|  | /* | 
|  | *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include "modules/video_coding/include/video_coding.h" | 
|  | #include "modules/video_coding/internal_defines.h" | 
|  | #include "modules/video_coding/timing.h" | 
|  | #include "system_wrappers/include/clock.h" | 
|  | #include "test/gtest.h" | 
|  | #include "test/testsupport/fileutils.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | TEST(ReceiverTiming, Tests) { | 
|  | SimulatedClock clock(0); | 
|  | VCMTiming timing(&clock); | 
|  | uint32_t waitTime = 0; | 
|  | uint32_t jitterDelayMs = 0; | 
|  | uint32_t requiredDecodeTimeMs = 0; | 
|  | uint32_t timeStamp = 0; | 
|  |  | 
|  | timing.Reset(); | 
|  |  | 
|  | timing.UpdateCurrentDelay(timeStamp); | 
|  |  | 
|  | timing.Reset(); | 
|  |  | 
|  | timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds()); | 
|  | jitterDelayMs = 20; | 
|  | timing.SetJitterDelay(jitterDelayMs); | 
|  | timing.UpdateCurrentDelay(timeStamp); | 
|  | timing.set_render_delay(0); | 
|  | waitTime = timing.MaxWaitingTime( | 
|  | timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), | 
|  | clock.TimeInMilliseconds()); | 
|  | // First update initializes the render time. Since we have no decode delay | 
|  | // we get waitTime = renderTime - now - renderDelay = jitter. | 
|  | EXPECT_EQ(jitterDelayMs, waitTime); | 
|  |  | 
|  | jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10; | 
|  | timeStamp += 90000; | 
|  | clock.AdvanceTimeMilliseconds(1000); | 
|  | timing.SetJitterDelay(jitterDelayMs); | 
|  | timing.UpdateCurrentDelay(timeStamp); | 
|  | waitTime = timing.MaxWaitingTime( | 
|  | timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), | 
|  | clock.TimeInMilliseconds()); | 
|  | // Since we gradually increase the delay we only get 100 ms every second. | 
|  | EXPECT_EQ(jitterDelayMs - 10, waitTime); | 
|  |  | 
|  | timeStamp += 90000; | 
|  | clock.AdvanceTimeMilliseconds(1000); | 
|  | timing.UpdateCurrentDelay(timeStamp); | 
|  | waitTime = timing.MaxWaitingTime( | 
|  | timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), | 
|  | clock.TimeInMilliseconds()); | 
|  | EXPECT_EQ(waitTime, jitterDelayMs); | 
|  |  | 
|  | // 300 incoming frames without jitter, verify that this gives the exact wait | 
|  | // time. | 
|  | for (int i = 0; i < 300; i++) { | 
|  | clock.AdvanceTimeMilliseconds(1000 / 25); | 
|  | timeStamp += 90000 / 25; | 
|  | timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds()); | 
|  | } | 
|  | timing.UpdateCurrentDelay(timeStamp); | 
|  | waitTime = timing.MaxWaitingTime( | 
|  | timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), | 
|  | clock.TimeInMilliseconds()); | 
|  | EXPECT_EQ(waitTime, jitterDelayMs); | 
|  |  | 
|  | // Add decode time estimates. | 
|  | for (int i = 0; i < 10; i++) { | 
|  | int64_t startTimeMs = clock.TimeInMilliseconds(); | 
|  | clock.AdvanceTimeMilliseconds(10); | 
|  | timing.StopDecodeTimer( | 
|  | timeStamp, clock.TimeInMilliseconds() - startTimeMs, | 
|  | clock.TimeInMilliseconds(), | 
|  | timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds())); | 
|  | timeStamp += 90000 / 25; | 
|  | clock.AdvanceTimeMilliseconds(1000 / 25 - 10); | 
|  | timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds()); | 
|  | } | 
|  | requiredDecodeTimeMs = 10; | 
|  | timing.SetJitterDelay(jitterDelayMs); | 
|  | clock.AdvanceTimeMilliseconds(1000); | 
|  | timeStamp += 90000; | 
|  | timing.UpdateCurrentDelay(timeStamp); | 
|  | waitTime = timing.MaxWaitingTime( | 
|  | timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), | 
|  | clock.TimeInMilliseconds()); | 
|  | EXPECT_EQ(waitTime, jitterDelayMs); | 
|  |  | 
|  | int minTotalDelayMs = 200; | 
|  | timing.set_min_playout_delay(minTotalDelayMs); | 
|  | clock.AdvanceTimeMilliseconds(5000); | 
|  | timeStamp += 5 * 90000; | 
|  | timing.UpdateCurrentDelay(timeStamp); | 
|  | const int kRenderDelayMs = 10; | 
|  | timing.set_render_delay(kRenderDelayMs); | 
|  | waitTime = timing.MaxWaitingTime( | 
|  | timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), | 
|  | clock.TimeInMilliseconds()); | 
|  | // We should at least have minTotalDelayMs - decodeTime (10) - renderTime | 
|  | // (10) to wait. | 
|  | EXPECT_EQ(waitTime, minTotalDelayMs - requiredDecodeTimeMs - kRenderDelayMs); | 
|  | // The total video delay should be equal to the min total delay. | 
|  | EXPECT_EQ(minTotalDelayMs, timing.TargetVideoDelay()); | 
|  |  | 
|  | // Reset playout delay. | 
|  | timing.set_min_playout_delay(0); | 
|  | clock.AdvanceTimeMilliseconds(5000); | 
|  | timeStamp += 5 * 90000; | 
|  | timing.UpdateCurrentDelay(timeStamp); | 
|  | } | 
|  |  | 
|  | TEST(ReceiverTiming, WrapAround) { | 
|  | const int kFramerate = 25; | 
|  | SimulatedClock clock(0); | 
|  | VCMTiming timing(&clock); | 
|  | // Provoke a wrap-around. The forth frame will have wrapped at 25 fps. | 
|  | uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFramerate; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); | 
|  | clock.AdvanceTimeMilliseconds(1000 / kFramerate); | 
|  | timestamp += 90000 / kFramerate; | 
|  | int64_t render_time = | 
|  | timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds()); | 
|  | EXPECT_EQ(3 * 1000 / kFramerate, render_time); | 
|  | render_time = timing.RenderTimeMs(89u,  // One second later in 90 kHz. | 
|  | clock.TimeInMilliseconds()); | 
|  | EXPECT_EQ(3 * 1000 / kFramerate + 1, render_time); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |