| /* | 
 |  *  Copyright (c) 2021 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | // This implementation is borrowed from Chromium. | 
 |  | 
 | #ifndef RTC_BASE_CONTAINERS_FLAT_TREE_H_ | 
 | #define RTC_BASE_CONTAINERS_FLAT_TREE_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <iterator> | 
 | #include <type_traits> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "absl/algorithm/container.h" | 
 | #include "rtc_base/checks.h" | 
 | #include "rtc_base/system/no_unique_address.h" | 
 |  | 
 | namespace webrtc { | 
 | // Tag type that allows skipping the sort_and_unique step when constructing a | 
 | // flat_tree in case the underlying container is already sorted and has no | 
 | // duplicate elements. | 
 | struct sorted_unique_t { | 
 |   constexpr sorted_unique_t() = default; | 
 | }; | 
 | extern sorted_unique_t sorted_unique; | 
 |  | 
 | namespace flat_containers_internal { | 
 |  | 
 | // Helper functions used in RTC_DCHECKs below to make sure that inputs tagged | 
 | // with sorted_unique are indeed sorted and unique. | 
 | template <typename Range, typename Comp> | 
 | constexpr bool is_sorted_and_unique(const Range& range, Comp comp) { | 
 |   // Being unique implies that there are no adjacent elements that | 
 |   // compare equal. So this checks that each element is strictly less | 
 |   // than the element after it. | 
 |   return absl::c_adjacent_find(range, std::not_fn(comp)) == std::end(range); | 
 | } | 
 |  | 
 | // This is a convenience trait inheriting from std::true_type if Iterator is at | 
 | // least a ForwardIterator and thus supports multiple passes over a range. | 
 | template <class Iterator> | 
 | using is_multipass = | 
 |     std::is_base_of<std::forward_iterator_tag, | 
 |                     typename std::iterator_traits<Iterator>::iterator_category>; | 
 |  | 
 | // Uses SFINAE to detect whether type has is_transparent member. | 
 | template <typename T, typename = void> | 
 | struct IsTransparentCompare : std::false_type {}; | 
 | template <typename T> | 
 | struct IsTransparentCompare<T, std::void_t<typename T::is_transparent>> | 
 |     : std::true_type {}; | 
 |  | 
 | // Helper inspired by C++20's std::to_array to convert a C-style array to a | 
 | // std::array. As opposed to the C++20 version this implementation does not | 
 | // provide an overload for rvalues and does not strip cv qualifers from the | 
 | // returned std::array::value_type. The returned value_type needs to be | 
 | // specified explicitly, allowing the construction of std::arrays with const | 
 | // elements. | 
 | // | 
 | // Reference: https://en.cppreference.com/w/cpp/container/array/to_array | 
 | template <typename U, typename T, size_t N, size_t... I> | 
 | constexpr std::array<U, N> ToArrayImpl(const T (&data)[N], | 
 |                                        std::index_sequence<I...>) { | 
 |   return {{data[I]...}}; | 
 | } | 
 |  | 
 | template <typename U, typename T, size_t N> | 
 | constexpr std::array<U, N> ToArray(const T (&data)[N]) { | 
 |   return ToArrayImpl<U>(data, std::make_index_sequence<N>()); | 
 | } | 
 |  | 
 | // std::pair's operator= is not constexpr prior to C++20. Thus we need this | 
 | // small helper to invoke operator= on the .first and .second member explicitly. | 
 | template <typename T> | 
 | constexpr void Assign(T& lhs, T&& rhs) { | 
 |   lhs = std::move(rhs); | 
 | } | 
 |  | 
 | template <typename T, typename U> | 
 | constexpr void Assign(std::pair<T, U>& lhs, std::pair<T, U>&& rhs) { | 
 |   Assign(lhs.first, std::move(rhs.first)); | 
 |   Assign(lhs.second, std::move(rhs.second)); | 
 | } | 
 |  | 
 | // constexpr swap implementation. std::swap is not constexpr prior to C++20. | 
 | template <typename T> | 
 | constexpr void Swap(T& lhs, T& rhs) { | 
 |   T tmp = std::move(lhs); | 
 |   Assign(lhs, std::move(rhs)); | 
 |   Assign(rhs, std::move(tmp)); | 
 | } | 
 |  | 
 | // constexpr prev implementation. std::prev is not constexpr prior to C++17. | 
 | template <typename BidirIt> | 
 | constexpr BidirIt Prev(BidirIt it) { | 
 |   return --it; | 
 | } | 
 |  | 
 | // constexpr next implementation. std::next is not constexpr prior to C++17. | 
 | template <typename InputIt> | 
 | constexpr InputIt Next(InputIt it) { | 
 |   return ++it; | 
 | } | 
 |  | 
 | // constexpr sort implementation. std::sort is not constexpr prior to C++20. | 
 | // While insertion sort has a quadratic worst case complexity, it was chosen | 
 | // because it has linear complexity for nearly sorted data, is stable, and | 
 | // simple to implement. | 
 | template <typename BidirIt, typename Compare> | 
 | constexpr void InsertionSort(BidirIt first, BidirIt last, const Compare& comp) { | 
 |   if (first == last) | 
 |     return; | 
 |  | 
 |   for (auto it = Next(first); it != last; ++it) { | 
 |     for (auto curr = it; curr != first && comp(*curr, *Prev(curr)); --curr) | 
 |       Swap(*curr, *Prev(curr)); | 
 |   } | 
 | } | 
 |  | 
 | // Implementation ------------------------------------------------------------- | 
 |  | 
 | // Implementation for the sorted associative flat_set and flat_map using a | 
 | // sorted vector as the backing store. Do not use directly. | 
 | // | 
 | // The use of "value" in this is like std::map uses, meaning it's the thing | 
 | // contained (in the case of map it's a <Kay, Mapped> pair). The Key is how | 
 | // things are looked up. In the case of a set, Key == Value. In the case of | 
 | // a map, the Key is a component of a Value. | 
 | // | 
 | // The helper class GetKeyFromValue provides the means to extract a key from a | 
 | // value for comparison purposes. It should implement: | 
 | //   const Key& operator()(const Value&). | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | class flat_tree { | 
 |  public: | 
 |   // -------------------------------------------------------------------------- | 
 |   // Types. | 
 |   // | 
 |   using key_type = Key; | 
 |   using key_compare = KeyCompare; | 
 |   using value_type = typename Container::value_type; | 
 |  | 
 |   // Wraps the templated key comparison to compare values. | 
 |   struct value_compare { | 
 |     constexpr bool operator()(const value_type& left, | 
 |                               const value_type& right) const { | 
 |       GetKeyFromValue extractor; | 
 |       return comp(extractor(left), extractor(right)); | 
 |     } | 
 |  | 
 |     RTC_NO_UNIQUE_ADDRESS key_compare comp; | 
 |   }; | 
 |  | 
 |   using pointer = typename Container::pointer; | 
 |   using const_pointer = typename Container::const_pointer; | 
 |   using reference = typename Container::reference; | 
 |   using const_reference = typename Container::const_reference; | 
 |   using size_type = typename Container::size_type; | 
 |   using difference_type = typename Container::difference_type; | 
 |   using iterator = typename Container::iterator; | 
 |   using const_iterator = typename Container::const_iterator; | 
 |   using reverse_iterator = typename Container::reverse_iterator; | 
 |   using const_reverse_iterator = typename Container::const_reverse_iterator; | 
 |   using container_type = Container; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Lifetime. | 
 |   // | 
 |   // Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity | 
 |   // and take O(N * log(N)) + O(N) if extra memory is available (N is a range | 
 |   // length). | 
 |   // | 
 |   // Assume that move constructors invalidate iterators and references. | 
 |   // | 
 |   // The constructors that take ranges, lists, and vectors do not require that | 
 |   // the input be sorted. | 
 |   // | 
 |   // When passing the webrtc::sorted_unique tag as the first argument no sort | 
 |   // and unique step takes places. This is useful if the underlying container | 
 |   // already has the required properties. | 
 |  | 
 |   flat_tree() = default; | 
 |   flat_tree(const flat_tree&) = default; | 
 |   flat_tree(flat_tree&&) = default; | 
 |  | 
 |   explicit flat_tree(const key_compare& comp); | 
 |  | 
 |   template <class InputIterator> | 
 |   flat_tree(InputIterator first, | 
 |             InputIterator last, | 
 |             const key_compare& comp = key_compare()); | 
 |  | 
 |   flat_tree(const container_type& items, | 
 |             const key_compare& comp = key_compare()); | 
 |  | 
 |   explicit flat_tree(container_type&& items, | 
 |                      const key_compare& comp = key_compare()); | 
 |  | 
 |   flat_tree(std::initializer_list<value_type> ilist, | 
 |             const key_compare& comp = key_compare()); | 
 |  | 
 |   template <class InputIterator> | 
 |   flat_tree(sorted_unique_t, | 
 |             InputIterator first, | 
 |             InputIterator last, | 
 |             const key_compare& comp = key_compare()); | 
 |  | 
 |   flat_tree(sorted_unique_t, | 
 |             const container_type& items, | 
 |             const key_compare& comp = key_compare()); | 
 |  | 
 |   constexpr flat_tree(sorted_unique_t, | 
 |                       container_type&& items, | 
 |                       const key_compare& comp = key_compare()); | 
 |  | 
 |   flat_tree(sorted_unique_t, | 
 |             std::initializer_list<value_type> ilist, | 
 |             const key_compare& comp = key_compare()); | 
 |  | 
 |   ~flat_tree() = default; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Assignments. | 
 |   // | 
 |   // Assume that move assignment invalidates iterators and references. | 
 |  | 
 |   flat_tree& operator=(const flat_tree&) = default; | 
 |   flat_tree& operator=(flat_tree&&) = default; | 
 |   // Takes the first if there are duplicates in the initializer list. | 
 |   flat_tree& operator=(std::initializer_list<value_type> ilist); | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Memory management. | 
 |   // | 
 |   // Beware that shrink_to_fit() simply forwards the request to the | 
 |   // container_type and its implementation is free to optimize otherwise and | 
 |   // leave capacity() to be greater that its size. | 
 |   // | 
 |   // reserve() and shrink_to_fit() invalidate iterators and references. | 
 |  | 
 |   void reserve(size_type new_capacity); | 
 |   size_type capacity() const; | 
 |   void shrink_to_fit(); | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Size management. | 
 |   // | 
 |   // clear() leaves the capacity() of the flat_tree unchanged. | 
 |  | 
 |   void clear(); | 
 |  | 
 |   constexpr size_type size() const; | 
 |   constexpr size_type max_size() const; | 
 |   constexpr bool empty() const; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Iterators. | 
 |   // | 
 |   // Iterators follow the ordering defined by the key comparator used in | 
 |   // construction of the flat_tree. | 
 |  | 
 |   iterator begin(); | 
 |   constexpr const_iterator begin() const; | 
 |   const_iterator cbegin() const; | 
 |  | 
 |   iterator end(); | 
 |   constexpr const_iterator end() const; | 
 |   const_iterator cend() const; | 
 |  | 
 |   reverse_iterator rbegin(); | 
 |   const_reverse_iterator rbegin() const; | 
 |   const_reverse_iterator crbegin() const; | 
 |  | 
 |   reverse_iterator rend(); | 
 |   const_reverse_iterator rend() const; | 
 |   const_reverse_iterator crend() const; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Insert operations. | 
 |   // | 
 |   // Assume that every operation invalidates iterators and references. | 
 |   // Insertion of one element can take O(size). Capacity of flat_tree grows in | 
 |   // an implementation-defined manner. | 
 |   // | 
 |   // NOTE: Prefer to build a new flat_tree from a std::vector (or similar) | 
 |   // instead of calling insert() repeatedly. | 
 |  | 
 |   std::pair<iterator, bool> insert(const value_type& val); | 
 |   std::pair<iterator, bool> insert(value_type&& val); | 
 |  | 
 |   iterator insert(const_iterator position_hint, const value_type& x); | 
 |   iterator insert(const_iterator position_hint, value_type&& x); | 
 |  | 
 |   // This method inserts the values from the range [first, last) into the | 
 |   // current tree. | 
 |   template <class InputIterator> | 
 |   void insert(InputIterator first, InputIterator last); | 
 |  | 
 |   template <class... Args> | 
 |   std::pair<iterator, bool> emplace(Args&&... args); | 
 |  | 
 |   template <class... Args> | 
 |   iterator emplace_hint(const_iterator position_hint, Args&&... args); | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Underlying type operations. | 
 |   // | 
 |   // Assume that either operation invalidates iterators and references. | 
 |  | 
 |   // Extracts the container_type and returns it to the caller. Ensures that | 
 |   // `this` is `empty()` afterwards. | 
 |   container_type extract() &&; | 
 |  | 
 |   // Replaces the container_type with `body`. Expects that `body` is sorted | 
 |   // and has no repeated elements with regard to value_comp(). | 
 |   void replace(container_type&& body); | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Erase operations. | 
 |   // | 
 |   // Assume that every operation invalidates iterators and references. | 
 |   // | 
 |   // erase(position), erase(first, last) can take O(size). | 
 |   // erase(key) may take O(size) + O(log(size)). | 
 |   // | 
 |   // Prefer webrtc::EraseIf() or some other variation on erase(remove(), end()) | 
 |   // idiom when deleting multiple non-consecutive elements. | 
 |  | 
 |   iterator erase(iterator position); | 
 |   // Artificially templatized to break ambiguity if `iterator` and | 
 |   // `const_iterator` are the same type. | 
 |   template <typename DummyT = void> | 
 |   iterator erase(const_iterator position); | 
 |   iterator erase(const_iterator first, const_iterator last); | 
 |   template <typename K> | 
 |   size_type erase(const K& key); | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Comparators. | 
 |  | 
 |   constexpr key_compare key_comp() const; | 
 |   constexpr value_compare value_comp() const; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Search operations. | 
 |   // | 
 |   // Search operations have O(log(size)) complexity. | 
 |  | 
 |   template <typename K> | 
 |   size_type count(const K& key) const; | 
 |  | 
 |   template <typename K> | 
 |   iterator find(const K& key); | 
 |  | 
 |   template <typename K> | 
 |   const_iterator find(const K& key) const; | 
 |  | 
 |   template <typename K> | 
 |   bool contains(const K& key) const; | 
 |  | 
 |   template <typename K> | 
 |   std::pair<iterator, iterator> equal_range(const K& key); | 
 |  | 
 |   template <typename K> | 
 |   std::pair<const_iterator, const_iterator> equal_range(const K& key) const; | 
 |  | 
 |   template <typename K> | 
 |   iterator lower_bound(const K& key); | 
 |  | 
 |   template <typename K> | 
 |   const_iterator lower_bound(const K& key) const; | 
 |  | 
 |   template <typename K> | 
 |   iterator upper_bound(const K& key); | 
 |  | 
 |   template <typename K> | 
 |   const_iterator upper_bound(const K& key) const; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // General operations. | 
 |   // | 
 |   // Assume that swap invalidates iterators and references. | 
 |   // | 
 |   // Implementation note: currently we use operator==() and operator<() on | 
 |   // std::vector, because they have the same contract we need, so we use them | 
 |   // directly for brevity and in case it is more optimal than calling equal() | 
 |   // and lexicograhpical_compare(). If the underlying container type is changed, | 
 |   // this code may need to be modified. | 
 |  | 
 |   void swap(flat_tree& other) noexcept; | 
 |  | 
 |   friend bool operator==(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return lhs.body_ == rhs.body_; | 
 |   } | 
 |  | 
 |   friend bool operator!=(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return !(lhs == rhs); | 
 |   } | 
 |  | 
 |   friend bool operator<(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return lhs.body_ < rhs.body_; | 
 |   } | 
 |  | 
 |   friend bool operator>(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return rhs < lhs; | 
 |   } | 
 |  | 
 |   friend bool operator>=(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return !(lhs < rhs); | 
 |   } | 
 |  | 
 |   friend bool operator<=(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return !(lhs > rhs); | 
 |   } | 
 |  | 
 |   friend void swap(flat_tree& lhs, flat_tree& rhs) noexcept { lhs.swap(rhs); } | 
 |  | 
 |  protected: | 
 |   // Emplaces a new item into the tree that is known not to be in it. This | 
 |   // is for implementing map operator[]. | 
 |   template <class... Args> | 
 |   iterator unsafe_emplace(const_iterator position, Args&&... args); | 
 |  | 
 |   // Attempts to emplace a new element with key `key`. Only if `key` is not yet | 
 |   // present, construct value_type from `args` and insert it. Returns an | 
 |   // iterator to the element with key `key` and a bool indicating whether an | 
 |   // insertion happened. | 
 |   template <class K, class... Args> | 
 |   std::pair<iterator, bool> emplace_key_args(const K& key, Args&&... args); | 
 |  | 
 |   // Similar to `emplace_key_args`, but checks `hint` first as a possible | 
 |   // insertion position. | 
 |   template <class K, class... Args> | 
 |   std::pair<iterator, bool> emplace_hint_key_args(const_iterator hint, | 
 |                                                   const K& key, | 
 |                                                   Args&&... args); | 
 |  | 
 |  private: | 
 |   // Helper class for e.g. lower_bound that can compare a value on the left | 
 |   // to a key on the right. | 
 |   struct KeyValueCompare { | 
 |     // The key comparison object must outlive this class. | 
 |     explicit KeyValueCompare(const key_compare& comp) : comp_(comp) {} | 
 |  | 
 |     template <typename T, typename U> | 
 |     bool operator()(const T& lhs, const U& rhs) const { | 
 |       return comp_(extract_if_value_type(lhs), extract_if_value_type(rhs)); | 
 |     } | 
 |  | 
 |    private: | 
 |     const key_type& extract_if_value_type(const value_type& v) const { | 
 |       GetKeyFromValue extractor; | 
 |       return extractor(v); | 
 |     } | 
 |  | 
 |     template <typename K> | 
 |     const K& extract_if_value_type(const K& k) const { | 
 |       return k; | 
 |     } | 
 |  | 
 |     const key_compare& comp_; | 
 |   }; | 
 |  | 
 |   iterator const_cast_it(const_iterator c_it) { | 
 |     auto distance = std::distance(cbegin(), c_it); | 
 |     return std::next(begin(), distance); | 
 |   } | 
 |  | 
 |   // This method is inspired by both std::map::insert(P&&) and | 
 |   // std::map::insert_or_assign(const K&, V&&). It inserts val if an equivalent | 
 |   // element is not present yet, otherwise it overwrites. It returns an iterator | 
 |   // to the modified element and a flag indicating whether insertion or | 
 |   // assignment happened. | 
 |   template <class V> | 
 |   std::pair<iterator, bool> insert_or_assign(V&& val) { | 
 |     auto position = lower_bound(GetKeyFromValue()(val)); | 
 |  | 
 |     if (position == end() || value_comp()(val, *position)) | 
 |       return {body_.emplace(position, std::forward<V>(val)), true}; | 
 |  | 
 |     *position = std::forward<V>(val); | 
 |     return {position, false}; | 
 |   } | 
 |  | 
 |   // This method is similar to insert_or_assign, with the following differences: | 
 |   // - Instead of searching [begin(), end()) it only searches [first, last). | 
 |   // - In case no equivalent element is found, val is appended to the end of the | 
 |   //   underlying body and an iterator to the next bigger element in [first, | 
 |   //   last) is returned. | 
 |   template <class V> | 
 |   std::pair<iterator, bool> append_or_assign(iterator first, | 
 |                                              iterator last, | 
 |                                              V&& val) { | 
 |     auto position = std::lower_bound(first, last, val, value_comp()); | 
 |  | 
 |     if (position == last || value_comp()(val, *position)) { | 
 |       // emplace_back might invalidate position, which is why distance needs to | 
 |       // be cached. | 
 |       const difference_type distance = std::distance(begin(), position); | 
 |       body_.emplace_back(std::forward<V>(val)); | 
 |       return {std::next(begin(), distance), true}; | 
 |     } | 
 |  | 
 |     *position = std::forward<V>(val); | 
 |     return {position, false}; | 
 |   } | 
 |  | 
 |   // This method is similar to insert, with the following differences: | 
 |   // - Instead of searching [begin(), end()) it only searches [first, last). | 
 |   // - In case no equivalent element is found, val is appended to the end of the | 
 |   //   underlying body and an iterator to the next bigger element in [first, | 
 |   //   last) is returned. | 
 |   template <class V> | 
 |   std::pair<iterator, bool> append_unique(iterator first, | 
 |                                           iterator last, | 
 |                                           V&& val) { | 
 |     auto position = std::lower_bound(first, last, val, value_comp()); | 
 |  | 
 |     if (position == last || value_comp()(val, *position)) { | 
 |       // emplace_back might invalidate position, which is why distance needs to | 
 |       // be cached. | 
 |       const difference_type distance = std::distance(begin(), position); | 
 |       body_.emplace_back(std::forward<V>(val)); | 
 |       return {std::next(begin(), distance), true}; | 
 |     } | 
 |  | 
 |     return {position, false}; | 
 |   } | 
 |  | 
 |   void sort_and_unique(iterator first, iterator last) { | 
 |     // Preserve stability for the unique code below. | 
 |     std::stable_sort(first, last, value_comp()); | 
 |  | 
 |     // lhs is already <= rhs due to sort, therefore !(lhs < rhs) <=> lhs == rhs. | 
 |     auto equal_comp = std::not_fn(value_comp()); | 
 |     erase(std::unique(first, last, equal_comp), last); | 
 |   } | 
 |  | 
 |   void sort_and_unique() { sort_and_unique(begin(), end()); } | 
 |  | 
 |   // To support comparators that may not be possible to default-construct, we | 
 |   // have to store an instance of Compare. Since Compare commonly is stateless, | 
 |   // we use the RTC_NO_UNIQUE_ADDRESS attribute to save space. | 
 |   RTC_NO_UNIQUE_ADDRESS key_compare comp_; | 
 |   // Declare after `key_compare_comp_` to workaround GCC ICE. For details | 
 |   // see https://crbug.com/1156268 | 
 |   container_type body_; | 
 |  | 
 |   // If the compare is not transparent we want to construct key_type once. | 
 |   template <typename K> | 
 |   using KeyTypeOrK = typename std:: | 
 |       conditional<IsTransparentCompare<key_compare>::value, K, key_type>::type; | 
 | }; | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Lifetime. | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( | 
 |     const KeyCompare& comp) | 
 |     : comp_(comp) {} | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <class InputIterator> | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( | 
 |     InputIterator first, | 
 |     InputIterator last, | 
 |     const KeyCompare& comp) | 
 |     : comp_(comp), body_(first, last) { | 
 |   sort_and_unique(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( | 
 |     const container_type& items, | 
 |     const KeyCompare& comp) | 
 |     : comp_(comp), body_(items) { | 
 |   sort_and_unique(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( | 
 |     container_type&& items, | 
 |     const KeyCompare& comp) | 
 |     : comp_(comp), body_(std::move(items)) { | 
 |   sort_and_unique(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( | 
 |     std::initializer_list<value_type> ilist, | 
 |     const KeyCompare& comp) | 
 |     : flat_tree(std::begin(ilist), std::end(ilist), comp) {} | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <class InputIterator> | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( | 
 |     sorted_unique_t, | 
 |     InputIterator first, | 
 |     InputIterator last, | 
 |     const KeyCompare& comp) | 
 |     : comp_(comp), body_(first, last) { | 
 |   RTC_DCHECK(is_sorted_and_unique(*this, value_comp())); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( | 
 |     sorted_unique_t, | 
 |     const container_type& items, | 
 |     const KeyCompare& comp) | 
 |     : comp_(comp), body_(items) { | 
 |   RTC_DCHECK(is_sorted_and_unique(*this, value_comp())); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | constexpr flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( | 
 |     sorted_unique_t, | 
 |     container_type&& items, | 
 |     const KeyCompare& comp) | 
 |     : comp_(comp), body_(std::move(items)) { | 
 |   RTC_DCHECK(is_sorted_and_unique(*this, value_comp())); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( | 
 |     sorted_unique_t, | 
 |     std::initializer_list<value_type> ilist, | 
 |     const KeyCompare& comp) | 
 |     : flat_tree(sorted_unique, std::begin(ilist), std::end(ilist), comp) {} | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Assignments. | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::operator=( | 
 |     std::initializer_list<value_type> ilist) -> flat_tree& { | 
 |   body_ = ilist; | 
 |   sort_and_unique(); | 
 |   return *this; | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Memory management. | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::reserve( | 
 |     size_type new_capacity) { | 
 |   body_.reserve(new_capacity); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::capacity() const | 
 |     -> size_type { | 
 |   return body_.capacity(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::shrink_to_fit() { | 
 |   body_.shrink_to_fit(); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Size management. | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::clear() { | 
 |   body_.clear(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::size() | 
 |     const -> size_type { | 
 |   return body_.size(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | constexpr auto | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::max_size() const | 
 |     -> size_type { | 
 |   return body_.max_size(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | constexpr bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::empty() | 
 |     const { | 
 |   return body_.empty(); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Iterators. | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin() | 
 |     -> iterator { | 
 |   return body_.begin(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin() | 
 |     const -> const_iterator { | 
 |   return std::begin(body_); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cbegin() const | 
 |     -> const_iterator { | 
 |   return body_.cbegin(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end() -> iterator { | 
 |   return body_.end(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end() | 
 |     const -> const_iterator { | 
 |   return std::end(body_); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cend() const | 
 |     -> const_iterator { | 
 |   return body_.cend(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin() | 
 |     -> reverse_iterator { | 
 |   return body_.rbegin(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin() const | 
 |     -> const_reverse_iterator { | 
 |   return body_.rbegin(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crbegin() const | 
 |     -> const_reverse_iterator { | 
 |   return body_.crbegin(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend() | 
 |     -> reverse_iterator { | 
 |   return body_.rend(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend() const | 
 |     -> const_reverse_iterator { | 
 |   return body_.rend(); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crend() const | 
 |     -> const_reverse_iterator { | 
 |   return body_.crend(); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Insert operations. | 
 | // | 
 | // Currently we use position_hint the same way as eastl or boost: | 
 | // https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493 | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( | 
 |     const value_type& val) -> std::pair<iterator, bool> { | 
 |   return emplace_key_args(GetKeyFromValue()(val), val); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( | 
 |     value_type&& val) -> std::pair<iterator, bool> { | 
 |   return emplace_key_args(GetKeyFromValue()(val), std::move(val)); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( | 
 |     const_iterator position_hint, | 
 |     const value_type& val) -> iterator { | 
 |   return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), val) | 
 |       .first; | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( | 
 |     const_iterator position_hint, | 
 |     value_type&& val) -> iterator { | 
 |   return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), | 
 |                                std::move(val)) | 
 |       .first; | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <class InputIterator> | 
 | void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( | 
 |     InputIterator first, | 
 |     InputIterator last) { | 
 |   if (first == last) | 
 |     return; | 
 |  | 
 |   // Dispatch to single element insert if the input range contains a single | 
 |   // element. | 
 |   if (is_multipass<InputIterator>() && std::next(first) == last) { | 
 |     insert(end(), *first); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Provide a convenience lambda to obtain an iterator pointing past the last | 
 |   // old element. This needs to be dymanic due to possible re-allocations. | 
 |   auto middle = [this, size = size()] { return std::next(begin(), size); }; | 
 |  | 
 |   // For batch updates initialize the first insertion point. | 
 |   difference_type pos_first_new = size(); | 
 |  | 
 |   // Loop over the input range while appending new values and overwriting | 
 |   // existing ones, if applicable. Keep track of the first insertion point. | 
 |   for (; first != last; ++first) { | 
 |     std::pair<iterator, bool> result = append_unique(begin(), middle(), *first); | 
 |     if (result.second) { | 
 |       pos_first_new = | 
 |           std::min(pos_first_new, std::distance(begin(), result.first)); | 
 |     } | 
 |   } | 
 |  | 
 |   // The new elements might be unordered and contain duplicates, so post-process | 
 |   // the just inserted elements and merge them with the rest, inserting them at | 
 |   // the previously found spot. | 
 |   sort_and_unique(middle(), end()); | 
 |   std::inplace_merge(std::next(begin(), pos_first_new), middle(), end(), | 
 |                      value_comp()); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <class... Args> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace( | 
 |     Args&&... args) -> std::pair<iterator, bool> { | 
 |   return insert(value_type(std::forward<Args>(args)...)); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <class... Args> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_hint( | 
 |     const_iterator position_hint, | 
 |     Args&&... args) -> iterator { | 
 |   return insert(position_hint, value_type(std::forward<Args>(args)...)); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Underlying type operations. | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>:: | 
 |     extract() && -> container_type { | 
 |   return std::exchange(body_, container_type()); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::replace( | 
 |     container_type&& body) { | 
 |   // Ensure that `body` is sorted and has no repeated elements according to | 
 |   // `value_comp()`. | 
 |   RTC_DCHECK(is_sorted_and_unique(body, value_comp())); | 
 |   body_ = std::move(body); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Erase operations. | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase( | 
 |     iterator position) -> iterator { | 
 |   RTC_CHECK(position != body_.end()); | 
 |   return body_.erase(position); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename DummyT> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase( | 
 |     const_iterator position) -> iterator { | 
 |   RTC_CHECK(position != body_.end()); | 
 |   return body_.erase(position); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(const K& val) | 
 |     -> size_type { | 
 |   auto eq_range = equal_range(val); | 
 |   auto res = std::distance(eq_range.first, eq_range.second); | 
 |   erase(eq_range.first, eq_range.second); | 
 |   return res; | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase( | 
 |     const_iterator first, | 
 |     const_iterator last) -> iterator { | 
 |   return body_.erase(first, last); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Comparators. | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | constexpr auto | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::key_comp() const | 
 |     -> key_compare { | 
 |   return comp_; | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | constexpr auto | 
 | flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::value_comp() const | 
 |     -> value_compare { | 
 |   return value_compare{comp_}; | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Search operations. | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::count( | 
 |     const K& key) const -> size_type { | 
 |   auto eq_range = equal_range(key); | 
 |   return std::distance(eq_range.first, eq_range.second); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(const K& key) | 
 |     -> iterator { | 
 |   return const_cast_it(std::as_const(*this).find(key)); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find( | 
 |     const K& key) const -> const_iterator { | 
 |   auto eq_range = equal_range(key); | 
 |   return (eq_range.first == eq_range.second) ? end() : eq_range.first; | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::contains( | 
 |     const K& key) const { | 
 |   auto lower = lower_bound(key); | 
 |   return lower != end() && !comp_(key, GetKeyFromValue()(*lower)); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range( | 
 |     const K& key) -> std::pair<iterator, iterator> { | 
 |   auto res = std::as_const(*this).equal_range(key); | 
 |   return {const_cast_it(res.first), const_cast_it(res.second)}; | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range( | 
 |     const K& key) const -> std::pair<const_iterator, const_iterator> { | 
 |   auto lower = lower_bound(key); | 
 |  | 
 |   KeyValueCompare comp(comp_); | 
 |   if (lower == end() || comp(key, *lower)) | 
 |     return {lower, lower}; | 
 |  | 
 |   return {lower, std::next(lower)}; | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound( | 
 |     const K& key) -> iterator { | 
 |   return const_cast_it(std::as_const(*this).lower_bound(key)); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound( | 
 |     const K& key) const -> const_iterator { | 
 |   static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value, | 
 |                 "Requested type cannot be bound to the container's key_type " | 
 |                 "which is required for a non-transparent compare."); | 
 |  | 
 |   const KeyTypeOrK<K>& key_ref = key; | 
 |  | 
 |   KeyValueCompare comp(comp_); | 
 |   return absl::c_lower_bound(*this, key_ref, comp); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound( | 
 |     const K& key) -> iterator { | 
 |   return const_cast_it(std::as_const(*this).upper_bound(key)); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <typename K> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound( | 
 |     const K& key) const -> const_iterator { | 
 |   static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value, | 
 |                 "Requested type cannot be bound to the container's key_type " | 
 |                 "which is required for a non-transparent compare."); | 
 |  | 
 |   const KeyTypeOrK<K>& key_ref = key; | 
 |  | 
 |   KeyValueCompare comp(comp_); | 
 |   return absl::c_upper_bound(*this, key_ref, comp); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // General operations. | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::swap( | 
 |     flat_tree& other) noexcept { | 
 |   std::swap(*this, other); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <class... Args> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::unsafe_emplace( | 
 |     const_iterator position, | 
 |     Args&&... args) -> iterator { | 
 |   return body_.emplace(position, std::forward<Args>(args)...); | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <class K, class... Args> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_key_args( | 
 |     const K& key, | 
 |     Args&&... args) -> std::pair<iterator, bool> { | 
 |   auto lower = lower_bound(key); | 
 |   if (lower == end() || comp_(key, GetKeyFromValue()(*lower))) | 
 |     return {unsafe_emplace(lower, std::forward<Args>(args)...), true}; | 
 |   return {lower, false}; | 
 | } | 
 |  | 
 | template <class Key, class GetKeyFromValue, class KeyCompare, class Container> | 
 | template <class K, class... Args> | 
 | auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>:: | 
 |     emplace_hint_key_args(const_iterator hint, const K& key, Args&&... args) | 
 |         -> std::pair<iterator, bool> { | 
 |   KeyValueCompare comp(comp_); | 
 |   if ((hint == begin() || comp(*std::prev(hint), key))) { | 
 |     if (hint == end() || comp(key, *hint)) { | 
 |       // *(hint - 1) < key < *hint => key did not exist and hint is correct. | 
 |       return {unsafe_emplace(hint, std::forward<Args>(args)...), true}; | 
 |     } | 
 |     if (!comp(*hint, key)) { | 
 |       // key == *hint => no-op, return correct hint. | 
 |       return {const_cast_it(hint), false}; | 
 |     } | 
 |   } | 
 |   // hint was not helpful, dispatch to hintless version. | 
 |   return emplace_key_args(key, std::forward<Args>(args)...); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Free functions. | 
 |  | 
 | // Erases all elements that match predicate. It has O(size) complexity. | 
 | template <class Key, | 
 |           class GetKeyFromValue, | 
 |           class KeyCompare, | 
 |           class Container, | 
 |           typename Predicate> | 
 | size_t EraseIf( | 
 |     webrtc::flat_containers_internal:: | 
 |         flat_tree<Key, GetKeyFromValue, KeyCompare, Container>& container, | 
 |     Predicate pred) { | 
 |   auto it = std::remove_if(container.begin(), container.end(), | 
 |                            std::forward<Predicate>(pred)); | 
 |   size_t removed = std::distance(it, container.end()); | 
 |   container.erase(it, container.end()); | 
 |   return removed; | 
 | } | 
 |  | 
 | }  // namespace flat_containers_internal | 
 | }  // namespace webrtc | 
 |  | 
 | #endif  // RTC_BASE_CONTAINERS_FLAT_TREE_H_ |