| /* | 
 |  *  Copyright 2020 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "pc/sctp_data_channel.h" | 
 |  | 
 | #include <limits> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <utility> | 
 |  | 
 | #include "media/sctp/sctp_transport_internal.h" | 
 | #include "pc/proxy.h" | 
 | #include "rtc_base/checks.h" | 
 | #include "rtc_base/logging.h" | 
 | #include "rtc_base/system/unused.h" | 
 | #include "rtc_base/thread.h" | 
 |  | 
 | namespace webrtc { | 
 |  | 
 | namespace { | 
 |  | 
 | static size_t kMaxQueuedReceivedDataBytes = 16 * 1024 * 1024; | 
 |  | 
 | static std::atomic<int> g_unique_id{0}; | 
 |  | 
 | int GenerateUniqueId() { | 
 |   return ++g_unique_id; | 
 | } | 
 |  | 
 | // Define proxy for DataChannelInterface. | 
 | BEGIN_PROXY_MAP(DataChannel) | 
 | PROXY_PRIMARY_THREAD_DESTRUCTOR() | 
 | BYPASS_PROXY_METHOD1(void, RegisterObserver, DataChannelObserver*) | 
 | BYPASS_PROXY_METHOD0(void, UnregisterObserver) | 
 | BYPASS_PROXY_CONSTMETHOD0(std::string, label) | 
 | BYPASS_PROXY_CONSTMETHOD0(bool, reliable) | 
 | BYPASS_PROXY_CONSTMETHOD0(bool, ordered) | 
 | BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmitTime) | 
 | BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmits) | 
 | BYPASS_PROXY_CONSTMETHOD0(absl::optional<int>, maxRetransmitsOpt) | 
 | BYPASS_PROXY_CONSTMETHOD0(absl::optional<int>, maxPacketLifeTime) | 
 | BYPASS_PROXY_CONSTMETHOD0(std::string, protocol) | 
 | BYPASS_PROXY_CONSTMETHOD0(bool, negotiated) | 
 | // Can't bypass the proxy since the id may change. | 
 | PROXY_SECONDARY_CONSTMETHOD0(int, id) | 
 | BYPASS_PROXY_CONSTMETHOD0(Priority, priority) | 
 | BYPASS_PROXY_CONSTMETHOD0(DataState, state) | 
 | BYPASS_PROXY_CONSTMETHOD0(RTCError, error) | 
 | PROXY_SECONDARY_CONSTMETHOD0(uint32_t, messages_sent) | 
 | PROXY_SECONDARY_CONSTMETHOD0(uint64_t, bytes_sent) | 
 | PROXY_SECONDARY_CONSTMETHOD0(uint32_t, messages_received) | 
 | PROXY_SECONDARY_CONSTMETHOD0(uint64_t, bytes_received) | 
 | PROXY_SECONDARY_CONSTMETHOD0(uint64_t, buffered_amount) | 
 | PROXY_SECONDARY_METHOD0(void, Close) | 
 | PROXY_SECONDARY_METHOD1(bool, Send, const DataBuffer&) | 
 | BYPASS_PROXY_METHOD2(void, | 
 |                      SendAsync, | 
 |                      DataBuffer, | 
 |                      absl::AnyInvocable<void(RTCError) &&>) | 
 | END_PROXY_MAP(DataChannel) | 
 | }  // namespace | 
 |  | 
 | InternalDataChannelInit::InternalDataChannelInit(const DataChannelInit& base) | 
 |     : DataChannelInit(base), open_handshake_role(kOpener) { | 
 |   // If the channel is externally negotiated, do not send the OPEN message. | 
 |   if (base.negotiated) { | 
 |     open_handshake_role = kNone; | 
 |   } else { | 
 |     // Datachannel is externally negotiated. Ignore the id value. | 
 |     // Specified in createDataChannel, WebRTC spec section 6.1 bullet 13. | 
 |     id = -1; | 
 |   } | 
 |   // Backwards compatibility: If maxRetransmits or maxRetransmitTime | 
 |   // are negative, the feature is not enabled. | 
 |   // Values are clamped to a 16bit range. | 
 |   if (maxRetransmits) { | 
 |     if (*maxRetransmits < 0) { | 
 |       RTC_LOG(LS_ERROR) | 
 |           << "Accepting maxRetransmits < 0 for backwards compatibility"; | 
 |       maxRetransmits = absl::nullopt; | 
 |     } else if (*maxRetransmits > std::numeric_limits<uint16_t>::max()) { | 
 |       maxRetransmits = std::numeric_limits<uint16_t>::max(); | 
 |     } | 
 |   } | 
 |  | 
 |   if (maxRetransmitTime) { | 
 |     if (*maxRetransmitTime < 0) { | 
 |       RTC_LOG(LS_ERROR) | 
 |           << "Accepting maxRetransmitTime < 0 for backwards compatibility"; | 
 |       maxRetransmitTime = absl::nullopt; | 
 |     } else if (*maxRetransmitTime > std::numeric_limits<uint16_t>::max()) { | 
 |       maxRetransmitTime = std::numeric_limits<uint16_t>::max(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool InternalDataChannelInit::IsValid() const { | 
 |   if (id < -1) | 
 |     return false; | 
 |  | 
 |   if (maxRetransmits.has_value() && maxRetransmits.value() < 0) | 
 |     return false; | 
 |  | 
 |   if (maxRetransmitTime.has_value() && maxRetransmitTime.value() < 0) | 
 |     return false; | 
 |  | 
 |   // Only one of these can be set. | 
 |   if (maxRetransmits.has_value() && maxRetransmitTime.has_value()) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | StreamId SctpSidAllocator::AllocateSid(rtc::SSLRole role) { | 
 |   RTC_DCHECK_RUN_ON(&sequence_checker_); | 
 |   int potential_sid = (role == rtc::SSL_CLIENT) ? 0 : 1; | 
 |   while (potential_sid <= static_cast<int>(cricket::kMaxSctpSid)) { | 
 |     StreamId sid(potential_sid); | 
 |     if (used_sids_.insert(sid).second) | 
 |       return sid; | 
 |     potential_sid += 2; | 
 |   } | 
 |   RTC_LOG(LS_ERROR) << "SCTP sid allocation pool exhausted."; | 
 |   return StreamId(); | 
 | } | 
 |  | 
 | bool SctpSidAllocator::ReserveSid(StreamId sid) { | 
 |   RTC_DCHECK_RUN_ON(&sequence_checker_); | 
 |   if (!sid.HasValue() || sid.stream_id_int() > cricket::kMaxSctpSid) | 
 |     return false; | 
 |   return used_sids_.insert(sid).second; | 
 | } | 
 |  | 
 | void SctpSidAllocator::ReleaseSid(StreamId sid) { | 
 |   RTC_DCHECK_RUN_ON(&sequence_checker_); | 
 |   used_sids_.erase(sid); | 
 | } | 
 |  | 
 | // A DataChannelObserver implementation that offers backwards compatibility with | 
 | // implementations that aren't yet ready to be called back on the network | 
 | // thread. This implementation posts events to the signaling thread where | 
 | // events are delivered. | 
 | // In the class, and together with the `SctpDataChannel` implementation, there's | 
 | // special handling for the `state()` property whereby if that property is | 
 | // queried on the channel object while inside an event callback, we return | 
 | // the state that was active at the time the event was issued. This is to avoid | 
 | // a problem with calling the `state()` getter on the proxy, which would do | 
 | // a blocking call to the network thread, effectively flushing operations on | 
 | // the network thread that could cause the state to change and eventually return | 
 | // a misleading or arguably, wrong, state value to the callback implementation. | 
 | // As a future improvement to the ObserverAdapter, we could do the same for | 
 | // other properties that need to be read on the network thread. Eventually | 
 | // all implementations should expect to be called on the network thread though | 
 | // and the ObserverAdapter no longer be necessary. | 
 | class SctpDataChannel::ObserverAdapter : public DataChannelObserver { | 
 |  public: | 
 |   explicit ObserverAdapter( | 
 |       SctpDataChannel* channel, | 
 |       rtc::scoped_refptr<PendingTaskSafetyFlag> signaling_safety) | 
 |       : channel_(channel), signaling_safety_(std::move(signaling_safety)) {} | 
 |  | 
 |   bool IsInsideCallback() const { | 
 |     RTC_DCHECK_RUN_ON(signaling_thread()); | 
 |     return cached_getters_ != nullptr; | 
 |   } | 
 |  | 
 |   DataChannelInterface::DataState cached_state() const { | 
 |     RTC_DCHECK_RUN_ON(signaling_thread()); | 
 |     RTC_DCHECK(IsInsideCallback()); | 
 |     return cached_getters_->state(); | 
 |   } | 
 |  | 
 |   RTCError cached_error() const { | 
 |     RTC_DCHECK_RUN_ON(signaling_thread()); | 
 |     RTC_DCHECK(IsInsideCallback()); | 
 |     return cached_getters_->error(); | 
 |   } | 
 |  | 
 |   void SetDelegate(DataChannelObserver* delegate) { | 
 |     RTC_DCHECK_RUN_ON(signaling_thread()); | 
 |     delegate_ = delegate; | 
 |     safety_.reset(PendingTaskSafetyFlag::CreateDetached()); | 
 |   } | 
 |  | 
 |   static void DeleteOnSignalingThread( | 
 |       std::unique_ptr<ObserverAdapter> observer) { | 
 |     auto* signaling_thread = observer->signaling_thread(); | 
 |     if (!signaling_thread->IsCurrent()) | 
 |       signaling_thread->PostTask([observer = std::move(observer)]() {}); | 
 |   } | 
 |  | 
 |  private: | 
 |   class CachedGetters { | 
 |    public: | 
 |     explicit CachedGetters(ObserverAdapter* adapter) | 
 |         : adapter_(adapter), | 
 |           cached_state_(adapter_->channel_->state()), | 
 |           cached_error_(adapter_->channel_->error()) { | 
 |       RTC_DCHECK_RUN_ON(adapter->network_thread()); | 
 |     } | 
 |  | 
 |     ~CachedGetters() { | 
 |       if (!was_dropped_) { | 
 |         RTC_DCHECK_RUN_ON(adapter_->signaling_thread()); | 
 |         RTC_DCHECK_EQ(adapter_->cached_getters_, this); | 
 |         adapter_->cached_getters_ = nullptr; | 
 |       } | 
 |     } | 
 |  | 
 |     bool PrepareForCallback() { | 
 |       RTC_DCHECK_RUN_ON(adapter_->signaling_thread()); | 
 |       RTC_DCHECK(was_dropped_); | 
 |       was_dropped_ = false; | 
 |       adapter_->cached_getters_ = this; | 
 |       return adapter_->delegate_ && adapter_->signaling_safety_->alive(); | 
 |     } | 
 |  | 
 |     RTCError error() { return cached_error_; } | 
 |     DataChannelInterface::DataState state() { return cached_state_; } | 
 |  | 
 |    private: | 
 |     ObserverAdapter* const adapter_; | 
 |     bool was_dropped_ = true; | 
 |     const DataChannelInterface::DataState cached_state_; | 
 |     const RTCError cached_error_; | 
 |   }; | 
 |  | 
 |   void OnStateChange() override { | 
 |     RTC_DCHECK_RUN_ON(network_thread()); | 
 |     signaling_thread()->PostTask( | 
 |         SafeTask(safety_.flag(), | 
 |                  [this, cached_state = std::make_unique<CachedGetters>(this)] { | 
 |                    RTC_DCHECK_RUN_ON(signaling_thread()); | 
 |                    if (cached_state->PrepareForCallback()) | 
 |                      delegate_->OnStateChange(); | 
 |                  })); | 
 |   } | 
 |  | 
 |   void OnMessage(const DataBuffer& buffer) override { | 
 |     RTC_DCHECK_RUN_ON(network_thread()); | 
 |     signaling_thread()->PostTask(SafeTask( | 
 |         safety_.flag(), [this, buffer = buffer, | 
 |                          cached_state = std::make_unique<CachedGetters>(this)] { | 
 |           RTC_DCHECK_RUN_ON(signaling_thread()); | 
 |           if (cached_state->PrepareForCallback()) | 
 |             delegate_->OnMessage(buffer); | 
 |         })); | 
 |   } | 
 |  | 
 |   void OnBufferedAmountChange(uint64_t sent_data_size) override { | 
 |     RTC_DCHECK_RUN_ON(network_thread()); | 
 |     signaling_thread()->PostTask(SafeTask( | 
 |         safety_.flag(), [this, sent_data_size, | 
 |                          cached_state = std::make_unique<CachedGetters>(this)] { | 
 |           RTC_DCHECK_RUN_ON(signaling_thread()); | 
 |           if (cached_state->PrepareForCallback()) | 
 |             delegate_->OnBufferedAmountChange(sent_data_size); | 
 |         })); | 
 |   } | 
 |  | 
 |   bool IsOkToCallOnTheNetworkThread() override { return true; } | 
 |  | 
 |   rtc::Thread* signaling_thread() const { return signaling_thread_; } | 
 |   rtc::Thread* network_thread() const { return channel_->network_thread_; } | 
 |  | 
 |   DataChannelObserver* delegate_ RTC_GUARDED_BY(signaling_thread()) = nullptr; | 
 |   SctpDataChannel* const channel_; | 
 |   // Make sure to keep our own signaling_thread_ pointer to avoid dereferencing | 
 |   // `channel_` in the `RTC_DCHECK_RUN_ON` checks on the signaling thread. | 
 |   rtc::Thread* const signaling_thread_{channel_->signaling_thread_}; | 
 |   ScopedTaskSafety safety_; | 
 |   rtc::scoped_refptr<PendingTaskSafetyFlag> signaling_safety_; | 
 |   CachedGetters* cached_getters_ RTC_GUARDED_BY(signaling_thread()) = nullptr; | 
 | }; | 
 |  | 
 | // static | 
 | rtc::scoped_refptr<SctpDataChannel> SctpDataChannel::Create( | 
 |     rtc::WeakPtr<SctpDataChannelControllerInterface> controller, | 
 |     const std::string& label, | 
 |     bool connected_to_transport, | 
 |     const InternalDataChannelInit& config, | 
 |     rtc::Thread* signaling_thread, | 
 |     rtc::Thread* network_thread) { | 
 |   RTC_DCHECK(config.IsValid()); | 
 |   return rtc::make_ref_counted<SctpDataChannel>( | 
 |       config, std::move(controller), label, connected_to_transport, | 
 |       signaling_thread, network_thread); | 
 | } | 
 |  | 
 | // static | 
 | rtc::scoped_refptr<DataChannelInterface> SctpDataChannel::CreateProxy( | 
 |     rtc::scoped_refptr<SctpDataChannel> channel, | 
 |     rtc::scoped_refptr<PendingTaskSafetyFlag> signaling_safety) { | 
 |   // Copy thread params to local variables before `std::move()`. | 
 |   auto* signaling_thread = channel->signaling_thread_; | 
 |   auto* network_thread = channel->network_thread_; | 
 |   channel->observer_adapter_ = std::make_unique<ObserverAdapter>( | 
 |       channel.get(), std::move(signaling_safety)); | 
 |   return DataChannelProxy::Create(signaling_thread, network_thread, | 
 |                                   std::move(channel)); | 
 | } | 
 |  | 
 | SctpDataChannel::SctpDataChannel( | 
 |     const InternalDataChannelInit& config, | 
 |     rtc::WeakPtr<SctpDataChannelControllerInterface> controller, | 
 |     const std::string& label, | 
 |     bool connected_to_transport, | 
 |     rtc::Thread* signaling_thread, | 
 |     rtc::Thread* network_thread) | 
 |     : signaling_thread_(signaling_thread), | 
 |       network_thread_(network_thread), | 
 |       id_n_(config.id), | 
 |       internal_id_(GenerateUniqueId()), | 
 |       label_(label), | 
 |       protocol_(config.protocol), | 
 |       max_retransmit_time_(config.maxRetransmitTime), | 
 |       max_retransmits_(config.maxRetransmits), | 
 |       priority_(config.priority), | 
 |       negotiated_(config.negotiated), | 
 |       ordered_(config.ordered), | 
 |       observer_(nullptr), | 
 |       controller_(std::move(controller)) { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   // Since we constructed on the network thread we can't (yet) check the | 
 |   // `controller_` pointer since doing so will trigger a thread check. | 
 |   RTC_UNUSED(network_thread_); | 
 |   RTC_DCHECK(config.IsValid()); | 
 |  | 
 |   if (connected_to_transport) | 
 |     network_safety_->SetAlive(); | 
 |  | 
 |   switch (config.open_handshake_role) { | 
 |     case InternalDataChannelInit::kNone:  // pre-negotiated | 
 |       handshake_state_ = kHandshakeReady; | 
 |       break; | 
 |     case InternalDataChannelInit::kOpener: | 
 |       handshake_state_ = kHandshakeShouldSendOpen; | 
 |       break; | 
 |     case InternalDataChannelInit::kAcker: | 
 |       handshake_state_ = kHandshakeShouldSendAck; | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | SctpDataChannel::~SctpDataChannel() { | 
 |   if (observer_adapter_) | 
 |     ObserverAdapter::DeleteOnSignalingThread(std::move(observer_adapter_)); | 
 | } | 
 |  | 
 | void SctpDataChannel::RegisterObserver(DataChannelObserver* observer) { | 
 |   // Note: at this point, we do not know on which thread we're being called | 
 |   // from since this method bypasses the proxy. On Android in particular, | 
 |   // registration methods are called from unknown threads. | 
 |  | 
 |   // Check if we should set up an observer adapter that will make sure that | 
 |   // callbacks are delivered on the signaling thread rather than directly | 
 |   // on the network thread. | 
 |   const auto* current_thread = rtc::Thread::Current(); | 
 |   // TODO(webrtc:11547): Eventually all DataChannelObserver implementations | 
 |   // should be called on the network thread and IsOkToCallOnTheNetworkThread(). | 
 |   if (!observer->IsOkToCallOnTheNetworkThread()) { | 
 |     RTC_LOG(LS_WARNING) << "DataChannelObserver - adapter needed"; | 
 |     auto prepare_observer = [&]() { | 
 |       RTC_DCHECK(observer_adapter_) << "CreateProxy hasn't been called"; | 
 |       observer_adapter_->SetDelegate(observer); | 
 |       return observer_adapter_.get(); | 
 |     }; | 
 |     // Instantiate the adapter in the right context and then substitute the | 
 |     // observer pointer the SctpDataChannel will call back on, with the adapter. | 
 |     if (signaling_thread_ == current_thread) { | 
 |       observer = prepare_observer(); | 
 |     } else { | 
 |       observer = signaling_thread_->BlockingCall(std::move(prepare_observer)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Now do the observer registration on the network thread. | 
 |   auto register_observer = [&] { | 
 |     RTC_DCHECK_RUN_ON(network_thread_); | 
 |     observer_ = observer; | 
 |     DeliverQueuedReceivedData(); | 
 |   }; | 
 |  | 
 |   if (network_thread_ == current_thread) { | 
 |     register_observer(); | 
 |   } else { | 
 |     network_thread_->BlockingCall(std::move(register_observer)); | 
 |   } | 
 | } | 
 |  | 
 | void SctpDataChannel::UnregisterObserver() { | 
 |   // Note: As with `RegisterObserver`, the proxy is being bypassed. | 
 |   const auto* current_thread = rtc::Thread::Current(); | 
 |   // Callers must not be invoking the unregistration from the network thread | 
 |   // (assuming a multi-threaded environment where we have a dedicated network | 
 |   // thread). That would indicate non-network related work happening on the | 
 |   // network thread or that unregistration is being done from within a callback | 
 |   // (without unwinding the stack, which is a requirement). | 
 |   // The network thread is not allowed to make blocking calls to the signaling | 
 |   // thread, so that would blow up if attempted. Since we support an adapter | 
 |   // for observers that are not safe to call on the network thread, we do | 
 |   // need to check+free it on the signaling thread. | 
 |   RTC_DCHECK(current_thread != network_thread_ || | 
 |              network_thread_ == signaling_thread_); | 
 |  | 
 |   auto unregister_observer = [&] { | 
 |     RTC_DCHECK_RUN_ON(network_thread_); | 
 |     observer_ = nullptr; | 
 |   }; | 
 |  | 
 |   if (current_thread == network_thread_) { | 
 |     unregister_observer(); | 
 |   } else { | 
 |     network_thread_->BlockingCall(std::move(unregister_observer)); | 
 |   } | 
 |  | 
 |   auto clear_observer = [&]() { | 
 |     if (observer_adapter_) | 
 |       observer_adapter_->SetDelegate(nullptr); | 
 |   }; | 
 |  | 
 |   if (current_thread != signaling_thread_) { | 
 |     signaling_thread_->BlockingCall(std::move(clear_observer)); | 
 |   } else { | 
 |     clear_observer(); | 
 |   } | 
 | } | 
 |  | 
 | std::string SctpDataChannel::label() const { | 
 |   return label_; | 
 | } | 
 |  | 
 | bool SctpDataChannel::reliable() const { | 
 |   // May be called on any thread. | 
 |   return !max_retransmits_ && !max_retransmit_time_; | 
 | } | 
 |  | 
 | bool SctpDataChannel::ordered() const { | 
 |   return ordered_; | 
 | } | 
 |  | 
 | uint16_t SctpDataChannel::maxRetransmitTime() const { | 
 |   return max_retransmit_time_ ? *max_retransmit_time_ | 
 |                               : static_cast<uint16_t>(-1); | 
 | } | 
 |  | 
 | uint16_t SctpDataChannel::maxRetransmits() const { | 
 |   return max_retransmits_ ? *max_retransmits_ : static_cast<uint16_t>(-1); | 
 | } | 
 |  | 
 | absl::optional<int> SctpDataChannel::maxPacketLifeTime() const { | 
 |   return max_retransmit_time_; | 
 | } | 
 |  | 
 | absl::optional<int> SctpDataChannel::maxRetransmitsOpt() const { | 
 |   return max_retransmits_; | 
 | } | 
 |  | 
 | std::string SctpDataChannel::protocol() const { | 
 |   return protocol_; | 
 | } | 
 |  | 
 | bool SctpDataChannel::negotiated() const { | 
 |   return negotiated_; | 
 | } | 
 |  | 
 | int SctpDataChannel::id() const { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   return id_n_.stream_id_int(); | 
 | } | 
 |  | 
 | Priority SctpDataChannel::priority() const { | 
 |   return priority_ ? *priority_ : Priority::kLow; | 
 | } | 
 |  | 
 | uint64_t SctpDataChannel::buffered_amount() const { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   return queued_send_data_.byte_count(); | 
 | } | 
 |  | 
 | void SctpDataChannel::Close() { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   if (state_ == kClosing || state_ == kClosed) | 
 |     return; | 
 |   SetState(kClosing); | 
 |   // Will send queued data before beginning the underlying closing procedure. | 
 |   UpdateState(); | 
 | } | 
 |  | 
 | SctpDataChannel::DataState SctpDataChannel::state() const { | 
 |   // Note: The proxy is bypassed for the `state()` accessor. This is to allow | 
 |   // observer callbacks to query what the new state is from within a state | 
 |   // update notification without having to do a blocking call to the network | 
 |   // thread from within a callback. This also makes it so that the returned | 
 |   // state is guaranteed to be the new state that provoked the state change | 
 |   // notification, whereby a blocking call to the network thread might end up | 
 |   // getting put behind other messages on the network thread and eventually | 
 |   // fetch a different state value (since pending messages might cause the | 
 |   // state to change in the meantime). | 
 |   const auto* current_thread = rtc::Thread::Current(); | 
 |   if (current_thread == signaling_thread_ && observer_adapter_ && | 
 |       observer_adapter_->IsInsideCallback()) { | 
 |     return observer_adapter_->cached_state(); | 
 |   } | 
 |  | 
 |   auto return_state = [&] { | 
 |     RTC_DCHECK_RUN_ON(network_thread_); | 
 |     return state_; | 
 |   }; | 
 |  | 
 |   return current_thread == network_thread_ | 
 |              ? return_state() | 
 |              : network_thread_->BlockingCall(std::move(return_state)); | 
 | } | 
 |  | 
 | RTCError SctpDataChannel::error() const { | 
 |   const auto* current_thread = rtc::Thread::Current(); | 
 |   if (current_thread == signaling_thread_ && observer_adapter_ && | 
 |       observer_adapter_->IsInsideCallback()) { | 
 |     return observer_adapter_->cached_error(); | 
 |   } | 
 |  | 
 |   auto return_error = [&] { | 
 |     RTC_DCHECK_RUN_ON(network_thread_); | 
 |     return error_; | 
 |   }; | 
 |  | 
 |   return current_thread == network_thread_ | 
 |              ? return_error() | 
 |              : network_thread_->BlockingCall(std::move(return_error)); | 
 | } | 
 |  | 
 | uint32_t SctpDataChannel::messages_sent() const { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   return messages_sent_; | 
 | } | 
 |  | 
 | uint64_t SctpDataChannel::bytes_sent() const { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   return bytes_sent_; | 
 | } | 
 |  | 
 | uint32_t SctpDataChannel::messages_received() const { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   return messages_received_; | 
 | } | 
 |  | 
 | uint64_t SctpDataChannel::bytes_received() const { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   return bytes_received_; | 
 | } | 
 |  | 
 | bool SctpDataChannel::Send(const DataBuffer& buffer) { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   RTCError err = SendImpl(buffer); | 
 |   if (err.type() == RTCErrorType::INVALID_STATE || | 
 |       err.type() == RTCErrorType::RESOURCE_EXHAUSTED) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Always return true for SCTP DataChannel per the spec. | 
 |   return true; | 
 | } | 
 |  | 
 | // RTC_RUN_ON(network_thread_); | 
 | RTCError SctpDataChannel::SendImpl(DataBuffer buffer) { | 
 |   if (state_ != kOpen) { | 
 |     error_ = RTCError(RTCErrorType::INVALID_STATE); | 
 |     return error_; | 
 |   } | 
 |  | 
 |   // If the queue is non-empty, we're waiting for SignalReadyToSend, | 
 |   // so just add to the end of the queue and keep waiting. | 
 |   if (!queued_send_data_.Empty()) { | 
 |     error_ = QueueSendDataMessage(buffer) | 
 |                  ? RTCError::OK() | 
 |                  : RTCError(RTCErrorType::RESOURCE_EXHAUSTED); | 
 |     return error_; | 
 |   } | 
 |  | 
 |   return SendDataMessage(buffer, true); | 
 | } | 
 |  | 
 | void SctpDataChannel::SendAsync( | 
 |     DataBuffer buffer, | 
 |     absl::AnyInvocable<void(RTCError) &&> on_complete) { | 
 |   // Note: at this point, we do not know on which thread we're being called | 
 |   // since this method bypasses the proxy. On Android the thread might be VM | 
 |   // owned, on other platforms it might be the signaling thread, or in Chrome | 
 |   // it can be the JS thread. We also don't know if it's consistently the same | 
 |   // thread. So we always post to the network thread (even if the current thread | 
 |   // might be the network thread - in theory a call could even come from within | 
 |   // the `on_complete` callback). | 
 |   network_thread_->PostTask(SafeTask( | 
 |       network_safety_, [this, buffer = std::move(buffer), | 
 |                         on_complete = std::move(on_complete)]() mutable { | 
 |         RTC_DCHECK_RUN_ON(network_thread_); | 
 |         RTCError err = SendImpl(std::move(buffer)); | 
 |         if (on_complete) | 
 |           std::move(on_complete)(err); | 
 |       })); | 
 | } | 
 |  | 
 | void SctpDataChannel::SetSctpSid_n(StreamId sid) { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   RTC_DCHECK(!id_n_.HasValue()); | 
 |   RTC_DCHECK(sid.HasValue()); | 
 |   RTC_DCHECK_NE(handshake_state_, kHandshakeWaitingForAck); | 
 |   RTC_DCHECK_EQ(state_, kConnecting); | 
 |   id_n_ = sid; | 
 | } | 
 |  | 
 | void SctpDataChannel::OnClosingProcedureStartedRemotely() { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   if (state_ != kClosing && state_ != kClosed) { | 
 |     // Don't bother sending queued data since the side that initiated the | 
 |     // closure wouldn't receive it anyway. See crbug.com/559394 for a lengthy | 
 |     // discussion about this. | 
 |     queued_send_data_.Clear(); | 
 |     queued_control_data_.Clear(); | 
 |     // Just need to change state to kClosing, SctpTransport will handle the | 
 |     // rest of the closing procedure and OnClosingProcedureComplete will be | 
 |     // called later. | 
 |     started_closing_procedure_ = true; | 
 |     SetState(kClosing); | 
 |   } | 
 | } | 
 |  | 
 | void SctpDataChannel::OnClosingProcedureComplete() { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   // If the closing procedure is complete, we should have finished sending | 
 |   // all pending data and transitioned to kClosing already. | 
 |   RTC_DCHECK_EQ(state_, kClosing); | 
 |   RTC_DCHECK(queued_send_data_.Empty()); | 
 |   SetState(kClosed); | 
 | } | 
 |  | 
 | void SctpDataChannel::OnTransportChannelCreated() { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   network_safety_->SetAlive(); | 
 | } | 
 |  | 
 | void SctpDataChannel::OnTransportChannelClosed(RTCError error) { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   // The SctpTransport is unusable, which could come from multiple reasons: | 
 |   // - the SCTP m= section was rejected | 
 |   // - the DTLS transport is closed | 
 |   // - the SCTP transport is closed | 
 |   CloseAbruptlyWithError(std::move(error)); | 
 | } | 
 |  | 
 | DataChannelStats SctpDataChannel::GetStats() const { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   DataChannelStats stats{internal_id_,        id(),         label(), | 
 |                          protocol(),          state(),      messages_sent(), | 
 |                          messages_received(), bytes_sent(), bytes_received()}; | 
 |   return stats; | 
 | } | 
 |  | 
 | void SctpDataChannel::OnDataReceived(DataMessageType type, | 
 |                                      const rtc::CopyOnWriteBuffer& payload) { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |  | 
 |   if (type == DataMessageType::kControl) { | 
 |     if (handshake_state_ != kHandshakeWaitingForAck) { | 
 |       // Ignore it if we are not expecting an ACK message. | 
 |       RTC_LOG(LS_WARNING) | 
 |           << "DataChannel received unexpected CONTROL message, sid = " | 
 |           << id_n_.stream_id_int(); | 
 |       return; | 
 |     } | 
 |     if (ParseDataChannelOpenAckMessage(payload)) { | 
 |       // We can send unordered as soon as we receive the ACK message. | 
 |       handshake_state_ = kHandshakeReady; | 
 |       RTC_LOG(LS_INFO) << "DataChannel received OPEN_ACK message, sid = " | 
 |                        << id_n_.stream_id_int(); | 
 |     } else { | 
 |       RTC_LOG(LS_WARNING) | 
 |           << "DataChannel failed to parse OPEN_ACK message, sid = " | 
 |           << id_n_.stream_id_int(); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   RTC_DCHECK(type == DataMessageType::kBinary || | 
 |              type == DataMessageType::kText); | 
 |  | 
 |   RTC_DLOG(LS_VERBOSE) << "DataChannel received DATA message, sid = " | 
 |                        << id_n_.stream_id_int(); | 
 |   // We can send unordered as soon as we receive any DATA message since the | 
 |   // remote side must have received the OPEN (and old clients do not send | 
 |   // OPEN_ACK). | 
 |   if (handshake_state_ == kHandshakeWaitingForAck) { | 
 |     handshake_state_ = kHandshakeReady; | 
 |   } | 
 |  | 
 |   bool binary = (type == DataMessageType::kBinary); | 
 |   auto buffer = std::make_unique<DataBuffer>(payload, binary); | 
 |   if (state_ == kOpen && observer_) { | 
 |     ++messages_received_; | 
 |     bytes_received_ += buffer->size(); | 
 |     observer_->OnMessage(*buffer.get()); | 
 |   } else { | 
 |     if (queued_received_data_.byte_count() + payload.size() > | 
 |         kMaxQueuedReceivedDataBytes) { | 
 |       RTC_LOG(LS_ERROR) << "Queued received data exceeds the max buffer size."; | 
 |  | 
 |       queued_received_data_.Clear(); | 
 |       CloseAbruptlyWithError( | 
 |           RTCError(RTCErrorType::RESOURCE_EXHAUSTED, | 
 |                    "Queued received data exceeds the max buffer size.")); | 
 |  | 
 |       return; | 
 |     } | 
 |     queued_received_data_.PushBack(std::move(buffer)); | 
 |   } | 
 | } | 
 |  | 
 | void SctpDataChannel::OnTransportReady() { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   RTC_DCHECK(connected_to_transport()); | 
 |   RTC_DCHECK(id_n_.HasValue()); | 
 |  | 
 |   SendQueuedControlMessages(); | 
 |   SendQueuedDataMessages(); | 
 |  | 
 |   UpdateState(); | 
 | } | 
 |  | 
 | void SctpDataChannel::CloseAbruptlyWithError(RTCError error) { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |  | 
 |   if (state_ == kClosed) { | 
 |     return; | 
 |   } | 
 |  | 
 |   network_safety_->SetNotAlive(); | 
 |  | 
 |   // Closing abruptly means any queued data gets thrown away. | 
 |   queued_send_data_.Clear(); | 
 |   queued_control_data_.Clear(); | 
 |  | 
 |   // Still go to "kClosing" before "kClosed", since observers may be expecting | 
 |   // that. | 
 |   SetState(kClosing); | 
 |   error_ = std::move(error); | 
 |   SetState(kClosed); | 
 | } | 
 |  | 
 | void SctpDataChannel::CloseAbruptlyWithDataChannelFailure( | 
 |     const std::string& message) { | 
 |   RTC_DCHECK_RUN_ON(network_thread_); | 
 |   RTCError error(RTCErrorType::OPERATION_ERROR_WITH_DATA, message); | 
 |   error.set_error_detail(RTCErrorDetailType::DATA_CHANNEL_FAILURE); | 
 |   CloseAbruptlyWithError(std::move(error)); | 
 | } | 
 |  | 
 | // RTC_RUN_ON(network_thread_). | 
 | void SctpDataChannel::UpdateState() { | 
 |   // UpdateState determines what to do from a few state variables. Include | 
 |   // all conditions required for each state transition here for | 
 |   // clarity. OnTransportReady(true) will send any queued data and then invoke | 
 |   // UpdateState(). | 
 |  | 
 |   switch (state_) { | 
 |     case kConnecting: { | 
 |       if (connected_to_transport() && controller_) { | 
 |         if (handshake_state_ == kHandshakeShouldSendOpen) { | 
 |           rtc::CopyOnWriteBuffer payload; | 
 |           WriteDataChannelOpenMessage(label_, protocol_, priority_, ordered_, | 
 |                                       max_retransmits_, max_retransmit_time_, | 
 |                                       &payload); | 
 |           SendControlMessage(payload); | 
 |         } else if (handshake_state_ == kHandshakeShouldSendAck) { | 
 |           rtc::CopyOnWriteBuffer payload; | 
 |           WriteDataChannelOpenAckMessage(&payload); | 
 |           SendControlMessage(payload); | 
 |         } | 
 |         if (handshake_state_ == kHandshakeReady || | 
 |             handshake_state_ == kHandshakeWaitingForAck) { | 
 |           SetState(kOpen); | 
 |           // If we have received buffers before the channel got writable. | 
 |           // Deliver them now. | 
 |           DeliverQueuedReceivedData(); | 
 |         } | 
 |       } else { | 
 |         RTC_DCHECK(!id_n_.HasValue()); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case kOpen: { | 
 |       break; | 
 |     } | 
 |     case kClosing: { | 
 |       if (connected_to_transport() && controller_) { | 
 |         // Wait for all queued data to be sent before beginning the closing | 
 |         // procedure. | 
 |         if (queued_send_data_.Empty() && queued_control_data_.Empty()) { | 
 |           // For SCTP data channels, we need to wait for the closing procedure | 
 |           // to complete; after calling RemoveSctpDataStream, | 
 |           // OnClosingProcedureComplete will end up called asynchronously | 
 |           // afterwards. | 
 |           if (!started_closing_procedure_ && id_n_.HasValue()) { | 
 |             started_closing_procedure_ = true; | 
 |             controller_->RemoveSctpDataStream(id_n_); | 
 |           } | 
 |         } | 
 |       } else { | 
 |         // When we're not connected to a transport, we'll transition | 
 |         // directly to the `kClosed` state from here. | 
 |         queued_send_data_.Clear(); | 
 |         queued_control_data_.Clear(); | 
 |         SetState(kClosed); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case kClosed: | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | // RTC_RUN_ON(network_thread_). | 
 | void SctpDataChannel::SetState(DataState state) { | 
 |   if (state_ == state) { | 
 |     return; | 
 |   } | 
 |  | 
 |   state_ = state; | 
 |   if (observer_) { | 
 |     observer_->OnStateChange(); | 
 |   } | 
 |  | 
 |   if (controller_) | 
 |     controller_->OnChannelStateChanged(this, state_); | 
 | } | 
 |  | 
 | // RTC_RUN_ON(network_thread_). | 
 | void SctpDataChannel::DeliverQueuedReceivedData() { | 
 |   if (!observer_) { | 
 |     return; | 
 |   } | 
 |  | 
 |   while (!queued_received_data_.Empty()) { | 
 |     std::unique_ptr<DataBuffer> buffer = queued_received_data_.PopFront(); | 
 |     ++messages_received_; | 
 |     bytes_received_ += buffer->size(); | 
 |     observer_->OnMessage(*buffer); | 
 |   } | 
 | } | 
 |  | 
 | // RTC_RUN_ON(network_thread_). | 
 | void SctpDataChannel::SendQueuedDataMessages() { | 
 |   if (queued_send_data_.Empty()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   RTC_DCHECK(state_ == kOpen || state_ == kClosing); | 
 |  | 
 |   while (!queued_send_data_.Empty()) { | 
 |     std::unique_ptr<DataBuffer> buffer = queued_send_data_.PopFront(); | 
 |     if (!SendDataMessage(*buffer, false).ok()) { | 
 |       // Return the message to the front of the queue if sending is aborted. | 
 |       queued_send_data_.PushFront(std::move(buffer)); | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // RTC_RUN_ON(network_thread_). | 
 | RTCError SctpDataChannel::SendDataMessage(const DataBuffer& buffer, | 
 |                                           bool queue_if_blocked) { | 
 |   SendDataParams send_params; | 
 |   if (!controller_) { | 
 |     error_ = RTCError(RTCErrorType::INVALID_STATE); | 
 |     return error_; | 
 |   } | 
 |  | 
 |   send_params.ordered = ordered_; | 
 |   // Send as ordered if it is still going through OPEN/ACK signaling. | 
 |   if (handshake_state_ != kHandshakeReady && !ordered_) { | 
 |     send_params.ordered = true; | 
 |     RTC_DLOG(LS_VERBOSE) | 
 |         << "Sending data as ordered for unordered DataChannel " | 
 |            "because the OPEN_ACK message has not been received."; | 
 |   } | 
 |  | 
 |   send_params.max_rtx_count = max_retransmits_; | 
 |   send_params.max_rtx_ms = max_retransmit_time_; | 
 |   send_params.type = | 
 |       buffer.binary ? DataMessageType::kBinary : DataMessageType::kText; | 
 |  | 
 |   error_ = controller_->SendData(id_n_, send_params, buffer.data); | 
 |   if (error_.ok()) { | 
 |     ++messages_sent_; | 
 |     bytes_sent_ += buffer.size(); | 
 |  | 
 |     if (observer_ && buffer.size() > 0) { | 
 |       observer_->OnBufferedAmountChange(buffer.size()); | 
 |     } | 
 |     return error_; | 
 |   } | 
 |  | 
 |   if (error_.type() == RTCErrorType::RESOURCE_EXHAUSTED) { | 
 |     if (!queue_if_blocked) | 
 |       return error_; | 
 |  | 
 |     if (QueueSendDataMessage(buffer)) { | 
 |       error_ = RTCError::OK(); | 
 |       return error_; | 
 |     } | 
 |   } | 
 |   // Close the channel if the error is not SDR_BLOCK, or if queuing the | 
 |   // message failed. | 
 |   RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send data, " | 
 |                        "send_result = " | 
 |                     << ToString(error_.type()) << ":" << error_.message(); | 
 |   CloseAbruptlyWithError( | 
 |       RTCError(RTCErrorType::NETWORK_ERROR, "Failure to send data")); | 
 |  | 
 |   return error_; | 
 | } | 
 |  | 
 | // RTC_RUN_ON(network_thread_). | 
 | bool SctpDataChannel::QueueSendDataMessage(const DataBuffer& buffer) { | 
 |   size_t start_buffered_amount = queued_send_data_.byte_count(); | 
 |   if (start_buffered_amount + buffer.size() > | 
 |       DataChannelInterface::MaxSendQueueSize()) { | 
 |     RTC_LOG(LS_ERROR) << "Can't buffer any more data for the data channel."; | 
 |     error_ = RTCError(RTCErrorType::RESOURCE_EXHAUSTED); | 
 |     return false; | 
 |   } | 
 |   queued_send_data_.PushBack(std::make_unique<DataBuffer>(buffer)); | 
 |   return true; | 
 | } | 
 |  | 
 | // RTC_RUN_ON(network_thread_). | 
 | void SctpDataChannel::SendQueuedControlMessages() { | 
 |   PacketQueue control_packets; | 
 |   control_packets.Swap(&queued_control_data_); | 
 |  | 
 |   while (!control_packets.Empty()) { | 
 |     std::unique_ptr<DataBuffer> buf = control_packets.PopFront(); | 
 |     SendControlMessage(buf->data); | 
 |   } | 
 | } | 
 |  | 
 | // RTC_RUN_ON(network_thread_). | 
 | bool SctpDataChannel::SendControlMessage(const rtc::CopyOnWriteBuffer& buffer) { | 
 |   RTC_DCHECK(connected_to_transport()); | 
 |   RTC_DCHECK(id_n_.HasValue()); | 
 |   RTC_DCHECK(controller_); | 
 |  | 
 |   bool is_open_message = handshake_state_ == kHandshakeShouldSendOpen; | 
 |   RTC_DCHECK(!is_open_message || !negotiated_); | 
 |  | 
 |   SendDataParams send_params; | 
 |   // Send data as ordered before we receive any message from the remote peer to | 
 |   // make sure the remote peer will not receive any data before it receives the | 
 |   // OPEN message. | 
 |   send_params.ordered = ordered_ || is_open_message; | 
 |   send_params.type = DataMessageType::kControl; | 
 |  | 
 |   RTCError err = controller_->SendData(id_n_, send_params, buffer); | 
 |   if (err.ok()) { | 
 |     RTC_DLOG(LS_VERBOSE) << "Sent CONTROL message on channel " | 
 |                          << id_n_.stream_id_int(); | 
 |  | 
 |     if (handshake_state_ == kHandshakeShouldSendAck) { | 
 |       handshake_state_ = kHandshakeReady; | 
 |     } else if (handshake_state_ == kHandshakeShouldSendOpen) { | 
 |       handshake_state_ = kHandshakeWaitingForAck; | 
 |     } | 
 |   } else if (err.type() == RTCErrorType::RESOURCE_EXHAUSTED) { | 
 |     queued_control_data_.PushBack(std::make_unique<DataBuffer>(buffer, true)); | 
 |   } else { | 
 |     RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send" | 
 |                          " the CONTROL message, send_result = " | 
 |                       << ToString(err.type()); | 
 |     err.set_message("Failed to send a CONTROL message"); | 
 |     CloseAbruptlyWithError(err); | 
 |   } | 
 |   return err.ok(); | 
 | } | 
 |  | 
 | // static | 
 | void SctpDataChannel::ResetInternalIdAllocatorForTesting(int new_value) { | 
 |   g_unique_id = new_value; | 
 | } | 
 |  | 
 | }  // namespace webrtc |