| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "audio/remix_resample.h" |
| |
| #include <cmath> |
| |
| #include "common_audio/resampler/include/push_resampler.h" |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/checks.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace voe { |
| namespace { |
| |
| int GetFrameSize(int sample_rate_hz) { |
| return sample_rate_hz / 100; |
| } |
| |
| class UtilityTest : public ::testing::Test { |
| protected: |
| UtilityTest() { |
| src_frame_.sample_rate_hz_ = 16000; |
| src_frame_.samples_per_channel_ = src_frame_.sample_rate_hz_ / 100; |
| src_frame_.num_channels_ = 1; |
| dst_frame_.CopyFrom(src_frame_); |
| golden_frame_.CopyFrom(src_frame_); |
| } |
| |
| void RunResampleTest(int src_channels, |
| int src_sample_rate_hz, |
| int dst_channels, |
| int dst_sample_rate_hz); |
| |
| PushResampler<int16_t> resampler_; |
| AudioFrame src_frame_; |
| AudioFrame dst_frame_; |
| AudioFrame golden_frame_; |
| }; |
| |
| // Sets the signal value to increase by `data` with every sample. Floats are |
| // used so non-integer values result in rounding error, but not an accumulating |
| // error. |
| void SetMonoFrame(float data, int sample_rate_hz, AudioFrame* frame) { |
| frame->Mute(); |
| frame->num_channels_ = 1; |
| frame->sample_rate_hz_ = sample_rate_hz; |
| frame->samples_per_channel_ = GetFrameSize(sample_rate_hz); |
| int16_t* frame_data = frame->mutable_data(); |
| for (size_t i = 0; i < frame->samples_per_channel_; i++) { |
| frame_data[i] = static_cast<int16_t>(data * i); |
| } |
| } |
| |
| // Keep the existing sample rate. |
| void SetMonoFrame(float data, AudioFrame* frame) { |
| SetMonoFrame(data, frame->sample_rate_hz_, frame); |
| } |
| |
| // Sets the signal value to increase by `left` and `right` with every sample in |
| // each channel respectively. |
| void SetStereoFrame(float left, |
| float right, |
| int sample_rate_hz, |
| AudioFrame* frame) { |
| frame->Mute(); |
| frame->num_channels_ = 2; |
| frame->sample_rate_hz_ = sample_rate_hz; |
| frame->samples_per_channel_ = GetFrameSize(sample_rate_hz); |
| int16_t* frame_data = frame->mutable_data(); |
| for (size_t i = 0; i < frame->samples_per_channel_; i++) { |
| frame_data[i * 2] = static_cast<int16_t>(left * i); |
| frame_data[i * 2 + 1] = static_cast<int16_t>(right * i); |
| } |
| } |
| |
| // Keep the existing sample rate. |
| void SetStereoFrame(float left, float right, AudioFrame* frame) { |
| SetStereoFrame(left, right, frame->sample_rate_hz_, frame); |
| } |
| |
| // Sets the signal value to increase by `ch1`, `ch2`, `ch3`, `ch4` with every |
| // sample in each channel respectively. |
| void SetQuadFrame(float ch1, |
| float ch2, |
| float ch3, |
| float ch4, |
| int sample_rate_hz, |
| AudioFrame* frame) { |
| frame->Mute(); |
| frame->num_channels_ = 4; |
| frame->sample_rate_hz_ = sample_rate_hz; |
| frame->samples_per_channel_ = GetFrameSize(sample_rate_hz); |
| int16_t* frame_data = frame->mutable_data(); |
| for (size_t i = 0; i < frame->samples_per_channel_; i++) { |
| frame_data[i * 4] = static_cast<int16_t>(ch1 * i); |
| frame_data[i * 4 + 1] = static_cast<int16_t>(ch2 * i); |
| frame_data[i * 4 + 2] = static_cast<int16_t>(ch3 * i); |
| frame_data[i * 4 + 3] = static_cast<int16_t>(ch4 * i); |
| } |
| } |
| |
| void VerifyParams(const AudioFrame& ref_frame, const AudioFrame& test_frame) { |
| EXPECT_EQ(ref_frame.num_channels_, test_frame.num_channels_); |
| EXPECT_EQ(ref_frame.samples_per_channel_, test_frame.samples_per_channel_); |
| EXPECT_EQ(ref_frame.sample_rate_hz_, test_frame.sample_rate_hz_); |
| } |
| |
| // Computes the best SNR based on the error between `ref_frame` and |
| // `test_frame`. It allows for up to a `max_delay` in samples between the |
| // signals to compensate for the resampling delay. |
| float ComputeSNR(const AudioFrame& ref_frame, |
| const AudioFrame& test_frame, |
| size_t max_delay) { |
| VerifyParams(ref_frame, test_frame); |
| float best_snr = 0; |
| size_t best_delay = 0; |
| for (size_t delay = 0; delay <= max_delay; delay++) { |
| float mse = 0; |
| float variance = 0; |
| const int16_t* ref_frame_data = ref_frame.data(); |
| const int16_t* test_frame_data = test_frame.data(); |
| for (size_t i = 0; |
| i < ref_frame.samples_per_channel_ * ref_frame.num_channels_ - delay; |
| i++) { |
| int error = ref_frame_data[i] - test_frame_data[i + delay]; |
| mse += error * error; |
| variance += ref_frame_data[i] * ref_frame_data[i]; |
| } |
| float snr = 100; // We assign 100 dB to the zero-error case. |
| if (mse > 0) |
| snr = 10 * std::log10(variance / mse); |
| if (snr > best_snr) { |
| best_snr = snr; |
| best_delay = delay; |
| } |
| } |
| printf("SNR=%.1f dB at delay=%zu\n", best_snr, best_delay); |
| return best_snr; |
| } |
| |
| void VerifyFramesAreEqual(const AudioFrame& ref_frame, |
| const AudioFrame& test_frame) { |
| VerifyParams(ref_frame, test_frame); |
| const int16_t* ref_frame_data = ref_frame.data(); |
| const int16_t* test_frame_data = test_frame.data(); |
| for (size_t i = 0; |
| i < ref_frame.samples_per_channel_ * ref_frame.num_channels_; i++) { |
| EXPECT_EQ(ref_frame_data[i], test_frame_data[i]); |
| } |
| } |
| |
| void UtilityTest::RunResampleTest(int src_channels, |
| int src_sample_rate_hz, |
| int dst_channels, |
| int dst_sample_rate_hz) { |
| PushResampler<int16_t> resampler; // Create a new one with every test. |
| const int16_t kSrcCh1 = 30; // Shouldn't overflow for any used sample rate. |
| const int16_t kSrcCh2 = 15; |
| const int16_t kSrcCh3 = 22; |
| const int16_t kSrcCh4 = 8; |
| const float resampling_factor = |
| (1.0 * src_sample_rate_hz) / dst_sample_rate_hz; |
| const float dst_ch1 = resampling_factor * kSrcCh1; |
| const float dst_ch2 = resampling_factor * kSrcCh2; |
| const float dst_ch3 = resampling_factor * kSrcCh3; |
| const float dst_ch4 = resampling_factor * kSrcCh4; |
| const float dst_stereo_to_mono = (dst_ch1 + dst_ch2) / 2; |
| const float dst_quad_to_mono = (dst_ch1 + dst_ch2 + dst_ch3 + dst_ch4) / 4; |
| const float dst_quad_to_stereo_ch1 = (dst_ch1 + dst_ch2) / 2; |
| const float dst_quad_to_stereo_ch2 = (dst_ch3 + dst_ch4) / 2; |
| if (src_channels == 1) |
| SetMonoFrame(kSrcCh1, src_sample_rate_hz, &src_frame_); |
| else if (src_channels == 2) |
| SetStereoFrame(kSrcCh1, kSrcCh2, src_sample_rate_hz, &src_frame_); |
| else |
| SetQuadFrame(kSrcCh1, kSrcCh2, kSrcCh3, kSrcCh4, src_sample_rate_hz, |
| &src_frame_); |
| |
| if (dst_channels == 1) { |
| SetMonoFrame(0, dst_sample_rate_hz, &dst_frame_); |
| if (src_channels == 1) |
| SetMonoFrame(dst_ch1, dst_sample_rate_hz, &golden_frame_); |
| else if (src_channels == 2) |
| SetMonoFrame(dst_stereo_to_mono, dst_sample_rate_hz, &golden_frame_); |
| else |
| SetMonoFrame(dst_quad_to_mono, dst_sample_rate_hz, &golden_frame_); |
| } else { |
| SetStereoFrame(0, 0, dst_sample_rate_hz, &dst_frame_); |
| if (src_channels == 1) |
| SetStereoFrame(dst_ch1, dst_ch1, dst_sample_rate_hz, &golden_frame_); |
| else if (src_channels == 2) |
| SetStereoFrame(dst_ch1, dst_ch2, dst_sample_rate_hz, &golden_frame_); |
| else |
| SetStereoFrame(dst_quad_to_stereo_ch1, dst_quad_to_stereo_ch2, |
| dst_sample_rate_hz, &golden_frame_); |
| } |
| |
| // The sinc resampler has a known delay, which we compute here. Multiplying by |
| // two gives us a crude maximum for any resampling, as the old resampler |
| // typically (but not always) has lower delay. |
| static const size_t kInputKernelDelaySamples = 16; |
| const size_t max_delay = static_cast<size_t>( |
| static_cast<double>(dst_sample_rate_hz) / src_sample_rate_hz * |
| kInputKernelDelaySamples * dst_channels * 2); |
| printf("(%d, %d Hz) -> (%d, %d Hz) ", // SNR reported on the same line later. |
| src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz); |
| RemixAndResample(src_frame_, &resampler, &dst_frame_); |
| |
| if (src_sample_rate_hz == 96000 && dst_sample_rate_hz <= 11025) { |
| // The sinc resampler gives poor SNR at this extreme conversion, but we |
| // expect to see this rarely in practice. |
| EXPECT_GT(ComputeSNR(golden_frame_, dst_frame_, max_delay), 14.0f); |
| } else { |
| EXPECT_GT(ComputeSNR(golden_frame_, dst_frame_, max_delay), 46.0f); |
| } |
| } |
| |
| TEST_F(UtilityTest, RemixAndResampleCopyFrameSucceeds) { |
| // Stereo -> stereo. |
| SetStereoFrame(10, 10, &src_frame_); |
| SetStereoFrame(0, 0, &dst_frame_); |
| RemixAndResample(src_frame_, &resampler_, &dst_frame_); |
| VerifyFramesAreEqual(src_frame_, dst_frame_); |
| |
| // Mono -> mono. |
| SetMonoFrame(20, &src_frame_); |
| SetMonoFrame(0, &dst_frame_); |
| RemixAndResample(src_frame_, &resampler_, &dst_frame_); |
| VerifyFramesAreEqual(src_frame_, dst_frame_); |
| } |
| |
| TEST_F(UtilityTest, RemixAndResampleMixingOnlySucceeds) { |
| // Stereo -> mono. |
| SetStereoFrame(0, 0, &dst_frame_); |
| SetMonoFrame(10, &src_frame_); |
| SetStereoFrame(10, 10, &golden_frame_); |
| RemixAndResample(src_frame_, &resampler_, &dst_frame_); |
| VerifyFramesAreEqual(dst_frame_, golden_frame_); |
| |
| // Mono -> stereo. |
| SetMonoFrame(0, &dst_frame_); |
| SetStereoFrame(10, 20, &src_frame_); |
| SetMonoFrame(15, &golden_frame_); |
| RemixAndResample(src_frame_, &resampler_, &dst_frame_); |
| VerifyFramesAreEqual(golden_frame_, dst_frame_); |
| } |
| |
| TEST_F(UtilityTest, RemixAndResampleSucceeds) { |
| const int kSampleRates[] = {8000, 11025, 16000, 22050, |
| 32000, 44100, 48000, 96000}; |
| const int kSrcChannels[] = {1, 2, 4}; |
| const int kDstChannels[] = {1, 2}; |
| |
| for (int src_rate : kSampleRates) { |
| for (int dst_rate : kSampleRates) { |
| for (size_t src_channels : kSrcChannels) { |
| for (size_t dst_channels : kDstChannels) { |
| RunResampleTest(src_channels, src_rate, dst_channels, dst_rate); |
| } |
| } |
| } |
| } |
| } |
| |
| } // namespace |
| } // namespace voe |
| } // namespace webrtc |