blob: 2fc9749e8caf8afde2d18983677acab373931b25 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "common_video/h264/pps_parser.h"
#include <cstdint>
#include <limits>
#include <vector>
#include "absl/numeric/bits.h"
#include "common_video/h264/h264_common.h"
#include "rtc_base/bitstream_reader.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr int kMaxPicInitQpDeltaValue = 25;
constexpr int kMinPicInitQpDeltaValue = -26;
} // namespace
// General note: this is based off the 02/2014 version of the H.264 standard.
// You can find it on this page:
// http://www.itu.int/rec/T-REC-H.264
absl::optional<PpsParser::PpsState> PpsParser::ParsePps(const uint8_t* data,
size_t length) {
// First, parse out rbsp, which is basically the source buffer minus emulation
// bytes (the last byte of a 0x00 0x00 0x03 sequence). RBSP is defined in
// section 7.3.1 of the H.264 standard.
return ParseInternal(H264::ParseRbsp(data, length));
}
bool PpsParser::ParsePpsIds(const uint8_t* data,
size_t length,
uint32_t* pps_id,
uint32_t* sps_id) {
RTC_DCHECK(pps_id);
RTC_DCHECK(sps_id);
// First, parse out rbsp, which is basically the source buffer minus emulation
// bytes (the last byte of a 0x00 0x00 0x03 sequence). RBSP is defined in
// section 7.3.1 of the H.264 standard.
std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length);
BitstreamReader reader(unpacked_buffer);
*pps_id = reader.ReadExponentialGolomb();
*sps_id = reader.ReadExponentialGolomb();
return reader.Ok();
}
absl::optional<uint32_t> PpsParser::ParsePpsIdFromSlice(const uint8_t* data,
size_t length) {
std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length);
BitstreamReader slice_reader(unpacked_buffer);
// first_mb_in_slice: ue(v)
slice_reader.ReadExponentialGolomb();
// slice_type: ue(v)
slice_reader.ReadExponentialGolomb();
// pic_parameter_set_id: ue(v)
uint32_t slice_pps_id = slice_reader.ReadExponentialGolomb();
if (!slice_reader.Ok()) {
return absl::nullopt;
}
return slice_pps_id;
}
absl::optional<PpsParser::PpsState> PpsParser::ParseInternal(
rtc::ArrayView<const uint8_t> buffer) {
BitstreamReader reader(buffer);
PpsState pps;
pps.id = reader.ReadExponentialGolomb();
pps.sps_id = reader.ReadExponentialGolomb();
// entropy_coding_mode_flag: u(1)
pps.entropy_coding_mode_flag = reader.Read<bool>();
// bottom_field_pic_order_in_frame_present_flag: u(1)
pps.bottom_field_pic_order_in_frame_present_flag = reader.Read<bool>();
// num_slice_groups_minus1: ue(v)
uint32_t num_slice_groups_minus1 = reader.ReadExponentialGolomb();
if (num_slice_groups_minus1 > 0) {
// slice_group_map_type: ue(v)
uint32_t slice_group_map_type = reader.ReadExponentialGolomb();
if (slice_group_map_type == 0) {
for (uint32_t i_group = 0;
i_group <= num_slice_groups_minus1 && reader.Ok(); ++i_group) {
// run_length_minus1[iGroup]: ue(v)
reader.ReadExponentialGolomb();
}
} else if (slice_group_map_type == 1) {
// TODO(sprang): Implement support for dispersed slice group map type.
// See 8.2.2.2 Specification for dispersed slice group map type.
} else if (slice_group_map_type == 2) {
for (uint32_t i_group = 0;
i_group <= num_slice_groups_minus1 && reader.Ok(); ++i_group) {
// top_left[iGroup]: ue(v)
reader.ReadExponentialGolomb();
// bottom_right[iGroup]: ue(v)
reader.ReadExponentialGolomb();
}
} else if (slice_group_map_type == 3 || slice_group_map_type == 4 ||
slice_group_map_type == 5) {
// slice_group_change_direction_flag: u(1)
reader.ConsumeBits(1);
// slice_group_change_rate_minus1: ue(v)
reader.ReadExponentialGolomb();
} else if (slice_group_map_type == 6) {
// pic_size_in_map_units_minus1: ue(v)
uint32_t pic_size_in_map_units = reader.ReadExponentialGolomb() + 1;
int slice_group_id_bits = 1 + absl::bit_width(num_slice_groups_minus1);
// slice_group_id: array of size pic_size_in_map_units, each element
// is represented by ceil(log2(num_slice_groups_minus1 + 1)) bits.
int64_t bits_to_consume =
int64_t{slice_group_id_bits} * pic_size_in_map_units;
if (!reader.Ok() || bits_to_consume > std::numeric_limits<int>::max()) {
return absl::nullopt;
}
reader.ConsumeBits(bits_to_consume);
}
}
// num_ref_idx_l0_default_active_minus1: ue(v)
reader.ReadExponentialGolomb();
// num_ref_idx_l1_default_active_minus1: ue(v)
reader.ReadExponentialGolomb();
// weighted_pred_flag: u(1)
pps.weighted_pred_flag = reader.Read<bool>();
// weighted_bipred_idc: u(2)
pps.weighted_bipred_idc = reader.ReadBits(2);
// pic_init_qp_minus26: se(v)
pps.pic_init_qp_minus26 = reader.ReadSignedExponentialGolomb();
// Sanity-check parsed value
if (!reader.Ok() || pps.pic_init_qp_minus26 > kMaxPicInitQpDeltaValue ||
pps.pic_init_qp_minus26 < kMinPicInitQpDeltaValue) {
return absl::nullopt;
}
// pic_init_qs_minus26: se(v)
reader.ReadExponentialGolomb();
// chroma_qp_index_offset: se(v)
reader.ReadExponentialGolomb();
// deblocking_filter_control_present_flag: u(1)
// constrained_intra_pred_flag: u(1)
reader.ConsumeBits(2);
// redundant_pic_cnt_present_flag: u(1)
pps.redundant_pic_cnt_present_flag = reader.ReadBit();
if (!reader.Ok()) {
return absl::nullopt;
}
return pps;
}
} // namespace webrtc