| /* | 
 |  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "webrtc/modules/video_coding/jitter_estimator.h" | 
 |  | 
 | #include <assert.h> | 
 | #include <math.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <string> | 
 |  | 
 | #include "webrtc/modules/video_coding/internal_defines.h" | 
 | #include "webrtc/modules/video_coding/rtt_filter.h" | 
 | #include "webrtc/system_wrappers/include/clock.h" | 
 | #include "webrtc/system_wrappers/include/field_trial.h" | 
 |  | 
 | namespace webrtc { | 
 |  | 
 | enum { kStartupDelaySamples = 30 }; | 
 | enum { kFsAccuStartupSamples = 5 }; | 
 | enum { kMaxFramerateEstimate = 200 }; | 
 |  | 
 | VCMJitterEstimator::VCMJitterEstimator(const Clock* clock, | 
 |                                        int32_t vcmId, | 
 |                                        int32_t receiverId) | 
 |     : _vcmId(vcmId), | 
 |       _receiverId(receiverId), | 
 |       _phi(0.97), | 
 |       _psi(0.9999), | 
 |       _alphaCountMax(400), | 
 |       _thetaLow(0.000001), | 
 |       _nackLimit(3), | 
 |       _numStdDevDelayOutlier(15), | 
 |       _numStdDevFrameSizeOutlier(3), | 
 |       _noiseStdDevs(2.33),       // ~Less than 1% chance | 
 |                                  // (look up in normal distribution table)... | 
 |       _noiseStdDevOffset(30.0),  // ...of getting 30 ms freezes | 
 |       _rttFilter(), | 
 |       fps_counter_(30),  // TODO(sprang): Use an estimator with limit based on | 
 |                          // time, rather than number of samples. | 
 |       low_rate_experiment_(kInit), | 
 |       clock_(clock) { | 
 |   Reset(); | 
 | } | 
 |  | 
 | VCMJitterEstimator::~VCMJitterEstimator() {} | 
 |  | 
 | VCMJitterEstimator& VCMJitterEstimator::operator=( | 
 |     const VCMJitterEstimator& rhs) { | 
 |   if (this != &rhs) { | 
 |     memcpy(_thetaCov, rhs._thetaCov, sizeof(_thetaCov)); | 
 |     memcpy(_Qcov, rhs._Qcov, sizeof(_Qcov)); | 
 |  | 
 |     _vcmId = rhs._vcmId; | 
 |     _receiverId = rhs._receiverId; | 
 |     _avgFrameSize = rhs._avgFrameSize; | 
 |     _varFrameSize = rhs._varFrameSize; | 
 |     _maxFrameSize = rhs._maxFrameSize; | 
 |     _fsSum = rhs._fsSum; | 
 |     _fsCount = rhs._fsCount; | 
 |     _lastUpdateT = rhs._lastUpdateT; | 
 |     _prevEstimate = rhs._prevEstimate; | 
 |     _prevFrameSize = rhs._prevFrameSize; | 
 |     _avgNoise = rhs._avgNoise; | 
 |     _alphaCount = rhs._alphaCount; | 
 |     _filterJitterEstimate = rhs._filterJitterEstimate; | 
 |     _startupCount = rhs._startupCount; | 
 |     _latestNackTimestamp = rhs._latestNackTimestamp; | 
 |     _nackCount = rhs._nackCount; | 
 |     _rttFilter = rhs._rttFilter; | 
 |   } | 
 |   return *this; | 
 | } | 
 |  | 
 | // Resets the JitterEstimate | 
 | void VCMJitterEstimator::Reset() { | 
 |   _theta[0] = 1 / (512e3 / 8); | 
 |   _theta[1] = 0; | 
 |   _varNoise = 4.0; | 
 |  | 
 |   _thetaCov[0][0] = 1e-4; | 
 |   _thetaCov[1][1] = 1e2; | 
 |   _thetaCov[0][1] = _thetaCov[1][0] = 0; | 
 |   _Qcov[0][0] = 2.5e-10; | 
 |   _Qcov[1][1] = 1e-10; | 
 |   _Qcov[0][1] = _Qcov[1][0] = 0; | 
 |   _avgFrameSize = 500; | 
 |   _maxFrameSize = 500; | 
 |   _varFrameSize = 100; | 
 |   _lastUpdateT = -1; | 
 |   _prevEstimate = -1.0; | 
 |   _prevFrameSize = 0; | 
 |   _avgNoise = 0.0; | 
 |   _alphaCount = 1; | 
 |   _filterJitterEstimate = 0.0; | 
 |   _latestNackTimestamp = 0; | 
 |   _nackCount = 0; | 
 |   _fsSum = 0; | 
 |   _fsCount = 0; | 
 |   _startupCount = 0; | 
 |   _rttFilter.Reset(); | 
 |   fps_counter_.Reset(); | 
 | } | 
 |  | 
 | void VCMJitterEstimator::ResetNackCount() { | 
 |   _nackCount = 0; | 
 | } | 
 |  | 
 | // Updates the estimates with the new measurements | 
 | void VCMJitterEstimator::UpdateEstimate(int64_t frameDelayMS, | 
 |                                         uint32_t frameSizeBytes, | 
 |                                         bool incompleteFrame /* = false */) { | 
 |   if (frameSizeBytes == 0) { | 
 |     return; | 
 |   } | 
 |   int deltaFS = frameSizeBytes - _prevFrameSize; | 
 |   if (_fsCount < kFsAccuStartupSamples) { | 
 |     _fsSum += frameSizeBytes; | 
 |     _fsCount++; | 
 |   } else if (_fsCount == kFsAccuStartupSamples) { | 
 |     // Give the frame size filter | 
 |     _avgFrameSize = static_cast<double>(_fsSum) / static_cast<double>(_fsCount); | 
 |     _fsCount++; | 
 |   } | 
 |   if (!incompleteFrame || frameSizeBytes > _avgFrameSize) { | 
 |     double avgFrameSize = _phi * _avgFrameSize + (1 - _phi) * frameSizeBytes; | 
 |     if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize)) { | 
 |       // Only update the average frame size if this sample wasn't a | 
 |       // key frame | 
 |       _avgFrameSize = avgFrameSize; | 
 |     } | 
 |     // Update the variance anyway since we want to capture cases where we only | 
 |     // get | 
 |     // key frames. | 
 |     _varFrameSize = VCM_MAX(_phi * _varFrameSize + | 
 |                                 (1 - _phi) * (frameSizeBytes - avgFrameSize) * | 
 |                                     (frameSizeBytes - avgFrameSize), | 
 |                             1.0); | 
 |   } | 
 |  | 
 |   // Update max frameSize estimate | 
 |   _maxFrameSize = | 
 |       VCM_MAX(_psi * _maxFrameSize, static_cast<double>(frameSizeBytes)); | 
 |  | 
 |   if (_prevFrameSize == 0) { | 
 |     _prevFrameSize = frameSizeBytes; | 
 |     return; | 
 |   } | 
 |   _prevFrameSize = frameSizeBytes; | 
 |  | 
 |   // Only update the Kalman filter if the sample is not considered | 
 |   // an extreme outlier. Even if it is an extreme outlier from a | 
 |   // delay point of view, if the frame size also is large the | 
 |   // deviation is probably due to an incorrect line slope. | 
 |   double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS); | 
 |  | 
 |   if (fabs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) || | 
 |       frameSizeBytes > | 
 |           _avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize)) { | 
 |     // Update the variance of the deviation from the | 
 |     // line given by the Kalman filter | 
 |     EstimateRandomJitter(deviation, incompleteFrame); | 
 |     // Prevent updating with frames which have been congested by a large | 
 |     // frame, and therefore arrives almost at the same time as that frame. | 
 |     // This can occur when we receive a large frame (key frame) which | 
 |     // has been delayed. The next frame is of normal size (delta frame), | 
 |     // and thus deltaFS will be << 0. This removes all frame samples | 
 |     // which arrives after a key frame. | 
 |     if ((!incompleteFrame || deviation >= 0.0) && | 
 |         static_cast<double>(deltaFS) > -0.25 * _maxFrameSize) { | 
 |       // Update the Kalman filter with the new data | 
 |       KalmanEstimateChannel(frameDelayMS, deltaFS); | 
 |     } | 
 |   } else { | 
 |     int nStdDev = | 
 |         (deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier; | 
 |     EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame); | 
 |   } | 
 |   // Post process the total estimated jitter | 
 |   if (_startupCount >= kStartupDelaySamples) { | 
 |     PostProcessEstimate(); | 
 |   } else { | 
 |     _startupCount++; | 
 |   } | 
 | } | 
 |  | 
 | // Updates the nack/packet ratio | 
 | void VCMJitterEstimator::FrameNacked() { | 
 |   // Wait until _nackLimit retransmissions has been received, | 
 |   // then always add ~1 RTT delay. | 
 |   // TODO(holmer): Should we ever remove the additional delay if the | 
 |   // the packet losses seem to have stopped? We could for instance scale | 
 |   // the number of RTTs to add with the amount of retransmissions in a given | 
 |   // time interval, or similar. | 
 |   if (_nackCount < _nackLimit) { | 
 |     _nackCount++; | 
 |   } | 
 | } | 
 |  | 
 | // Updates Kalman estimate of the channel | 
 | // The caller is expected to sanity check the inputs. | 
 | void VCMJitterEstimator::KalmanEstimateChannel(int64_t frameDelayMS, | 
 |                                                int32_t deltaFSBytes) { | 
 |   double Mh[2]; | 
 |   double hMh_sigma; | 
 |   double kalmanGain[2]; | 
 |   double measureRes; | 
 |   double t00, t01; | 
 |  | 
 |   // Kalman filtering | 
 |  | 
 |   // Prediction | 
 |   // M = M + Q | 
 |   _thetaCov[0][0] += _Qcov[0][0]; | 
 |   _thetaCov[0][1] += _Qcov[0][1]; | 
 |   _thetaCov[1][0] += _Qcov[1][0]; | 
 |   _thetaCov[1][1] += _Qcov[1][1]; | 
 |  | 
 |   // Kalman gain | 
 |   // K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h') | 
 |   // h = [dFS 1] | 
 |   // Mh = M*h' | 
 |   // hMh_sigma = h*M*h' + R | 
 |   Mh[0] = _thetaCov[0][0] * deltaFSBytes + _thetaCov[0][1]; | 
 |   Mh[1] = _thetaCov[1][0] * deltaFSBytes + _thetaCov[1][1]; | 
 |   // sigma weights measurements with a small deltaFS as noisy and | 
 |   // measurements with large deltaFS as good | 
 |   if (_maxFrameSize < 1.0) { | 
 |     return; | 
 |   } | 
 |   double sigma = (300.0 * exp(-fabs(static_cast<double>(deltaFSBytes)) / | 
 |                               (1e0 * _maxFrameSize)) + | 
 |                   1) * | 
 |                  sqrt(_varNoise); | 
 |   if (sigma < 1.0) { | 
 |     sigma = 1.0; | 
 |   } | 
 |   hMh_sigma = deltaFSBytes * Mh[0] + Mh[1] + sigma; | 
 |   if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) || | 
 |       (hMh_sigma > -1e-9 && hMh_sigma <= 0)) { | 
 |     assert(false); | 
 |     return; | 
 |   } | 
 |   kalmanGain[0] = Mh[0] / hMh_sigma; | 
 |   kalmanGain[1] = Mh[1] / hMh_sigma; | 
 |  | 
 |   // Correction | 
 |   // theta = theta + K*(dT - h*theta) | 
 |   measureRes = frameDelayMS - (deltaFSBytes * _theta[0] + _theta[1]); | 
 |   _theta[0] += kalmanGain[0] * measureRes; | 
 |   _theta[1] += kalmanGain[1] * measureRes; | 
 |  | 
 |   if (_theta[0] < _thetaLow) { | 
 |     _theta[0] = _thetaLow; | 
 |   } | 
 |  | 
 |   // M = (I - K*h)*M | 
 |   t00 = _thetaCov[0][0]; | 
 |   t01 = _thetaCov[0][1]; | 
 |   _thetaCov[0][0] = (1 - kalmanGain[0] * deltaFSBytes) * t00 - | 
 |                     kalmanGain[0] * _thetaCov[1][0]; | 
 |   _thetaCov[0][1] = (1 - kalmanGain[0] * deltaFSBytes) * t01 - | 
 |                     kalmanGain[0] * _thetaCov[1][1]; | 
 |   _thetaCov[1][0] = _thetaCov[1][0] * (1 - kalmanGain[1]) - | 
 |                     kalmanGain[1] * deltaFSBytes * t00; | 
 |   _thetaCov[1][1] = _thetaCov[1][1] * (1 - kalmanGain[1]) - | 
 |                     kalmanGain[1] * deltaFSBytes * t01; | 
 |  | 
 |   // Covariance matrix, must be positive semi-definite | 
 |   assert(_thetaCov[0][0] + _thetaCov[1][1] >= 0 && | 
 |          _thetaCov[0][0] * _thetaCov[1][1] - | 
 |                  _thetaCov[0][1] * _thetaCov[1][0] >= | 
 |              0 && | 
 |          _thetaCov[0][0] >= 0); | 
 | } | 
 |  | 
 | // Calculate difference in delay between a sample and the | 
 | // expected delay estimated by the Kalman filter | 
 | double VCMJitterEstimator::DeviationFromExpectedDelay( | 
 |     int64_t frameDelayMS, | 
 |     int32_t deltaFSBytes) const { | 
 |   return frameDelayMS - (_theta[0] * deltaFSBytes + _theta[1]); | 
 | } | 
 |  | 
 | // Estimates the random jitter by calculating the variance of the | 
 | // sample distance from the line given by theta. | 
 | void VCMJitterEstimator::EstimateRandomJitter(double d_dT, | 
 |                                               bool incompleteFrame) { | 
 |   uint64_t now = clock_->TimeInMicroseconds(); | 
 |   if (_lastUpdateT != -1) { | 
 |     fps_counter_.AddSample(now - _lastUpdateT); | 
 |   } | 
 |   _lastUpdateT = now; | 
 |  | 
 |   if (_alphaCount == 0) { | 
 |     assert(false); | 
 |     return; | 
 |   } | 
 |   double alpha = | 
 |       static_cast<double>(_alphaCount - 1) / static_cast<double>(_alphaCount); | 
 |   _alphaCount++; | 
 |   if (_alphaCount > _alphaCountMax) | 
 |     _alphaCount = _alphaCountMax; | 
 |  | 
 |   if (LowRateExperimentEnabled()) { | 
 |     // In order to avoid a low frame rate stream to react slower to changes, | 
 |     // scale the alpha weight relative a 30 fps stream. | 
 |     double fps = GetFrameRate(); | 
 |     if (fps > 0.0) { | 
 |       double rate_scale = 30.0 / fps; | 
 |       // At startup, there can be a lot of noise in the fps estimate. | 
 |       // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps | 
 |       // at sample #kStartupDelaySamples. | 
 |       if (_alphaCount < kStartupDelaySamples) { | 
 |         rate_scale = | 
 |             (_alphaCount * rate_scale + (kStartupDelaySamples - _alphaCount)) / | 
 |             kStartupDelaySamples; | 
 |       } | 
 |       alpha = pow(alpha, rate_scale); | 
 |     } | 
 |   } | 
 |  | 
 |   double avgNoise = alpha * _avgNoise + (1 - alpha) * d_dT; | 
 |   double varNoise = | 
 |       alpha * _varNoise + (1 - alpha) * (d_dT - _avgNoise) * (d_dT - _avgNoise); | 
 |   if (!incompleteFrame || varNoise > _varNoise) { | 
 |     _avgNoise = avgNoise; | 
 |     _varNoise = varNoise; | 
 |   } | 
 |   if (_varNoise < 1.0) { | 
 |     // The variance should never be zero, since we might get | 
 |     // stuck and consider all samples as outliers. | 
 |     _varNoise = 1.0; | 
 |   } | 
 | } | 
 |  | 
 | double VCMJitterEstimator::NoiseThreshold() const { | 
 |   double noiseThreshold = _noiseStdDevs * sqrt(_varNoise) - _noiseStdDevOffset; | 
 |   if (noiseThreshold < 1.0) { | 
 |     noiseThreshold = 1.0; | 
 |   } | 
 |   return noiseThreshold; | 
 | } | 
 |  | 
 | // Calculates the current jitter estimate from the filtered estimates | 
 | double VCMJitterEstimator::CalculateEstimate() { | 
 |   double ret = _theta[0] * (_maxFrameSize - _avgFrameSize) + NoiseThreshold(); | 
 |  | 
 |   // A very low estimate (or negative) is neglected | 
 |   if (ret < 1.0) { | 
 |     if (_prevEstimate <= 0.01) { | 
 |       ret = 1.0; | 
 |     } else { | 
 |       ret = _prevEstimate; | 
 |     } | 
 |   } | 
 |   if (ret > 10000.0) {  // Sanity | 
 |     ret = 10000.0; | 
 |   } | 
 |   _prevEstimate = ret; | 
 |   return ret; | 
 | } | 
 |  | 
 | void VCMJitterEstimator::PostProcessEstimate() { | 
 |   _filterJitterEstimate = CalculateEstimate(); | 
 | } | 
 |  | 
 | void VCMJitterEstimator::UpdateRtt(int64_t rttMs) { | 
 |   _rttFilter.Update(rttMs); | 
 | } | 
 |  | 
 | void VCMJitterEstimator::UpdateMaxFrameSize(uint32_t frameSizeBytes) { | 
 |   if (_maxFrameSize < frameSizeBytes) { | 
 |     _maxFrameSize = frameSizeBytes; | 
 |   } | 
 | } | 
 |  | 
 | // Returns the current filtered estimate if available, | 
 | // otherwise tries to calculate an estimate. | 
 | int VCMJitterEstimator::GetJitterEstimate(double rttMultiplier) { | 
 |   double jitterMS = CalculateEstimate() + OPERATING_SYSTEM_JITTER; | 
 |   if (_filterJitterEstimate > jitterMS) | 
 |     jitterMS = _filterJitterEstimate; | 
 |   if (_nackCount >= _nackLimit) | 
 |     jitterMS += _rttFilter.RttMs() * rttMultiplier; | 
 |  | 
 |   if (LowRateExperimentEnabled()) { | 
 |     static const double kJitterScaleLowThreshold = 5.0; | 
 |     static const double kJitterScaleHighThreshold = 10.0; | 
 |     double fps = GetFrameRate(); | 
 |     // Ignore jitter for very low fps streams. | 
 |     if (fps < kJitterScaleLowThreshold) { | 
 |       if (fps == 0.0) { | 
 |         return jitterMS; | 
 |       } | 
 |       return 0; | 
 |     } | 
 |  | 
 |     // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at | 
 |     // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold. | 
 |     if (fps < kJitterScaleHighThreshold) { | 
 |       jitterMS = | 
 |           (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) * | 
 |           (fps - kJitterScaleLowThreshold) * jitterMS; | 
 |     } | 
 |   } | 
 |  | 
 |   return static_cast<uint32_t>(jitterMS + 0.5); | 
 | } | 
 |  | 
 | bool VCMJitterEstimator::LowRateExperimentEnabled() { | 
 |   if (low_rate_experiment_ == kInit) { | 
 |     std::string group = | 
 |         webrtc::field_trial::FindFullName("WebRTC-ReducedJitterDelay"); | 
 |     if (group == "Disabled") { | 
 |       low_rate_experiment_ = kDisabled; | 
 |     } else { | 
 |       low_rate_experiment_ = kEnabled; | 
 |     } | 
 |   } | 
 |   return low_rate_experiment_ == kEnabled ? true : false; | 
 | } | 
 |  | 
 | double VCMJitterEstimator::GetFrameRate() const { | 
 |   if (fps_counter_.ComputeMean() == 0.0) | 
 |     return 0; | 
 |  | 
 |   double fps = 1000000.0 / fps_counter_.ComputeMean(); | 
 |   // Sanity check. | 
 |   assert(fps >= 0.0); | 
 |   if (fps > kMaxFramerateEstimate) { | 
 |     fps = kMaxFramerateEstimate; | 
 |   } | 
 |   return fps; | 
 | } | 
 | }  // namespace webrtc |