| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* |
| * The purpose of this test is to compute metrics to characterize the properties |
| * and efficiency of the packets masks used in the generic XOR FEC code. |
| * |
| * The metrics measure the efficiency (recovery potential or residual loss) of |
| * the FEC code, under various statistical loss models for the packet/symbol |
| * loss events. Various constraints on the behavior of these metrics are |
| * verified, and compared to the reference RS (Reed-Solomon) code. This serves |
| * in some way as a basic check/benchmark for the packet masks. |
| * |
| * By an FEC code, we mean an erasure packet/symbol code, characterized by: |
| * (1) The code size parameters (k,m), where k = number of source/media packets, |
| * and m = number of FEC packets, |
| * (2) The code type: XOR or RS. |
| * In the case of XOR, the residual loss is determined via the set of packet |
| * masks (generator matrix). In the case of RS, the residual loss is determined |
| * directly from the MDS (maximum distance separable) property of RS. |
| * |
| * Currently two classes of packets masks are available (random type and bursty |
| * type), so three codes are considered below: RS, XOR-random, and XOR-bursty. |
| * The bursty class is defined up to k=12, so (k=12,m=12) is largest code size |
| * considered in this test. |
| * |
| * The XOR codes are defined via the RFC 5109 and correspond to the class of |
| * LDGM (low density generator matrix) codes, which is a subset of the LDPC |
| * (low density parity check) codes. Future implementation will consider |
| * extending our XOR codes to include LDPC codes, which explicitly include |
| * protection of FEC packets. |
| * |
| * The type of packet/symbol loss models considered in this test are: |
| * (1) Random loss: Bernoulli process, characterized by the average loss rate. |
| * (2) Bursty loss: Markov chain (Gilbert-Elliot model), characterized by two |
| * parameters: average loss rate and average burst length. |
| */ |
| |
| #include <cmath> |
| #include <memory> |
| |
| #include "modules/rtp_rtcp/source/forward_error_correction_internal.h" |
| #include "modules/rtp_rtcp/test/testFec/average_residual_loss_xor_codes.h" |
| #include "test/gtest.h" |
| #include "test/testsupport/file_utils.h" |
| |
| namespace webrtc { |
| |
| // Maximum number of media packets allows for XOR (RFC 5109) code. |
| enum { kMaxNumberMediaPackets = 48 }; |
| |
| // Maximum number of media packets allowed for each mask type. |
| const uint16_t kMaxMediaPackets[] = {kMaxNumberMediaPackets, 12}; |
| |
| // Maximum gap size for characterizing the consecutiveness of the loss. |
| const int kMaxGapSize = 2 * kMaxMediaPacketsTest; |
| |
| // Number of gap levels written to file/output. |
| const int kGapSizeOutput = 5; |
| |
| // Maximum number of states for characterizing the residual loss distribution. |
| const int kNumStatesDistribution = 2 * kMaxMediaPacketsTest * kMaxGapSize + 1; |
| |
| // The code type. |
| enum CodeType { |
| xor_random_code, // XOR with random mask type. |
| xor_bursty_code, // XOR with bursty mask type. |
| rs_code // Reed_solomon. |
| }; |
| |
| // The code size parameters. |
| struct CodeSizeParams { |
| int num_media_packets; |
| int num_fec_packets; |
| // Protection level: num_fec_packets / (num_media_packets + num_fec_packets). |
| float protection_level; |
| // Number of loss configurations, for a given loss number and gap number. |
| // The gap number refers to the maximum gap/hole of a loss configuration |
| // (used to measure the "consecutiveness" of the loss). |
| int configuration_density[kNumStatesDistribution]; |
| }; |
| |
| // The type of loss models. |
| enum LossModelType { kRandomLossModel, kBurstyLossModel }; |
| |
| struct LossModel { |
| LossModelType loss_type; |
| float average_loss_rate; |
| float average_burst_length; |
| }; |
| |
| // Average loss rates. |
| const float kAverageLossRate[] = {0.025f, 0.05f, 0.1f, 0.25f}; |
| |
| // Average burst lengths. The case of |kAverageBurstLength = 1.0| refers to |
| // the random model. Note that for the random (Bernoulli) model, the average |
| // burst length is determined by the average loss rate, i.e., |
| // AverageBurstLength = 1 / (1 - AverageLossRate) for random model. |
| const float kAverageBurstLength[] = {1.0f, 2.0f, 4.0f}; |
| |
| // Total number of loss models: For each burst length case, there are |
| // a number of models corresponding to the loss rates. |
| const int kNumLossModels = |
| (sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength)) * |
| (sizeof(kAverageLossRate) / sizeof(*kAverageLossRate)); |
| |
| // Thresholds on the average loss rate of the packet loss model, below which |
| // certain properties of the codes are expected. |
| float loss_rate_upper_threshold = 0.20f; |
| float loss_rate_lower_threshold = 0.025f; |
| |
| // Set of thresholds on the expected average recovery rate, for each code type. |
| // These are global thresholds for now; in future version we may condition them |
| // on the code length/size and protection level. |
| const float kRecoveryRateXorRandom[3] = {0.94f, 0.50f, 0.19f}; |
| const float kRecoveryRateXorBursty[3] = {0.90f, 0.54f, 0.22f}; |
| |
| // Metrics for a given FEC code; each code is defined by the code type |
| // (RS, XOR-random/bursty), and the code size parameters (k,m), where |
| // k = num_media_packets, m = num_fec_packets. |
| struct MetricsFecCode { |
| // The average and variance of the residual loss, as a function of the |
| // packet/symbol loss model. The average/variance is computed by averaging |
| // over all loss configurations wrt the loss probability given by the |
| // underlying loss model. |
| double average_residual_loss[kNumLossModels]; |
| double variance_residual_loss[kNumLossModels]; |
| // The residual loss, as a function of the loss number and the gap number of |
| // the loss configurations. The gap number refers to the maximum gap/hole of |
| // a loss configuration (used to measure the "consecutiveness" of the loss). |
| double residual_loss_per_loss_gap[kNumStatesDistribution]; |
| // The recovery rate as a function of the loss number. |
| double recovery_rate_per_loss[2 * kMaxMediaPacketsTest + 1]; |
| }; |
| |
| MetricsFecCode kMetricsXorRandom[kNumberCodes]; |
| MetricsFecCode kMetricsXorBursty[kNumberCodes]; |
| MetricsFecCode kMetricsReedSolomon[kNumberCodes]; |
| |
| class FecPacketMaskMetricsTest : public ::testing::Test { |
| protected: |
| FecPacketMaskMetricsTest() {} |
| |
| int max_num_codes_; |
| LossModel loss_model_[kNumLossModels]; |
| CodeSizeParams code_params_[kNumberCodes]; |
| |
| uint8_t fec_packet_masks_[kMaxNumberMediaPackets][kMaxNumberMediaPackets]; |
| FILE* fp_mask_; |
| |
| // Measure of the gap of the loss for configuration given by `state`. |
| // This is to measure degree of consecutiveness for the loss configuration. |
| // Useful if the packets are sent out in order of sequence numbers and there |
| // is little/no re-ordering during transmission. |
| int GapLoss(int tot_num_packets, uint8_t* state) { |
| int max_gap_loss = 0; |
| // Find the first loss. |
| int first_loss = 0; |
| for (int i = 0; i < tot_num_packets; i++) { |
| if (state[i] == 1) { |
| first_loss = i; |
| break; |
| } |
| } |
| int prev_loss = first_loss; |
| for (int i = first_loss + 1; i < tot_num_packets; i++) { |
| if (state[i] == 1) { // Lost state. |
| int gap_loss = (i - prev_loss) - 1; |
| if (gap_loss > max_gap_loss) { |
| max_gap_loss = gap_loss; |
| } |
| prev_loss = i; |
| } |
| } |
| return max_gap_loss; |
| } |
| |
| // Returns the number of recovered media packets for the XOR code, given the |
| // packet mask `fec_packet_masks_`, for the loss state/configuration given by |
| // `state`. |
| int RecoveredMediaPackets(int num_media_packets, |
| int num_fec_packets, |
| uint8_t* state) { |
| std::unique_ptr<uint8_t[]> state_tmp( |
| new uint8_t[num_media_packets + num_fec_packets]); |
| memcpy(state_tmp.get(), state, num_media_packets + num_fec_packets); |
| int num_recovered_packets = 0; |
| bool loop_again = true; |
| while (loop_again) { |
| loop_again = false; |
| bool recovered_new_packet = false; |
| // Check if we can recover anything: loop over all possible FEC packets. |
| for (int i = 0; i < num_fec_packets; i++) { |
| if (state_tmp[i + num_media_packets] == 0) { |
| // We have this FEC packet. |
| int num_packets_in_mask = 0; |
| int num_received_packets_in_mask = 0; |
| for (int j = 0; j < num_media_packets; j++) { |
| if (fec_packet_masks_[i][j] == 1) { |
| num_packets_in_mask++; |
| if (state_tmp[j] == 0) { |
| num_received_packets_in_mask++; |
| } |
| } |
| } |
| if ((num_packets_in_mask - 1) == num_received_packets_in_mask) { |
| // We can recover the missing media packet for this FEC packet. |
| num_recovered_packets++; |
| recovered_new_packet = true; |
| int jsel = -1; |
| int check_num_recovered = 0; |
| // Update the state with newly recovered media packet. |
| for (int j = 0; j < num_media_packets; j++) { |
| if (fec_packet_masks_[i][j] == 1 && state_tmp[j] == 1) { |
| // This is the lost media packet we will recover. |
| jsel = j; |
| check_num_recovered++; |
| } |
| } |
| // Check that we can only recover 1 packet. |
| RTC_DCHECK_EQ(check_num_recovered, 1); |
| // Update the state with the newly recovered media packet. |
| state_tmp[jsel] = 0; |
| } |
| } |
| } // Go to the next FEC packet in the loop. |
| // If we have recovered at least one new packet in this FEC loop, |
| // go through loop again, otherwise we leave loop. |
| if (recovered_new_packet) { |
| loop_again = true; |
| } |
| } |
| return num_recovered_packets; |
| } |
| |
| // Compute the probability of occurence of the loss state/configuration, |
| // given by `state`, for all the loss models considered in this test. |
| void ComputeProbabilityWeight(double* prob_weight, |
| uint8_t* state, |
| int tot_num_packets) { |
| // Loop over the loss models. |
| for (int k = 0; k < kNumLossModels; k++) { |
| double loss_rate = static_cast<double>(loss_model_[k].average_loss_rate); |
| double burst_length = |
| static_cast<double>(loss_model_[k].average_burst_length); |
| double result = 1.0; |
| if (loss_model_[k].loss_type == kRandomLossModel) { |
| for (int i = 0; i < tot_num_packets; i++) { |
| if (state[i] == 0) { |
| result *= (1.0 - loss_rate); |
| } else { |
| result *= loss_rate; |
| } |
| } |
| } else { // Gilbert-Elliot model for burst model. |
| RTC_DCHECK_EQ(loss_model_[k].loss_type, kBurstyLossModel); |
| // Transition probabilities: from previous to current state. |
| // Prob. of previous = lost --> current = received. |
| double prob10 = 1.0 / burst_length; |
| // Prob. of previous = lost --> currrent = lost. |
| double prob11 = 1.0 - prob10; |
| // Prob. of previous = received --> current = lost. |
| double prob01 = prob10 * (loss_rate / (1.0 - loss_rate)); |
| // Prob. of previous = received --> current = received. |
| double prob00 = 1.0 - prob01; |
| |
| // Use stationary probability for first state/packet. |
| if (state[0] == 0) { // Received |
| result = (1.0 - loss_rate); |
| } else { // Lost |
| result = loss_rate; |
| } |
| |
| // Subsequent states: use transition probabilities. |
| for (int i = 1; i < tot_num_packets; i++) { |
| // Current state is received |
| if (state[i] == 0) { |
| if (state[i - 1] == 0) { |
| result *= prob00; // Previous received, current received. |
| } else { |
| result *= prob10; // Previous lost, current received. |
| } |
| } else { // Current state is lost |
| if (state[i - 1] == 0) { |
| result *= prob01; // Previous received, current lost. |
| } else { |
| result *= prob11; // Previous lost, current lost. |
| } |
| } |
| } |
| } |
| prob_weight[k] = result; |
| } |
| } |
| |
| void CopyMetrics(MetricsFecCode* metrics_output, |
| MetricsFecCode metrics_input) { |
| memcpy(metrics_output->average_residual_loss, |
| metrics_input.average_residual_loss, |
| sizeof(double) * kNumLossModels); |
| memcpy(metrics_output->variance_residual_loss, |
| metrics_input.variance_residual_loss, |
| sizeof(double) * kNumLossModels); |
| memcpy(metrics_output->residual_loss_per_loss_gap, |
| metrics_input.residual_loss_per_loss_gap, |
| sizeof(double) * kNumStatesDistribution); |
| memcpy(metrics_output->recovery_rate_per_loss, |
| metrics_input.recovery_rate_per_loss, |
| sizeof(double) * 2 * kMaxMediaPacketsTest); |
| } |
| |
| // Compute the residual loss per gap, by summing the |
| // `residual_loss_per_loss_gap` over all loss configurations up to loss number |
| // = `num_fec_packets`. |
| double ComputeResidualLossPerGap(MetricsFecCode metrics, |
| int gap_number, |
| int num_fec_packets, |
| int code_index) { |
| double residual_loss_gap = 0.0; |
| int tot_num_configs = 0; |
| for (int loss = 1; loss <= num_fec_packets; loss++) { |
| int index = gap_number * (2 * kMaxMediaPacketsTest) + loss; |
| residual_loss_gap += metrics.residual_loss_per_loss_gap[index]; |
| tot_num_configs += code_params_[code_index].configuration_density[index]; |
| } |
| // Normalize, to compare across code sizes. |
| if (tot_num_configs > 0) { |
| residual_loss_gap = |
| residual_loss_gap / static_cast<double>(tot_num_configs); |
| } |
| return residual_loss_gap; |
| } |
| |
| // Compute the recovery rate per loss number, by summing the |
| // `residual_loss_per_loss_gap` over all gap configurations. |
| void ComputeRecoveryRatePerLoss(MetricsFecCode* metrics, |
| int num_media_packets, |
| int num_fec_packets, |
| int code_index) { |
| for (int loss = 1; loss <= num_media_packets + num_fec_packets; loss++) { |
| metrics->recovery_rate_per_loss[loss] = 0.0; |
| int tot_num_configs = 0; |
| double arl = 0.0; |
| for (int gap = 0; gap < kMaxGapSize; gap++) { |
| int index = gap * (2 * kMaxMediaPacketsTest) + loss; |
| arl += metrics->residual_loss_per_loss_gap[index]; |
| tot_num_configs += |
| code_params_[code_index].configuration_density[index]; |
| } |
| // Normalize, to compare across code sizes. |
| if (tot_num_configs > 0) { |
| arl = arl / static_cast<double>(tot_num_configs); |
| } |
| // Recovery rate for a given loss `loss` is 1 minus the scaled `arl`, |
| // where the scale factor is relative to code size/parameters. |
| double scaled_loss = |
| static_cast<double>(loss * num_media_packets) / |
| static_cast<double>(num_media_packets + num_fec_packets); |
| metrics->recovery_rate_per_loss[loss] = 1.0 - arl / scaled_loss; |
| } |
| } |
| |
| void SetMetricsZero(MetricsFecCode* metrics) { |
| memset(metrics->average_residual_loss, 0, sizeof(double) * kNumLossModels); |
| memset(metrics->variance_residual_loss, 0, sizeof(double) * kNumLossModels); |
| memset(metrics->residual_loss_per_loss_gap, 0, |
| sizeof(double) * kNumStatesDistribution); |
| memset(metrics->recovery_rate_per_loss, 0, |
| sizeof(double) * 2 * kMaxMediaPacketsTest + 1); |
| } |
| |
| // Compute the metrics for an FEC code, given by the code type `code_type` |
| // (XOR-random/ bursty or RS), and by the code index `code_index` |
| // (which containes the code size parameters/protection length). |
| void ComputeMetricsForCode(CodeType code_type, int code_index) { |
| std::unique_ptr<double[]> prob_weight(new double[kNumLossModels]); |
| memset(prob_weight.get(), 0, sizeof(double) * kNumLossModels); |
| MetricsFecCode metrics_code; |
| SetMetricsZero(&metrics_code); |
| |
| int num_media_packets = code_params_[code_index].num_media_packets; |
| int num_fec_packets = code_params_[code_index].num_fec_packets; |
| int tot_num_packets = num_media_packets + num_fec_packets; |
| std::unique_ptr<uint8_t[]> state(new uint8_t[tot_num_packets]); |
| memset(state.get(), 0, tot_num_packets); |
| |
| int num_loss_configurations = 1 << tot_num_packets; |
| // Loop over all loss configurations for the symbol sequence of length |
| // `tot_num_packets`. In this version we process up to (k=12, m=12) codes, |
| // and get exact expressions for the residual loss. |
| // TODO(marpan): For larger codes, loop over some random sample of loss |
| // configurations, sampling driven by the underlying statistical loss model |
| // (importance sampling). |
| |
| // The symbols/packets are arranged as a sequence of source/media packets |
| // followed by FEC packets. This is the sequence ordering used in the RTP. |
| // A configuration refers to a sequence of received/lost (0/1 bit) states |
| // for the string of packets/symbols. For example, for a (k=4,m=3) code |
| // (4 media packets, 3 FEC packets), with 2 losses (one media and one FEC), |
| // the loss configurations is: |
| // Media1 Media2 Media3 Media4 FEC1 FEC2 FEC3 |
| // 0 0 1 0 0 1 0 |
| for (int i = 1; i < num_loss_configurations; i++) { |
| // Counter for number of packets lost. |
| int num_packets_lost = 0; |
| // Counters for the number of media packets lost. |
| int num_media_packets_lost = 0; |
| |
| // Map configuration number to a loss state. |
| for (int j = 0; j < tot_num_packets; j++) { |
| state[j] = 0; // Received state. |
| int bit_value = i >> (tot_num_packets - j - 1) & 1; |
| if (bit_value == 1) { |
| state[j] = 1; // Lost state. |
| num_packets_lost++; |
| if (j < num_media_packets) { |
| num_media_packets_lost++; |
| } |
| } |
| } // Done with loop over total number of packets. |
| RTC_DCHECK_LE(num_media_packets_lost, num_media_packets); |
| RTC_DCHECK_LE(num_packets_lost, tot_num_packets && num_packets_lost > 0); |
| double residual_loss = 0.0; |
| // Only need to compute residual loss (number of recovered packets) for |
| // configurations that have at least one media packet lost. |
| if (num_media_packets_lost >= 1) { |
| // Compute the number of recovered packets. |
| int num_recovered_packets = 0; |
| if (code_type == xor_random_code || code_type == xor_bursty_code) { |
| num_recovered_packets = RecoveredMediaPackets( |
| num_media_packets, num_fec_packets, state.get()); |
| } else { |
| // For the RS code, we can either completely recover all the packets |
| // if the loss is less than or equal to the number of FEC packets, |
| // otherwise we can recover none of the missing packets. This is the |
| // all or nothing (MDS) property of the RS code. |
| if (num_packets_lost <= num_fec_packets) { |
| num_recovered_packets = num_media_packets_lost; |
| } |
| } |
| RTC_DCHECK_LE(num_recovered_packets, num_media_packets); |
| // Compute the residual loss. We only care about recovering media/source |
| // packets, so residual loss is based on lost/recovered media packets. |
| residual_loss = |
| static_cast<double>(num_media_packets_lost - num_recovered_packets); |
| // Compute the probability weights for this configuration. |
| ComputeProbabilityWeight(prob_weight.get(), state.get(), |
| tot_num_packets); |
| // Update the average and variance of the residual loss. |
| for (int k = 0; k < kNumLossModels; k++) { |
| metrics_code.average_residual_loss[k] += |
| residual_loss * prob_weight[k]; |
| metrics_code.variance_residual_loss[k] += |
| residual_loss * residual_loss * prob_weight[k]; |
| } |
| } // Done with processing for num_media_packets_lost >= 1. |
| // Update the distribution statistics. |
| // Compute the gap of the loss (the "consecutiveness" of the loss). |
| int gap_loss = GapLoss(tot_num_packets, state.get()); |
| RTC_DCHECK_LT(gap_loss, kMaxGapSize); |
| int index = gap_loss * (2 * kMaxMediaPacketsTest) + num_packets_lost; |
| RTC_DCHECK_LT(index, kNumStatesDistribution); |
| metrics_code.residual_loss_per_loss_gap[index] += residual_loss; |
| if (code_type == xor_random_code) { |
| // The configuration density is only a function of the code length and |
| // only needs to computed for the first `code_type` passed here. |
| code_params_[code_index].configuration_density[index]++; |
| } |
| } // Done with loop over configurations. |
| // Normalize the average residual loss and compute/normalize the variance. |
| for (int k = 0; k < kNumLossModels; k++) { |
| // Normalize the average residual loss by the total number of packets |
| // `tot_num_packets` (i.e., the code length). For a code with no (zero) |
| // recovery, the average residual loss for that code would be reduced like |
| // ~`average_loss_rate` * `num_media_packets` / `tot_num_packets`. This is |
| // the expected reduction in the average residual loss just from adding |
| // FEC packets to the symbol sequence. |
| metrics_code.average_residual_loss[k] = |
| metrics_code.average_residual_loss[k] / |
| static_cast<double>(tot_num_packets); |
| metrics_code.variance_residual_loss[k] = |
| metrics_code.variance_residual_loss[k] / |
| static_cast<double>(num_media_packets * num_media_packets); |
| metrics_code.variance_residual_loss[k] = |
| metrics_code.variance_residual_loss[k] - |
| (metrics_code.average_residual_loss[k] * |
| metrics_code.average_residual_loss[k]); |
| RTC_DCHECK_GE(metrics_code.variance_residual_loss[k], 0.0); |
| RTC_DCHECK_GT(metrics_code.average_residual_loss[k], 0.0); |
| metrics_code.variance_residual_loss[k] = |
| std::sqrt(metrics_code.variance_residual_loss[k]) / |
| metrics_code.average_residual_loss[k]; |
| } |
| |
| // Compute marginal distribution as a function of loss parameter. |
| ComputeRecoveryRatePerLoss(&metrics_code, num_media_packets, |
| num_fec_packets, code_index); |
| if (code_type == rs_code) { |
| CopyMetrics(&kMetricsReedSolomon[code_index], metrics_code); |
| } else if (code_type == xor_random_code) { |
| CopyMetrics(&kMetricsXorRandom[code_index], metrics_code); |
| } else if (code_type == xor_bursty_code) { |
| CopyMetrics(&kMetricsXorBursty[code_index], metrics_code); |
| } else { |
| RTC_DCHECK_NOTREACHED(); |
| } |
| } |
| |
| void WriteOutMetricsAllFecCodes() { |
| std::string filename = test::OutputPath() + "data_metrics_all_codes"; |
| FILE* fp = fopen(filename.c_str(), "wb"); |
| // Loop through codes up to `kMaxMediaPacketsTest`. |
| int code_index = 0; |
| for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest; |
| num_media_packets++) { |
| for (int num_fec_packets = 1; num_fec_packets <= num_media_packets; |
| num_fec_packets++) { |
| fprintf(fp, "FOR CODE: (%d, %d) \n", num_media_packets, |
| num_fec_packets); |
| for (int k = 0; k < kNumLossModels; k++) { |
| float loss_rate = loss_model_[k].average_loss_rate; |
| float burst_length = loss_model_[k].average_burst_length; |
| fprintf( |
| fp, |
| "Loss rate = %.2f, Burst length = %.2f: %.4f %.4f %.4f" |
| " **** %.4f %.4f %.4f \n", |
| loss_rate, burst_length, |
| 100 * kMetricsReedSolomon[code_index].average_residual_loss[k], |
| 100 * kMetricsXorRandom[code_index].average_residual_loss[k], |
| 100 * kMetricsXorBursty[code_index].average_residual_loss[k], |
| kMetricsReedSolomon[code_index].variance_residual_loss[k], |
| kMetricsXorRandom[code_index].variance_residual_loss[k], |
| kMetricsXorBursty[code_index].variance_residual_loss[k]); |
| } |
| for (int gap = 0; gap < kGapSizeOutput; gap++) { |
| double rs_residual_loss = |
| ComputeResidualLossPerGap(kMetricsReedSolomon[code_index], gap, |
| num_fec_packets, code_index); |
| double xor_random_residual_loss = ComputeResidualLossPerGap( |
| kMetricsXorRandom[code_index], gap, num_fec_packets, code_index); |
| double xor_bursty_residual_loss = ComputeResidualLossPerGap( |
| kMetricsXorBursty[code_index], gap, num_fec_packets, code_index); |
| fprintf(fp, |
| "Residual loss as a function of gap " |
| "%d: %.4f %.4f %.4f \n", |
| gap, rs_residual_loss, xor_random_residual_loss, |
| xor_bursty_residual_loss); |
| } |
| fprintf(fp, "Recovery rate as a function of loss number \n"); |
| for (int loss = 1; loss <= num_media_packets + num_fec_packets; |
| loss++) { |
| fprintf(fp, "For loss number %d: %.4f %.4f %.4f \n", loss, |
| kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss], |
| kMetricsXorRandom[code_index].recovery_rate_per_loss[loss], |
| kMetricsXorBursty[code_index].recovery_rate_per_loss[loss]); |
| } |
| fprintf(fp, "******************\n"); |
| fprintf(fp, "\n"); |
| code_index++; |
| } |
| } |
| fclose(fp); |
| } |
| |
| void SetLossModels() { |
| int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate); |
| int num_burst_lengths = |
| sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength); |
| int num_loss_models = 0; |
| for (int k = 0; k < num_burst_lengths; k++) { |
| for (int k2 = 0; k2 < num_loss_rates; k2++) { |
| loss_model_[num_loss_models].average_loss_rate = kAverageLossRate[k2]; |
| loss_model_[num_loss_models].average_burst_length = |
| kAverageBurstLength[k]; |
| // First set of loss models are of random type. |
| if (k == 0) { |
| loss_model_[num_loss_models].loss_type = kRandomLossModel; |
| } else { |
| loss_model_[num_loss_models].loss_type = kBurstyLossModel; |
| } |
| num_loss_models++; |
| } |
| } |
| RTC_DCHECK_EQ(num_loss_models, kNumLossModels); |
| } |
| |
| void SetCodeParams() { |
| int code_index = 0; |
| for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest; |
| num_media_packets++) { |
| for (int num_fec_packets = 1; num_fec_packets <= num_media_packets; |
| num_fec_packets++) { |
| code_params_[code_index].num_media_packets = num_media_packets; |
| code_params_[code_index].num_fec_packets = num_fec_packets; |
| code_params_[code_index].protection_level = |
| static_cast<float>(num_fec_packets) / |
| static_cast<float>(num_media_packets + num_fec_packets); |
| for (int k = 0; k < kNumStatesDistribution; k++) { |
| code_params_[code_index].configuration_density[k] = 0; |
| } |
| code_index++; |
| } |
| } |
| max_num_codes_ = code_index; |
| } |
| |
| // Make some basic checks on the packet masks. Return -1 if any of these |
| // checks fail. |
| int RejectInvalidMasks(int num_media_packets, int num_fec_packets) { |
| // Make sure every FEC packet protects something. |
| for (int i = 0; i < num_fec_packets; i++) { |
| int row_degree = 0; |
| for (int j = 0; j < num_media_packets; j++) { |
| if (fec_packet_masks_[i][j] == 1) { |
| row_degree++; |
| } |
| } |
| if (row_degree == 0) { |
| printf( |
| "Invalid mask: FEC packet has empty mask (does not protect " |
| "anything) %d %d %d \n", |
| i, num_media_packets, num_fec_packets); |
| return -1; |
| } |
| } |
| // Mask sure every media packet has some protection. |
| for (int j = 0; j < num_media_packets; j++) { |
| int column_degree = 0; |
| for (int i = 0; i < num_fec_packets; i++) { |
| if (fec_packet_masks_[i][j] == 1) { |
| column_degree++; |
| } |
| } |
| if (column_degree == 0) { |
| printf( |
| "Invalid mask: Media packet has no protection at all %d %d %d " |
| "\n", |
| j, num_media_packets, num_fec_packets); |
| return -1; |
| } |
| } |
| // Make sure we do not have two identical FEC packets. |
| for (int i = 0; i < num_fec_packets; i++) { |
| for (int i2 = i + 1; i2 < num_fec_packets; i2++) { |
| int overlap = 0; |
| for (int j = 0; j < num_media_packets; j++) { |
| if (fec_packet_masks_[i][j] == fec_packet_masks_[i2][j]) { |
| overlap++; |
| } |
| } |
| if (overlap == num_media_packets) { |
| printf("Invalid mask: Two FEC packets are identical %d %d %d %d \n", |
| i, i2, num_media_packets, num_fec_packets); |
| return -1; |
| } |
| } |
| } |
| // Avoid codes that have two media packets with full protection (all 1s in |
| // their corresponding columns). This would mean that if we lose those |
| // two packets, we can never recover them even if we receive all the other |
| // packets. Exclude the special cases of 1 or 2 FEC packets. |
| if (num_fec_packets > 2) { |
| for (int j = 0; j < num_media_packets; j++) { |
| for (int j2 = j + 1; j2 < num_media_packets; j2++) { |
| int degree = 0; |
| for (int i = 0; i < num_fec_packets; i++) { |
| if (fec_packet_masks_[i][j] == fec_packet_masks_[i][j2] && |
| fec_packet_masks_[i][j] == 1) { |
| degree++; |
| } |
| } |
| if (degree == num_fec_packets) { |
| printf( |
| "Invalid mask: Two media packets are have full degree " |
| "%d %d %d %d \n", |
| j, j2, num_media_packets, num_fec_packets); |
| return -1; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| void GetPacketMaskConvertToBitMask(uint8_t* packet_mask, |
| int num_media_packets, |
| int num_fec_packets, |
| int mask_bytes_fec_packet, |
| CodeType code_type) { |
| for (int i = 0; i < num_fec_packets; i++) { |
| for (int j = 0; j < num_media_packets; j++) { |
| const uint8_t byte_mask = |
| packet_mask[i * mask_bytes_fec_packet + j / 8]; |
| const int bit_position = (7 - j % 8); |
| fec_packet_masks_[i][j] = |
| (byte_mask & (1 << bit_position)) >> bit_position; |
| fprintf(fp_mask_, "%d ", fec_packet_masks_[i][j]); |
| } |
| fprintf(fp_mask_, "\n"); |
| } |
| fprintf(fp_mask_, "\n"); |
| } |
| |
| int ProcessXORPacketMasks(CodeType code_type, FecMaskType fec_mask_type) { |
| int code_index = 0; |
| // Maximum number of media packets allowed for the mask type. |
| const int packet_mask_max = kMaxMediaPackets[fec_mask_type]; |
| std::unique_ptr<uint8_t[]> packet_mask( |
| new uint8_t[packet_mask_max * kUlpfecMaxPacketMaskSize]); |
| // Loop through codes up to `kMaxMediaPacketsTest`. |
| for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest; |
| ++num_media_packets) { |
| const int mask_bytes_fec_packet = |
| static_cast<int>(internal::PacketMaskSize(num_media_packets)); |
| internal::PacketMaskTable mask_table(fec_mask_type, num_media_packets); |
| for (int num_fec_packets = 1; num_fec_packets <= num_media_packets; |
| num_fec_packets++) { |
| memset(packet_mask.get(), 0, num_media_packets * mask_bytes_fec_packet); |
| rtc::ArrayView<const uint8_t> mask = |
| mask_table.LookUp(num_media_packets, num_fec_packets); |
| memcpy(packet_mask.get(), &mask[0], mask.size()); |
| // Convert to bit mask. |
| GetPacketMaskConvertToBitMask(packet_mask.get(), num_media_packets, |
| num_fec_packets, mask_bytes_fec_packet, |
| code_type); |
| if (RejectInvalidMasks(num_media_packets, num_fec_packets) < 0) { |
| return -1; |
| } |
| // Compute the metrics for this code/mask. |
| ComputeMetricsForCode(code_type, code_index); |
| code_index++; |
| } |
| } |
| RTC_DCHECK_EQ(code_index, kNumberCodes); |
| return 0; |
| } |
| |
| void ProcessRS(CodeType code_type) { |
| int code_index = 0; |
| for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest; |
| num_media_packets++) { |
| for (int num_fec_packets = 1; num_fec_packets <= num_media_packets; |
| num_fec_packets++) { |
| // Compute the metrics for this code type. |
| ComputeMetricsForCode(code_type, code_index); |
| code_index++; |
| } |
| } |
| } |
| |
| // Compute metrics for all code types and sizes. |
| void ComputeMetricsAllCodes() { |
| SetLossModels(); |
| SetCodeParams(); |
| // Get metrics for XOR code with packet masks of random type. |
| std::string filename = test::OutputPath() + "data_packet_masks"; |
| fp_mask_ = fopen(filename.c_str(), "wb"); |
| fprintf(fp_mask_, "MASK OF TYPE RANDOM: \n"); |
| EXPECT_EQ(ProcessXORPacketMasks(xor_random_code, kFecMaskRandom), 0); |
| // Get metrics for XOR code with packet masks of bursty type. |
| fprintf(fp_mask_, "MASK OF TYPE BURSTY: \n"); |
| EXPECT_EQ(ProcessXORPacketMasks(xor_bursty_code, kFecMaskBursty), 0); |
| fclose(fp_mask_); |
| // Get metrics for Reed-Solomon code. |
| ProcessRS(rs_code); |
| } |
| }; |
| |
| // Verify that the average residual loss, averaged over loss models |
| // appropriate to each mask type, is below some maximum acceptable level. The |
| // acceptable levels are read in from a file, and correspond to a current set |
| // of packet masks. The levels for each code may be updated over time. |
| TEST_F(FecPacketMaskMetricsTest, FecXorMaxResidualLoss) { |
| SetLossModels(); |
| SetCodeParams(); |
| ComputeMetricsAllCodes(); |
| WriteOutMetricsAllFecCodes(); |
| int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate); |
| int num_burst_lengths = |
| sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength); |
| for (int code_index = 0; code_index < max_num_codes_; code_index++) { |
| double sum_residual_loss_random_mask_random_loss = 0.0; |
| double sum_residual_loss_bursty_mask_bursty_loss = 0.0; |
| // Compute the sum residual loss across the models, for each mask type. |
| for (int k = 0; k < kNumLossModels; k++) { |
| if (loss_model_[k].loss_type == kRandomLossModel) { |
| sum_residual_loss_random_mask_random_loss += |
| kMetricsXorRandom[code_index].average_residual_loss[k]; |
| } else if (loss_model_[k].loss_type == kBurstyLossModel) { |
| sum_residual_loss_bursty_mask_bursty_loss += |
| kMetricsXorBursty[code_index].average_residual_loss[k]; |
| } |
| } |
| float average_residual_loss_random_mask_random_loss = |
| sum_residual_loss_random_mask_random_loss / num_loss_rates; |
| float average_residual_loss_bursty_mask_bursty_loss = |
| sum_residual_loss_bursty_mask_bursty_loss / |
| (num_loss_rates * (num_burst_lengths - 1)); |
| const float ref_random_mask = kMaxResidualLossRandomMask[code_index]; |
| const float ref_bursty_mask = kMaxResidualLossBurstyMask[code_index]; |
| EXPECT_LE(average_residual_loss_random_mask_random_loss, ref_random_mask); |
| EXPECT_LE(average_residual_loss_bursty_mask_bursty_loss, ref_bursty_mask); |
| } |
| } |
| |
| // Verify the behavior of the XOR codes vs the RS codes. |
| // For random loss model with average loss rates <= the code protection level, |
| // the RS code (optimal MDS code) is more efficient than XOR codes. |
| // However, for larger loss rates (above protection level) and/or bursty |
| // loss models, the RS is not always more efficient than XOR (though in most |
| // cases it still is). |
| TEST_F(FecPacketMaskMetricsTest, FecXorVsRS) { |
| SetLossModels(); |
| SetCodeParams(); |
| for (int code_index = 0; code_index < max_num_codes_; code_index++) { |
| for (int k = 0; k < kNumLossModels; k++) { |
| float loss_rate = loss_model_[k].average_loss_rate; |
| float protection_level = code_params_[code_index].protection_level; |
| // Under these conditions we expect XOR to not be better than RS. |
| if (loss_model_[k].loss_type == kRandomLossModel && |
| loss_rate <= protection_level) { |
| EXPECT_GE(kMetricsXorRandom[code_index].average_residual_loss[k], |
| kMetricsReedSolomon[code_index].average_residual_loss[k]); |
| EXPECT_GE(kMetricsXorBursty[code_index].average_residual_loss[k], |
| kMetricsReedSolomon[code_index].average_residual_loss[k]); |
| } |
| // TODO(marpan): There are some cases (for high loss rates and/or |
| // burst loss models) where XOR is better than RS. Is there some pattern |
| // we can identify and enforce as a constraint? |
| } |
| } |
| } |
| |
| // Verify the trend (change) in the average residual loss, as a function of |
| // loss rate, of the XOR code relative to the RS code. |
| // The difference between XOR and RS should not get worse as we increase |
| // the average loss rate. |
| TEST_F(FecPacketMaskMetricsTest, FecTrendXorVsRsLossRate) { |
| SetLossModels(); |
| SetCodeParams(); |
| // TODO(marpan): Examine this further to see if the condition can be strictly |
| // satisfied (i.e., scale = 1.0) for all codes with different/better masks. |
| double scale = 0.90; |
| int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate); |
| int num_burst_lengths = |
| sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength); |
| for (int code_index = 0; code_index < max_num_codes_; code_index++) { |
| for (int i = 0; i < num_burst_lengths; i++) { |
| for (int j = 0; j < num_loss_rates - 1; j++) { |
| int k = num_loss_rates * i + j; |
| // For XOR random. |
| if (kMetricsXorRandom[code_index].average_residual_loss[k] > |
| kMetricsReedSolomon[code_index].average_residual_loss[k]) { |
| double diff_rs_xor_random_loss1 = |
| (kMetricsXorRandom[code_index].average_residual_loss[k] - |
| kMetricsReedSolomon[code_index].average_residual_loss[k]) / |
| kMetricsXorRandom[code_index].average_residual_loss[k]; |
| double diff_rs_xor_random_loss2 = |
| (kMetricsXorRandom[code_index].average_residual_loss[k + 1] - |
| kMetricsReedSolomon[code_index].average_residual_loss[k + 1]) / |
| kMetricsXorRandom[code_index].average_residual_loss[k + 1]; |
| EXPECT_GE(diff_rs_xor_random_loss1, scale * diff_rs_xor_random_loss2); |
| } |
| // TODO(marpan): Investigate the cases for the bursty mask where |
| // this trend is not strictly satisfied. |
| } |
| } |
| } |
| } |
| |
| // Verify the average residual loss behavior via the protection level and |
| // the code length. The average residual loss for a given (k1,m1) code |
| // should generally be higher than that of another code (k2,m2), which has |
| // either of the two conditions satisfied: |
| // 1) higher protection & code length at least as large: (k2+m2) >= (k1+m1), |
| // 2) equal protection and larger code length: (k2+m2) > (k1+m1). |
| // Currently does not hold for some cases of the XOR code with random mask. |
| TEST_F(FecPacketMaskMetricsTest, FecBehaviorViaProtectionLevelAndLength) { |
| SetLossModels(); |
| SetCodeParams(); |
| for (int code_index1 = 0; code_index1 < max_num_codes_; code_index1++) { |
| float protection_level1 = code_params_[code_index1].protection_level; |
| int length1 = code_params_[code_index1].num_media_packets + |
| code_params_[code_index1].num_fec_packets; |
| for (int code_index2 = 0; code_index2 < max_num_codes_; code_index2++) { |
| float protection_level2 = code_params_[code_index2].protection_level; |
| int length2 = code_params_[code_index2].num_media_packets + |
| code_params_[code_index2].num_fec_packets; |
| // Codes with higher protection are more efficient, conditioned on the |
| // length of the code (higher protection but shorter length codes are |
| // generally not more efficient). For two codes with equal protection, |
| // the longer code is generally more efficient. For high loss rate |
| // models, this condition may be violated for some codes with equal or |
| // very close protection levels. High loss rate case is excluded below. |
| if ((protection_level2 > protection_level1 && length2 >= length1) || |
| (protection_level2 == protection_level1 && length2 > length1)) { |
| for (int k = 0; k < kNumLossModels; k++) { |
| float loss_rate = loss_model_[k].average_loss_rate; |
| if (loss_rate < loss_rate_upper_threshold) { |
| EXPECT_LT( |
| kMetricsReedSolomon[code_index2].average_residual_loss[k], |
| kMetricsReedSolomon[code_index1].average_residual_loss[k]); |
| // TODO(marpan): There are some corner cases where this is not |
| // satisfied with the current packet masks. Look into updating |
| // these cases to see if this behavior should/can be satisfied, |
| // with overall lower residual loss for those XOR codes. |
| // EXPECT_LT( |
| // kMetricsXorBursty[code_index2].average_residual_loss[k], |
| // kMetricsXorBursty[code_index1].average_residual_loss[k]); |
| // EXPECT_LT( |
| // kMetricsXorRandom[code_index2].average_residual_loss[k], |
| // kMetricsXorRandom[code_index1].average_residual_loss[k]); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Verify the beheavior of the variance of the XOR codes. |
| // The partial recovery of the XOR versus the all or nothing behavior of the RS |
| // code means that the variance of the residual loss for XOR should generally |
| // not be worse than RS. |
| TEST_F(FecPacketMaskMetricsTest, FecVarianceBehaviorXorVsRs) { |
| SetLossModels(); |
| SetCodeParams(); |
| // The condition is not strictly satisfied with the current masks, |
| // i.e., for some codes, the variance of XOR may be slightly higher than RS. |
| // TODO(marpan): Examine this further to see if the condition can be strictly |
| // satisfied (i.e., scale = 1.0) for all codes with different/better masks. |
| double scale = 0.95; |
| for (int code_index = 0; code_index < max_num_codes_; code_index++) { |
| for (int k = 0; k < kNumLossModels; k++) { |
| EXPECT_LE(scale * kMetricsXorRandom[code_index].variance_residual_loss[k], |
| kMetricsReedSolomon[code_index].variance_residual_loss[k]); |
| EXPECT_LE(scale * kMetricsXorBursty[code_index].variance_residual_loss[k], |
| kMetricsReedSolomon[code_index].variance_residual_loss[k]); |
| } |
| } |
| } |
| |
| // For the bursty mask type, the residual loss must be strictly zero for all |
| // consecutive losses (i.e, gap = 0) with number of losses <= num_fec_packets. |
| // This is a design property of the bursty mask type. |
| TEST_F(FecPacketMaskMetricsTest, FecXorBurstyPerfectRecoveryConsecutiveLoss) { |
| SetLossModels(); |
| SetCodeParams(); |
| for (int code_index = 0; code_index < max_num_codes_; code_index++) { |
| int num_fec_packets = code_params_[code_index].num_fec_packets; |
| for (int loss = 1; loss <= num_fec_packets; loss++) { |
| int index = loss; // `gap` is zero. |
| EXPECT_EQ(kMetricsXorBursty[code_index].residual_loss_per_loss_gap[index], |
| 0.0); |
| } |
| } |
| } |
| |
| // The XOR codes with random mask type are generally better than the ones with |
| // bursty mask type, for random loss models at low loss rates. |
| // The XOR codes with bursty mask types are generally better than the one with |
| // random mask type, for bursty loss models and/or high loss rates. |
| // TODO(marpan): Enable this test when some of the packet masks are updated. |
| // Some isolated cases of the codes don't pass this currently. |
| /* |
| TEST_F(FecPacketMaskMetricsTest, FecXorRandomVsBursty) { |
| SetLossModels(); |
| SetCodeParams(); |
| for (int code_index = 0; code_index < max_num_codes_; code_index++) { |
| double sum_residual_loss_random_mask_random_loss = 0.0; |
| double sum_residual_loss_bursty_mask_random_loss = 0.0; |
| double sum_residual_loss_random_mask_bursty_loss = 0.0; |
| double sum_residual_loss_bursty_mask_bursty_loss = 0.0; |
| // Compute the sum residual loss across the models, for each mask type. |
| for (int k = 0; k < kNumLossModels; k++) { |
| float loss_rate = loss_model_[k].average_loss_rate; |
| if (loss_model_[k].loss_type == kRandomLossModel && |
| loss_rate < loss_rate_upper_threshold) { |
| sum_residual_loss_random_mask_random_loss += |
| kMetricsXorRandom[code_index].average_residual_loss[k]; |
| sum_residual_loss_bursty_mask_random_loss += |
| kMetricsXorBursty[code_index].average_residual_loss[k]; |
| } else if (loss_model_[k].loss_type == kBurstyLossModel && |
| loss_rate > loss_rate_lower_threshold) { |
| sum_residual_loss_random_mask_bursty_loss += |
| kMetricsXorRandom[code_index].average_residual_loss[k]; |
| sum_residual_loss_bursty_mask_bursty_loss += |
| kMetricsXorBursty[code_index].average_residual_loss[k]; |
| } |
| } |
| EXPECT_LE(sum_residual_loss_random_mask_random_loss, |
| sum_residual_loss_bursty_mask_random_loss); |
| EXPECT_LE(sum_residual_loss_bursty_mask_bursty_loss, |
| sum_residual_loss_random_mask_bursty_loss); |
| } |
| } |
| */ |
| |
| // Verify that the average recovery rate for each code is equal or above some |
| // threshold, for certain loss number conditions. |
| TEST_F(FecPacketMaskMetricsTest, FecRecoveryRateUnderLossConditions) { |
| SetLossModels(); |
| SetCodeParams(); |
| for (int code_index = 0; code_index < max_num_codes_; code_index++) { |
| int num_media_packets = code_params_[code_index].num_media_packets; |
| int num_fec_packets = code_params_[code_index].num_fec_packets; |
| // Perfect recovery (`recovery_rate_per_loss` == 1) is expected for |
| // `loss_number` = 1, for all codes. |
| int loss_number = 1; |
| EXPECT_EQ( |
| kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number], |
| 1.0); |
| EXPECT_EQ(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number], |
| 1.0); |
| EXPECT_EQ(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number], |
| 1.0); |
| // For `loss_number` = `num_fec_packets` / 2, we expect the following: |
| // Perfect recovery for RS, and recovery for XOR above the threshold. |
| loss_number = num_fec_packets / 2 > 0 ? num_fec_packets / 2 : 1; |
| EXPECT_EQ( |
| kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number], |
| 1.0); |
| EXPECT_GE(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number], |
| kRecoveryRateXorRandom[0]); |
| EXPECT_GE(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number], |
| kRecoveryRateXorBursty[0]); |
| // For `loss_number` = `num_fec_packets`, we expect the following: |
| // Perfect recovery for RS, and recovery for XOR above the threshold. |
| loss_number = num_fec_packets; |
| EXPECT_EQ( |
| kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number], |
| 1.0); |
| EXPECT_GE(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number], |
| kRecoveryRateXorRandom[1]); |
| EXPECT_GE(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number], |
| kRecoveryRateXorBursty[1]); |
| // For `loss_number` = `num_fec_packets` + 1, we expect the following: |
| // Zero recovery for RS, but non-zero recovery for XOR. |
| if (num_fec_packets > 1 && num_media_packets > 2) { |
| loss_number = num_fec_packets + 1; |
| EXPECT_EQ( |
| kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number], |
| 0.0); |
| EXPECT_GE( |
| kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number], |
| kRecoveryRateXorRandom[2]); |
| EXPECT_GE( |
| kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number], |
| kRecoveryRateXorBursty[2]); |
| } |
| } |
| } |
| |
| } // namespace webrtc |