sizeof(kCommonName)) || |
| !CBB_add_asn1(&attr, &value, CBS_ASN1_UTF8STRING) || |
| !CBB_add_bytes(&value, |
| reinterpret_cast<const uint8_t*>(common_name.data()), |
| common_name.size()) || |
| !CBB_flush(cbb)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool AddTime(CBB* cbb, time_t time) { |
| bssl::UniquePtr<ASN1_TIME> asn1_time(ASN1_TIME_new()); |
| if (!asn1_time) { |
| return false; |
| } |
| |
| if (!ASN1_TIME_set(asn1_time.get(), time)) { |
| return false; |
| } |
| |
| unsigned tag; |
| switch (asn1_time->type) { |
| case V_ASN1_UTCTIME: |
| tag = CBS_ASN1_UTCTIME; |
| break; |
| case V_ASN1_GENERALIZEDTIME: |
| tag = CBS_ASN1_GENERALIZEDTIME; |
| break; |
| default: |
| return false; |
| } |
| |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, tag) || |
| !CBB_add_bytes(&child, asn1_time->data, asn1_time->length) || |
| !CBB_flush(cbb)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Generate a self-signed certificate, with the public key from the |
| // given key pair. Caller is responsible for freeing the returned object. |
| static bssl::UniquePtr<CRYPTO_BUFFER> MakeCertificate( |
| EVP_PKEY* pkey, |
| const SSLIdentityParams& params) { |
| RTC_LOG(LS_INFO) << "Making certificate for " << params.common_name; |
| |
| // See RFC 5280, section 4.1. First, construct the TBSCertificate. |
| bssl::ScopedCBB cbb; |
| CBB tbs_cert, version, validity; |
| uint8_t* tbs_cert_bytes; |
| size_t tbs_cert_len; |
| uint64_t serial_number; |
| if (!CBB_init(cbb.get(), 64) || |
| !CBB_add_asn1(cbb.get(), &tbs_cert, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&tbs_cert, &version, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
| !CBB_add_asn1_uint64(&version, 2) || |
| !RAND_bytes(reinterpret_cast<uint8_t*>(&serial_number), |
| sizeof(serial_number)) || |
| !CBB_add_asn1_uint64(&tbs_cert, serial_number) || |
| !AddSHA256SignatureAlgorithm(&tbs_cert, params.key_params.type()) || |
| !AddCommonName(&tbs_cert, params.common_name) || // issuer |
| !CBB_add_asn1(&tbs_cert, &validity, CBS_ASN1_SEQUENCE) || |
| !AddTime(&validity, params.not_before) || |
| !AddTime(&validity, params.not_after) || |
| !AddCommonName(&tbs_cert, params.common_name) || // subject |
| !EVP_marshal_public_key(&tbs_cert, pkey) || // subjectPublicKeyInfo |
| !CBB_finish(cbb.get(), &tbs_cert_bytes, &tbs_cert_len)) { |
| return nullptr; |
| } |
| |
| bssl::UniquePtr<uint8_t> delete_tbs_cert_bytes(tbs_cert_bytes); |
| |
| // Sign the TBSCertificate and write the entire certificate. |
| CBB cert, signature; |
| bssl::ScopedEVP_MD_CTX ctx; |
| uint8_t* sig_out; |
| size_t sig_len; |
| uint8_t* cert_bytes; |
| size_t cert_len; |
| if (!CBB_init(cbb.get(), tbs_cert_len) || |
| !CBB_add_asn1(cbb.get(), &cert, CBS_ASN1_SEQUENCE) || |
| !CBB_add_bytes(&cert, tbs_cert_bytes, tbs_cert_len) || |
| !AddSHA256SignatureAlgorithm(&cert, params.key_params.type()) || |
| !CBB_add_asn1(&cert, &signature, CBS_ASN1_BITSTRING) || |
| !CBB_add_u8(&signature, 0 /* no unused bits */) || |
| !EVP_DigestSignInit(ctx.get(), nullptr, EVP_sha256(), nullptr, pkey) || |
| // Compute the maximum signature length. |
| !EVP_DigestSign(ctx.get(), nullptr, &sig_len, tbs_cert_bytes, |
| tbs_cert_len) || |
| !CBB_reserve(&signature, &sig_out, sig_len) || |
| // Actually sign the TBSCertificate. |
| !EVP_DigestSign(ctx.get(), sig_out, &sig_len, tbs_cert_bytes, |
| tbs_cert_len) || |
| !CBB_did_write(&signature, sig_len) || |
| !CBB_finish(cbb.get(), &cert_bytes, &cert_len)) { |
| return nullptr; |
| } |
| bssl::UniquePtr<uint8_t> delete_cert_bytes(cert_bytes); |
| |
| RTC_LOG(LS_INFO) << "Returning certificate"; |
| return bssl::UniquePtr<CRYPTO_BUFFER>( |
| CRYPTO_BUFFER_new(cert_bytes, cert_len, openssl::GetBufferPool())); |
| } |
| |
| } // namespace |
| |
| BoringSSLCertificate::BoringSSLCertificate( |
| bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer) |
| : cert_buffer_(std::move(cert_buffer)) { |
| RTC_DCHECK(cert_buffer_ != nullptr); |
| } |
| |
| std::unique_ptr<BoringSSLCertificate> BoringSSLCertificate::Generate( |
| OpenSSLKeyPair* key_pair, |
| const SSLIdentityParams& params) { |
| SSLIdentityParams actual_params(params); |
| if (actual_params.common_name.empty()) { |
| // Use a random string, arbitrarily 8 chars long. |
| actual_params.common_name = CreateRandomString(8); |
| } |
| bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer = |
| MakeCertificate(key_pair->pkey(), actual_params); |
| if (!cert_buffer) { |
| openssl::LogSSLErrors("Generating certificate"); |
| return nullptr; |
| } |
| auto ret = std::make_unique<BoringSSLCertificate>(std::move(cert_buffer)); |
| #if !defined(NDEBUG) |
| PrintCert(ret.get()); |
| #endif |
| return ret; |
| } |
| |
| std::unique_ptr<BoringSSLCertificate> BoringSSLCertificate::FromPEMString( |
| absl::string_view pem_string) { |
| std::string der; |
| if (!SSLIdentity::PemToDer(kPemTypeCertificate, pem_string, &der)) { |
| return nullptr; |
| } |
| bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer( |
| CRYPTO_BUFFER_new(reinterpret_cast<const uint8_t*>(der.c_str()), |
| der.length(), openssl::GetBufferPool())); |
| if (!cert_buffer) { |
| return nullptr; |
| } |
| return std::make_unique<BoringSSLCertificate>(std::move(cert_buffer)); |
| } |
| |
| #define OID_MATCHES(oid, oid_other) \ |
| (CBS_len(&oid) == sizeof(oid_other) && \ |
| 0 == memcmp(CBS_data(&oid), oid_other, sizeof(oid_other))) |
| |
| bool BoringSSLCertificate::GetSignatureDigestAlgorithm( |
| std::string* algorithm) const { |
| CBS oid; |
| if (!openssl::ParseCertificate(cert_buffer_.get(), &oid, nullptr)) { |
| RTC_LOG(LS_ERROR) << "Failed to parse certificate."; |
| return false; |
| } |
| if (OID_MATCHES(oid, kMD5WithRSA) || |
| OID_MATCHES(oid, kMD5WithRSAEncryption)) { |
| *algorithm = DIGEST_MD5; |
| return true; |
| } |
| if (OID_MATCHES(oid, kECDSAWithSHA1) || OID_MATCHES(oid, kDSAWithSHA1) || |
| OID_MATCHES(oid, kDSAWithSHA1_2) || OID_MATCHES(oid, kSHA1WithRSA) || |
| OID_MATCHES(oid, kSHA1WithRSAEncryption)) { |
| *algorithm = DIGEST_SHA_1; |
| return true; |
| } |
| if (OID_MATCHES(oid, kECDSAWithSHA224) || |
| OID_MATCHES(oid, kSHA224WithRSAEncryption) || |
| OID_MATCHES(oid, kDSAWithSHA224)) { |
| *algorithm = DIGEST_SHA_224; |
| return true; |
| } |
| if (OID_MATCHES(oid, kECDSAWithSHA256) || |
| OID_MATCHES(oid, kSHA256WithRSAEncryption) || |
| OID_MATCHES(oid, kDSAWithSHA256)) { |
| *algorithm = DIGEST_SHA_256; |
| return true; |
| } |
| if (OID_MATCHES(oid, kECDSAWithSHA384) || |
| OID_MATCHES(oid, kSHA384WithRSAEncryption)) { |
| *algorithm = DIGEST_SHA_384; |
| return true; |
| } |
| if (OID_MATCHES(oid, kECDSAWithSHA512) || |
| OID_MATCHES(oid, kSHA512WithRSAEncryption)) { |
| *algorithm = DIGEST_SHA_512; |
| return true; |
| } |
| // Unknown algorithm. There are several unhandled options that are less |
| // common and more complex. |
| RTC_LOG(LS_ERROR) << "Unknown signature algorithm."; |
| algorithm->clear(); |
| return false; |
| } |
| |
| bool BoringSSLCertificate::ComputeDigest(absl::string_view algorithm, |
| unsigned char* digest, |
| size_t size, |
| size_t* length) const { |
| return ComputeDigest(cert_buffer_.get(), algorithm, digest, size, length); |
| } |
| |
| bool BoringSSLCertificate::ComputeDigest(const CRYPTO_BUFFER* cert_buffer, |
| absl::string_view algorithm, |
| unsigned char* digest, |
| size_t size, |
| size_t* length) { |
| const EVP_MD* md = nullptr; |
| unsigned int n = 0; |
| if (!OpenSSLDigest::GetDigestEVP(algorithm, &md)) { |
| return false; |
| } |
| if (size < static_cast<size_t>(EVP_MD_size(md))) { |
| return false; |
| } |
| if (!EVP_Digest(CRYPTO_BUFFER_data(cert_buffer), |
| CRYPTO_BUFFER_len(cert_buffer), digest, &n, md, nullptr)) { |
| return false; |
| } |
| *length = n; |
| return true; |
| } |
| |
| BoringSSLCertificate::~BoringSSLCertificate() {} |
| |
| std::unique_ptr<SSLCertificate> BoringSSLCertificate::Clone() const { |
| return std::make_unique<BoringSSLCertificate>( |
| bssl::UpRef(cert_buffer_.get())); |
| } |
| |
| std::string BoringSSLCertificate::ToPEMString() const { |
| return SSLIdentity::DerToPem(kPemTypeCertificate, |
| CRYPTO_BUFFER_data(cert_buffer_.get()), |
| CRYPTO_BUFFER_len(cert_buffer_.get())); |
| } |
| |
| void BoringSSLCertificate::ToDER(Buffer* der_buffer) const { |
| der_buffer->SetData(CRYPTO_BUFFER_data(cert_buffer_.get()), |
| CRYPTO_BUFFER_len(cert_buffer_.get())); |
| } |
| |
| bool BoringSSLCertificate::operator==(const BoringSSLCertificate& other) const { |
| return CRYPTO_BUFFER_len(cert_buffer_.get()) == |
| CRYPTO_BUFFER_len(other.cert_buffer_.get()) && |
| 0 == memcmp(CRYPTO_BUFFER_data(cert_buffer_.get()), |
| CRYPTO_BUFFER_data(other.cert_buffer_.get()), |
| CRYPTO_BUFFER_len(cert_buffer_.get())); |
| } |
| |
| bool BoringSSLCertificate::operator!=(const BoringSSLCertificate& other) const { |
| return !(*this == other); |
| } |
| |
| int64_t BoringSSLCertificate::CertificateExpirationTime() const { |
| int64_t ret; |
| if (!openssl::ParseCertificate(cert_buffer_.get(), nullptr, &ret)) { |
| RTC_LOG(LS_ERROR) << "Failed to parse certificate."; |
| return -1; |
| } |
| return ret; |
| } |
| |
| } // namespace rtc |