| /* | 
 |  *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "modules/congestion_controller/goog_cc/trendline_estimator.h" | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include <algorithm> | 
 |  | 
 | #include "absl/types/optional.h" | 
 | #include "modules/remote_bitrate_estimator/test/bwe_test_logging.h" | 
 | #include "rtc_base/checks.h" | 
 | #include "rtc_base/numerics/safe_minmax.h" | 
 |  | 
 | namespace webrtc { | 
 |  | 
 | namespace { | 
 | absl::optional<double> LinearFitSlope( | 
 |     const std::deque<std::pair<double, double>>& points) { | 
 |   RTC_DCHECK(points.size() >= 2); | 
 |   // Compute the "center of mass". | 
 |   double sum_x = 0; | 
 |   double sum_y = 0; | 
 |   for (const auto& point : points) { | 
 |     sum_x += point.first; | 
 |     sum_y += point.second; | 
 |   } | 
 |   double x_avg = sum_x / points.size(); | 
 |   double y_avg = sum_y / points.size(); | 
 |   // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 | 
 |   double numerator = 0; | 
 |   double denominator = 0; | 
 |   for (const auto& point : points) { | 
 |     numerator += (point.first - x_avg) * (point.second - y_avg); | 
 |     denominator += (point.first - x_avg) * (point.first - x_avg); | 
 |   } | 
 |   if (denominator == 0) | 
 |     return absl::nullopt; | 
 |   return numerator / denominator; | 
 | } | 
 |  | 
 | constexpr double kMaxAdaptOffsetMs = 15.0; | 
 | constexpr double kOverUsingTimeThreshold = 10; | 
 | constexpr int kMinNumDeltas = 60; | 
 | constexpr int kDeltaCounterMax = 1000; | 
 |  | 
 | }  // namespace | 
 |  | 
 | TrendlineEstimator::TrendlineEstimator(size_t window_size, | 
 |                                        double smoothing_coef, | 
 |                                        double threshold_gain) | 
 |     : window_size_(window_size), | 
 |       smoothing_coef_(smoothing_coef), | 
 |       threshold_gain_(threshold_gain), | 
 |       num_of_deltas_(0), | 
 |       first_arrival_time_ms_(-1), | 
 |       accumulated_delay_(0), | 
 |       smoothed_delay_(0), | 
 |       delay_hist_(), | 
 |       k_up_(0.0087), | 
 |       k_down_(0.039), | 
 |       overusing_time_threshold_(kOverUsingTimeThreshold), | 
 |       threshold_(12.5), | 
 |       prev_modified_trend_(NAN), | 
 |       last_update_ms_(-1), | 
 |       prev_trend_(0.0), | 
 |       time_over_using_(-1), | 
 |       overuse_counter_(0), | 
 |       hypothesis_(BandwidthUsage::kBwNormal) {} | 
 |  | 
 | TrendlineEstimator::~TrendlineEstimator() {} | 
 |  | 
 | void TrendlineEstimator::Update(double recv_delta_ms, | 
 |                                 double send_delta_ms, | 
 |                                 int64_t arrival_time_ms) { | 
 |   const double delta_ms = recv_delta_ms - send_delta_ms; | 
 |   ++num_of_deltas_; | 
 |   num_of_deltas_ = std::min(num_of_deltas_, kDeltaCounterMax); | 
 |   if (first_arrival_time_ms_ == -1) | 
 |     first_arrival_time_ms_ = arrival_time_ms; | 
 |  | 
 |   // Exponential backoff filter. | 
 |   accumulated_delay_ += delta_ms; | 
 |   BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", arrival_time_ms, | 
 |                         accumulated_delay_); | 
 |   smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + | 
 |                     (1 - smoothing_coef_) * accumulated_delay_; | 
 |   BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", arrival_time_ms, | 
 |                         smoothed_delay_); | 
 |  | 
 |   // Simple linear regression. | 
 |   delay_hist_.push_back(std::make_pair( | 
 |       static_cast<double>(arrival_time_ms - first_arrival_time_ms_), | 
 |       smoothed_delay_)); | 
 |   if (delay_hist_.size() > window_size_) | 
 |     delay_hist_.pop_front(); | 
 |   double trend = prev_trend_; | 
 |   if (delay_hist_.size() == window_size_) { | 
 |     // Update trend_ if it is possible to fit a line to the data. The delay | 
 |     // trend can be seen as an estimate of (send_rate - capacity)/capacity. | 
 |     // 0 < trend < 1   ->  the delay increases, queues are filling up | 
 |     //   trend == 0    ->  the delay does not change | 
 |     //   trend < 0     ->  the delay decreases, queues are being emptied | 
 |     trend = LinearFitSlope(delay_hist_).value_or(trend); | 
 |   } | 
 |  | 
 |   BWE_TEST_LOGGING_PLOT(1, "trendline_slope", arrival_time_ms, trend); | 
 |  | 
 |   Detect(trend, send_delta_ms, arrival_time_ms); | 
 | } | 
 |  | 
 | BandwidthUsage TrendlineEstimator::State() const { | 
 |   return hypothesis_; | 
 | } | 
 |  | 
 | void TrendlineEstimator::Detect(double trend, double ts_delta, int64_t now_ms) { | 
 |   if (num_of_deltas_ < 2) { | 
 |     hypothesis_ = BandwidthUsage::kBwNormal; | 
 |     return; | 
 |   } | 
 |   const double modified_trend = | 
 |       std::min(num_of_deltas_, kMinNumDeltas) * trend * threshold_gain_; | 
 |   prev_modified_trend_ = modified_trend; | 
 |   BWE_TEST_LOGGING_PLOT(1, "T", now_ms, modified_trend); | 
 |   BWE_TEST_LOGGING_PLOT(1, "threshold", now_ms, threshold_); | 
 |   if (modified_trend > threshold_) { | 
 |     if (time_over_using_ == -1) { | 
 |       // Initialize the timer. Assume that we've been | 
 |       // over-using half of the time since the previous | 
 |       // sample. | 
 |       time_over_using_ = ts_delta / 2; | 
 |     } else { | 
 |       // Increment timer | 
 |       time_over_using_ += ts_delta; | 
 |     } | 
 |     overuse_counter_++; | 
 |     if (time_over_using_ > overusing_time_threshold_ && overuse_counter_ > 1) { | 
 |       if (trend >= prev_trend_) { | 
 |         time_over_using_ = 0; | 
 |         overuse_counter_ = 0; | 
 |         hypothesis_ = BandwidthUsage::kBwOverusing; | 
 |       } | 
 |     } | 
 |   } else if (modified_trend < -threshold_) { | 
 |     time_over_using_ = -1; | 
 |     overuse_counter_ = 0; | 
 |     hypothesis_ = BandwidthUsage::kBwUnderusing; | 
 |   } else { | 
 |     time_over_using_ = -1; | 
 |     overuse_counter_ = 0; | 
 |     hypothesis_ = BandwidthUsage::kBwNormal; | 
 |   } | 
 |   prev_trend_ = trend; | 
 |   UpdateThreshold(modified_trend, now_ms); | 
 | } | 
 |  | 
 | void TrendlineEstimator::UpdateThreshold(double modified_trend, | 
 |                                          int64_t now_ms) { | 
 |   if (last_update_ms_ == -1) | 
 |     last_update_ms_ = now_ms; | 
 |  | 
 |   if (fabs(modified_trend) > threshold_ + kMaxAdaptOffsetMs) { | 
 |     // Avoid adapting the threshold to big latency spikes, caused e.g., | 
 |     // by a sudden capacity drop. | 
 |     last_update_ms_ = now_ms; | 
 |     return; | 
 |   } | 
 |  | 
 |   const double k = fabs(modified_trend) < threshold_ ? k_down_ : k_up_; | 
 |   const int64_t kMaxTimeDeltaMs = 100; | 
 |   int64_t time_delta_ms = std::min(now_ms - last_update_ms_, kMaxTimeDeltaMs); | 
 |   threshold_ += k * (fabs(modified_trend) - threshold_) * time_delta_ms; | 
 |   threshold_ = rtc::SafeClamp(threshold_, 6.f, 600.f); | 
 |   last_update_ms_ = now_ms; | 
 | } | 
 |  | 
 | }  // namespace webrtc |