| /* | 
 |  *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "video/encoder_bitrate_adjuster.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <memory> | 
 | #include <vector> | 
 |  | 
 | #include "rtc_base/experiments/rate_control_settings.h" | 
 | #include "rtc_base/logging.h" | 
 | #include "rtc_base/time_utils.h" | 
 |  | 
 | namespace webrtc { | 
 | namespace { | 
 | // Helper struct with metadata for a single spatial layer. | 
 | struct LayerRateInfo { | 
 |   double link_utilization_factor = 0.0; | 
 |   double media_utilization_factor = 0.0; | 
 |   DataRate target_rate = DataRate::Zero(); | 
 |  | 
 |   DataRate WantedOvershoot() const { | 
 |     // If there is headroom, allow bitrate to go up to media rate limit. | 
 |     // Still limit media utilization to 1.0, so we don't overshoot over long | 
 |     // runs even if we have headroom. | 
 |     const double max_media_utilization = | 
 |         std::max(1.0, media_utilization_factor); | 
 |     if (link_utilization_factor > max_media_utilization) { | 
 |       return (link_utilization_factor - max_media_utilization) * target_rate; | 
 |     } | 
 |     return DataRate::Zero(); | 
 |   } | 
 | }; | 
 | }  // namespace | 
 | constexpr int64_t EncoderBitrateAdjuster::kWindowSizeMs; | 
 | constexpr size_t EncoderBitrateAdjuster::kMinFramesSinceLayoutChange; | 
 | constexpr double EncoderBitrateAdjuster::kDefaultUtilizationFactor; | 
 |  | 
 | EncoderBitrateAdjuster::EncoderBitrateAdjuster(const VideoCodec& codec_settings) | 
 |     : utilize_bandwidth_headroom_(RateControlSettings::ParseFromFieldTrials() | 
 |                                       .BitrateAdjusterCanUseNetworkHeadroom()), | 
 |       frames_since_layout_change_(0), | 
 |       min_bitrates_bps_{}, | 
 |       frame_size_pixels_{}, | 
 |       codec_(codec_settings.codecType), | 
 |       codec_mode_(codec_settings.mode) { | 
 |   // TODO(https://crbug.com/webrtc/14891): If we want to support simulcast of | 
 |   // SVC streams, EncoderBitrateAdjuster needs to be updated to care about both | 
 |   // `simulcastStream` and `spatialLayers` at the same time. | 
 |   if (codec_settings.codecType == VideoCodecType::kVideoCodecVP9 && | 
 |       codec_settings.numberOfSimulcastStreams <= 1) { | 
 |     for (size_t si = 0; si < codec_settings.VP9().numberOfSpatialLayers; ++si) { | 
 |       if (codec_settings.spatialLayers[si].active) { | 
 |         min_bitrates_bps_[si] = | 
 |             std::max(codec_settings.minBitrate * 1000, | 
 |                      codec_settings.spatialLayers[si].minBitrate * 1000); | 
 |         frame_size_pixels_[si] = codec_settings.spatialLayers[si].width * | 
 |                                  codec_settings.spatialLayers[si].height; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     for (size_t si = 0; si < codec_settings.numberOfSimulcastStreams; ++si) { | 
 |       if (codec_settings.simulcastStream[si].active) { | 
 |         min_bitrates_bps_[si] = | 
 |             std::max(codec_settings.minBitrate * 1000, | 
 |                      codec_settings.simulcastStream[si].minBitrate * 1000); | 
 |         frame_size_pixels_[si] = codec_settings.spatialLayers[si].width * | 
 |                                  codec_settings.spatialLayers[si].height; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | EncoderBitrateAdjuster::~EncoderBitrateAdjuster() = default; | 
 |  | 
 | VideoBitrateAllocation EncoderBitrateAdjuster::AdjustRateAllocation( | 
 |     const VideoEncoder::RateControlParameters& rates) { | 
 |   current_rate_control_parameters_ = rates; | 
 |  | 
 |   // First check that overshoot detectors exist, and store per simulcast/spatial | 
 |   // layer how many active temporal layers we have. | 
 |   size_t active_tls[kMaxSpatialLayers] = {}; | 
 |   for (size_t si = 0; si < kMaxSpatialLayers; ++si) { | 
 |     active_tls[si] = 0; | 
 |     for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { | 
 |       // Layer is enabled iff it has both positive bitrate and framerate target. | 
 |       if (rates.bitrate.GetBitrate(si, ti) > 0 && | 
 |           current_fps_allocation_[si].size() > ti && | 
 |           current_fps_allocation_[si][ti] > 0) { | 
 |         ++active_tls[si]; | 
 |         if (!overshoot_detectors_[si][ti]) { | 
 |           overshoot_detectors_[si][ti] = | 
 |               std::make_unique<EncoderOvershootDetector>( | 
 |                   kWindowSizeMs, codec_, | 
 |                   codec_mode_ == VideoCodecMode::kScreensharing); | 
 |           frames_since_layout_change_ = 0; | 
 |         } | 
 |       } else if (overshoot_detectors_[si][ti]) { | 
 |         // Layer removed, destroy overshoot detector. | 
 |         overshoot_detectors_[si][ti].reset(); | 
 |         frames_since_layout_change_ = 0; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Next poll the overshoot detectors and populate the adjusted allocation. | 
 |   const int64_t now_ms = rtc::TimeMillis(); | 
 |   VideoBitrateAllocation adjusted_allocation; | 
 |   std::vector<LayerRateInfo> layer_infos; | 
 |   DataRate wanted_overshoot_sum = DataRate::Zero(); | 
 |  | 
 |   for (size_t si = 0; si < kMaxSpatialLayers; ++si) { | 
 |     layer_infos.emplace_back(); | 
 |     LayerRateInfo& layer_info = layer_infos.back(); | 
 |  | 
 |     layer_info.target_rate = | 
 |         DataRate::BitsPerSec(rates.bitrate.GetSpatialLayerSum(si)); | 
 |  | 
 |     // Adjustment is done per simulcast/spatial layer only (not per temporal | 
 |     // layer). | 
 |     if (frames_since_layout_change_ < kMinFramesSinceLayoutChange) { | 
 |       layer_info.link_utilization_factor = kDefaultUtilizationFactor; | 
 |       layer_info.media_utilization_factor = kDefaultUtilizationFactor; | 
 |     } else if (active_tls[si] == 0 || | 
 |                layer_info.target_rate == DataRate::Zero()) { | 
 |       // No signaled temporal layers, or no bitrate set. Could either be unused | 
 |       // simulcast/spatial layer or bitrate dynamic mode; pass bitrate through | 
 |       // without any change. | 
 |       layer_info.link_utilization_factor = 1.0; | 
 |       layer_info.media_utilization_factor = 1.0; | 
 |     } else if (active_tls[si] == 1) { | 
 |       // A single active temporal layer, this might mean single layer or that | 
 |       // encoder does not support temporal layers. Merge target bitrates for | 
 |       // this simulcast/spatial layer. | 
 |       RTC_DCHECK(overshoot_detectors_[si][0]); | 
 |       layer_info.link_utilization_factor = | 
 |           overshoot_detectors_[si][0] | 
 |               ->GetNetworkRateUtilizationFactor(now_ms) | 
 |               .value_or(kDefaultUtilizationFactor); | 
 |       layer_info.media_utilization_factor = | 
 |           overshoot_detectors_[si][0] | 
 |               ->GetMediaRateUtilizationFactor(now_ms) | 
 |               .value_or(kDefaultUtilizationFactor); | 
 |     } else if (layer_info.target_rate > DataRate::Zero()) { | 
 |       // Multiple temporal layers enabled for this simulcast/spatial layer. | 
 |       // Update rate for each of them and make a weighted average of utilization | 
 |       // factors, with bitrate fraction used as weight. | 
 |       // If any layer is missing a utilization factor, fall back to default. | 
 |       layer_info.link_utilization_factor = 0.0; | 
 |       layer_info.media_utilization_factor = 0.0; | 
 |       for (size_t ti = 0; ti < active_tls[si]; ++ti) { | 
 |         RTC_DCHECK(overshoot_detectors_[si][ti]); | 
 |         const absl::optional<double> ti_link_utilization_factor = | 
 |             overshoot_detectors_[si][ti]->GetNetworkRateUtilizationFactor( | 
 |                 now_ms); | 
 |         const absl::optional<double> ti_media_utilization_factor = | 
 |             overshoot_detectors_[si][ti]->GetMediaRateUtilizationFactor(now_ms); | 
 |         if (!ti_link_utilization_factor || !ti_media_utilization_factor) { | 
 |           layer_info.link_utilization_factor = kDefaultUtilizationFactor; | 
 |           layer_info.media_utilization_factor = kDefaultUtilizationFactor; | 
 |           break; | 
 |         } | 
 |         const double weight = | 
 |             static_cast<double>(rates.bitrate.GetBitrate(si, ti)) / | 
 |             layer_info.target_rate.bps(); | 
 |         layer_info.link_utilization_factor += | 
 |             weight * ti_link_utilization_factor.value(); | 
 |         layer_info.media_utilization_factor += | 
 |             weight * ti_media_utilization_factor.value(); | 
 |       } | 
 |     } else { | 
 |       RTC_DCHECK_NOTREACHED(); | 
 |     } | 
 |  | 
 |     if (layer_info.link_utilization_factor < 1.0) { | 
 |       // TODO(sprang): Consider checking underuse and allowing it to cancel some | 
 |       // potential overuse by other streams. | 
 |  | 
 |       // Don't boost target bitrate if encoder is under-using. | 
 |       layer_info.link_utilization_factor = 1.0; | 
 |     } else { | 
 |       // Don't reduce encoder target below 50%, in which case the frame dropper | 
 |       // should kick in instead. | 
 |       layer_info.link_utilization_factor = | 
 |           std::min(layer_info.link_utilization_factor, 2.0); | 
 |  | 
 |       // Keep track of sum of desired overshoot bitrate. | 
 |       wanted_overshoot_sum += layer_info.WantedOvershoot(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Available link headroom that can be used to fill wanted overshoot. | 
 |   DataRate available_headroom = DataRate::Zero(); | 
 |   if (utilize_bandwidth_headroom_) { | 
 |     available_headroom = rates.bandwidth_allocation - | 
 |                          DataRate::BitsPerSec(rates.bitrate.get_sum_bps()); | 
 |   } | 
 |  | 
 |   // All wanted overshoots are satisfied in the same proportion based on | 
 |   // available headroom. | 
 |   const double granted_overshoot_ratio = | 
 |       wanted_overshoot_sum == DataRate::Zero() | 
 |           ? 0.0 | 
 |           : std::min(1.0, available_headroom.bps<double>() / | 
 |                               wanted_overshoot_sum.bps()); | 
 |  | 
 |   for (size_t si = 0; si < kMaxSpatialLayers; ++si) { | 
 |     LayerRateInfo& layer_info = layer_infos[si]; | 
 |     double utilization_factor = layer_info.link_utilization_factor; | 
 |     DataRate allowed_overshoot = | 
 |         granted_overshoot_ratio * layer_info.WantedOvershoot(); | 
 |     if (allowed_overshoot > DataRate::Zero()) { | 
 |       // Pretend the target bitrate is higher by the allowed overshoot. | 
 |       // Since utilization_factor = actual_bitrate / target_bitrate, it can be | 
 |       // done by multiplying by old_target_bitrate / new_target_bitrate. | 
 |       utilization_factor *= layer_info.target_rate.bps<double>() / | 
 |                             (allowed_overshoot.bps<double>() + | 
 |                              layer_info.target_rate.bps<double>()); | 
 |     } | 
 |  | 
 |     if (min_bitrates_bps_[si] > 0 && | 
 |         layer_info.target_rate > DataRate::Zero() && | 
 |         DataRate::BitsPerSec(min_bitrates_bps_[si]) < layer_info.target_rate) { | 
 |       // Make sure rate adjuster doesn't push target bitrate below minimum. | 
 |       utilization_factor = | 
 |           std::min(utilization_factor, layer_info.target_rate.bps<double>() / | 
 |                                            min_bitrates_bps_[si]); | 
 |     } | 
 |  | 
 |     if (layer_info.target_rate > DataRate::Zero()) { | 
 |       RTC_LOG(LS_VERBOSE) | 
 |           << "Utilization factors for simulcast/spatial index " << si | 
 |           << ": link = " << layer_info.link_utilization_factor | 
 |           << ", media = " << layer_info.media_utilization_factor | 
 |           << ", wanted overshoot = " << layer_info.WantedOvershoot().bps() | 
 |           << " bps, available headroom = " << available_headroom.bps() | 
 |           << " bps, total utilization factor = " << utilization_factor; | 
 |     } | 
 |  | 
 |     // Populate the adjusted allocation with determined utilization factor. | 
 |     if (active_tls[si] == 1 && | 
 |         layer_info.target_rate > | 
 |             DataRate::BitsPerSec(rates.bitrate.GetBitrate(si, 0))) { | 
 |       // Bitrate allocation indicates temporal layer usage, but encoder | 
 |       // does not seem to support it. Pipe all bitrate into a single | 
 |       // overshoot detector. | 
 |       uint32_t adjusted_layer_bitrate_bps = | 
 |           std::min(static_cast<uint32_t>( | 
 |                        layer_info.target_rate.bps() / utilization_factor + 0.5), | 
 |                    layer_info.target_rate.bps<uint32_t>()); | 
 |       adjusted_allocation.SetBitrate(si, 0, adjusted_layer_bitrate_bps); | 
 |     } else { | 
 |       for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { | 
 |         if (rates.bitrate.HasBitrate(si, ti)) { | 
 |           uint32_t adjusted_layer_bitrate_bps = std::min( | 
 |               static_cast<uint32_t>( | 
 |                   rates.bitrate.GetBitrate(si, ti) / utilization_factor + 0.5), | 
 |               rates.bitrate.GetBitrate(si, ti)); | 
 |           adjusted_allocation.SetBitrate(si, ti, adjusted_layer_bitrate_bps); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // In case of rounding errors, add bitrate to TL0 until min bitrate | 
 |     // constraint has been met. | 
 |     const uint32_t adjusted_spatial_layer_sum = | 
 |         adjusted_allocation.GetSpatialLayerSum(si); | 
 |     if (layer_info.target_rate > DataRate::Zero() && | 
 |         adjusted_spatial_layer_sum < min_bitrates_bps_[si]) { | 
 |       adjusted_allocation.SetBitrate(si, 0, | 
 |                                      adjusted_allocation.GetBitrate(si, 0) + | 
 |                                          min_bitrates_bps_[si] - | 
 |                                          adjusted_spatial_layer_sum); | 
 |     } | 
 |  | 
 |     // Update all detectors with the new adjusted bitrate targets. | 
 |     for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { | 
 |       const uint32_t layer_bitrate_bps = adjusted_allocation.GetBitrate(si, ti); | 
 |       // Overshoot detector may not exist, eg for ScreenshareLayers case. | 
 |       if (layer_bitrate_bps > 0 && overshoot_detectors_[si][ti]) { | 
 |         // Number of frames in this layer alone is not cumulative, so | 
 |         // subtract fps from any low temporal layer. | 
 |         const double fps_fraction = | 
 |             static_cast<double>( | 
 |                 current_fps_allocation_[si][ti] - | 
 |                 (ti == 0 ? 0 : current_fps_allocation_[si][ti - 1])) / | 
 |             VideoEncoder::EncoderInfo::kMaxFramerateFraction; | 
 |  | 
 |         if (fps_fraction <= 0.0) { | 
 |           RTC_LOG(LS_WARNING) | 
 |               << "Encoder config has temporal layer with non-zero bitrate " | 
 |                  "allocation but zero framerate allocation."; | 
 |           continue; | 
 |         } | 
 |  | 
 |         overshoot_detectors_[si][ti]->SetTargetRate( | 
 |             DataRate::BitsPerSec(layer_bitrate_bps), | 
 |             fps_fraction * rates.framerate_fps, now_ms); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Since no simulcast/spatial layers or streams are toggled by the adjustment | 
 |   // bw-limited flag stays the same. | 
 |   adjusted_allocation.set_bw_limited(rates.bitrate.is_bw_limited()); | 
 |  | 
 |   return adjusted_allocation; | 
 | } | 
 |  | 
 | void EncoderBitrateAdjuster::OnEncoderInfo( | 
 |     const VideoEncoder::EncoderInfo& encoder_info) { | 
 |   // Copy allocation into current state and re-allocate. | 
 |   for (size_t si = 0; si < kMaxSpatialLayers; ++si) { | 
 |     current_fps_allocation_[si] = encoder_info.fps_allocation[si]; | 
 |     if (frame_size_pixels_[si] > 0) { | 
 |       if (auto bwlimit = encoder_info.GetEncoderBitrateLimitsForResolution( | 
 |               frame_size_pixels_[si])) { | 
 |         min_bitrates_bps_[si] = bwlimit->min_bitrate_bps; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Trigger re-allocation so that overshoot detectors have correct targets. | 
 |   AdjustRateAllocation(current_rate_control_parameters_); | 
 | } | 
 |  | 
 | void EncoderBitrateAdjuster::OnEncodedFrame(DataSize size, | 
 |                                             int stream_index, | 
 |                                             int temporal_index) { | 
 |   ++frames_since_layout_change_; | 
 |   // Detectors may not exist, for instance if ScreenshareLayers is used. | 
 |   auto& detector = overshoot_detectors_[stream_index][temporal_index]; | 
 |   if (detector) { | 
 |     detector->OnEncodedFrame(size.bytes(), rtc::TimeMillis()); | 
 |   } | 
 | } | 
 |  | 
 | void EncoderBitrateAdjuster::Reset() { | 
 |   for (size_t si = 0; si < kMaxSpatialLayers; ++si) { | 
 |     for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { | 
 |       overshoot_detectors_[si][ti].reset(); | 
 |     } | 
 |   } | 
 |   // Call AdjustRateAllocation() with the last know bitrate allocation, so that | 
 |   // the appropriate overuse detectors are immediately re-created. | 
 |   AdjustRateAllocation(current_rate_control_parameters_); | 
 | } | 
 |  | 
 | }  // namespace webrtc |